1
|
Wen J, Gao J, Liu Y, Li T, Pu Q, Ding X, Li Y, Fenech A. Toxicological mechanisms and molecular impacts of tire particles and antibiotics on zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124912. [PMID: 39245201 DOI: 10.1016/j.envpol.2024.124912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Tire microplastics (TMPs) and antibiotics are emerging pollutants that widely exist in water environments. The coexistence of these pollutants poses severe threats to aquatic organisms. However, the toxicity characteristics and key molecular factors of the combined exposure to TMPs in aquatic organisms remain unknown. Therefore, the joint toxicity of styrene-butadiene rubber TMPs (SBR-TMPs) and 32 antibiotics (macrolides, fluoroquinolones, β-lactams, sulfonamides, tetracyclines, nitroimidazoles, highly toxic antibiotics, high-content antibiotics, and common antibiotics) in zebrafish was investigated using a full factorial design, molecular docking, and molecular dynamics simulation. Sixty-four combinations of antibiotics were designed to investigate the hepatotoxicity of the coexistence of SBR-TMPs additives and antibiotics in zebrafish. Results indicated that low-order effects of antibiotics (e.g., enoxacin-lomefloxacin and ofloxacin-enoxacin-lomefloxacin) had relatively notable toxicity. The van der Waals interaction between additives and zebrafish cytochrome P450 enzymes primarily affected zebrafish hepatotoxicity. Zebrafish hepatotoxicity was also affected by the ability of SBR-TMPs to adsorb antibiotics, the relation between antibiotics, the affinity of antibiotics docking to zebrafish cytochrome P450 enzymes, electronegativity, atomic mass, and the hydrophobicity of the antibiotic molecules. This study aimed to eliminate the joint toxicity of TMPs and antibiotics and provide more environmentally friendly instructions for using different chemicals.
Collapse
Affiliation(s)
- Jingya Wen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Jiaxuan Gao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yajing Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Tong Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Xiaowen Ding
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Adam Fenech
- School of Climate Change and Adaptation, University of Prince Edward Island, Charlottetown, Canada.
| |
Collapse
|
2
|
Sethi N, Khokhar M, Mathur M, Batra Y, Mohandas A, Tomo S, Rao M, Banerjee M. Therapeutic Potential of Nutraceuticals against Drug-Induced Liver Injury. Semin Liver Dis 2024. [PMID: 39393795 DOI: 10.1055/s-0044-1791559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Drug-induced liver injury (DILI) continues to be a major concern in clinical practice, thus necessitating a need for novel therapeutic approaches to alleviate its impact on hepatic function. This review investigates the therapeutic potential of nutraceuticals against DILI, focusing on examining the underlying molecular mechanisms and cellular pathways. In preclinical and clinical studies, nutraceuticals, such as silymarin, curcumin, and N-acetylcysteine, have demonstrated remarkable efficacy in attenuating liver injury induced by diverse pharmaceutical agents. The molecular mechanisms underlying these hepatoprotective effects involve modulation of oxidative stress, inflammation, and apoptotic pathways. Furthermore, this review examines cellular routes affected by these nutritional components focusing on their influence on hepatocytes, Kupffer cells, and stellate cells. Key evidence highlights that autophagy modulation as well as unfolded protein response are essential cellular processes through which nutraceuticals exert their cytoprotective functions. In conclusion, nutraceuticals are emerging as promising therapeutic agents for mitigating DILI, by targeting different molecular pathways along with cell processes involved in it concurrently.
Collapse
Affiliation(s)
- Namya Sethi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mitali Mathur
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Yashi Batra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Amal Mohandas
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
3
|
Chuan J, Li W, Pan S, Jiang Z, Shi J, Yang Z. Progress in the development of modulators targeting Frizzleds. Pharmacol Res 2024; 206:107286. [PMID: 38936522 DOI: 10.1016/j.phrs.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The Frizzleds (FZDs) receptors on the cell surface belong to the class F of G protein-coupled receptors (GPCRs) which are the major receptors of WNT protein that mediates the classical WNT signaling pathway and other non-classical pathways. Besides, the FZDs also play a core role in tissue regeneration and tumor occurrence. With the structure and mechanism of FZDs activation becoming clearer, a series of FZDs modulators (inhibitors and agonists) have been developed, with the hope of bringing benefits to the treatment of cancer and degenerative diseases. Most of the FZDs inhibitors (small molecules, antibodies or designed protein inhibitors) block WNT signaling through binding to the cysteine-rich domain (CRD) of FZDs. Several small molecules impede FZDs activation by targeting to the third intracellular domain or the transmembrane domain of FZDs. However, three small molecules (FZM1.8, SAG1.3 and purmorphamine) activate the FZDs through direct interaction with the transmembrane domain. Another type of FZDs agonists are bivalent or tetravalent antibodies which activate the WNT signaling via inducing FZD-LRP5/6 heterodimerization. In this article, we reviewed the FZDs modulators reported in recent years, summarized the critical molecules' discovery processes and the elucidated relevant structural and pharmacological mechanisms. We believe the summaried molecular mechanisms of the relevant modulators could provide important guidance and reference for the future development of FZD modulators.
Collapse
Affiliation(s)
- Junlan Chuan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, Renmin South Road, Chengdu 610041, China; The University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101408, China
| | - Shengliu Pan
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, Renmin South Road, Chengdu 610041, China; The University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101408, China
| | - Zhongliang Jiang
- Hematology Department, Miller School of Medicine, University of Miami, USA
| | - Jianyou Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhenglin Yang
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
4
|
Wu L, Lv X, Zhang J, Wu M, Zhao X, Shi X, Ma W, Li X, Zou Y. Roles of β-catenin in innate immune process and regulating intestinal flora in Qi river crucian carp (Carassius auratus). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109521. [PMID: 38552889 DOI: 10.1016/j.fsi.2024.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
In mammals, β-catenin participates in innate immune process through interaction with NF-κB signaling pathway. However, its role in teleost immune processes remains largely unknown. We aimed to clarify the function of β-catenin in the natural defense mechanism of Qi river crucian carp (Carassius auratus). β-catenin exhibited a ubiquitous expression pattern in adult fish, as indicated by real-time PCR analysis. Following lipopolysaccharide (LPS), Polyinosinic-polycytidylic acid (polyI: C) and Aeromonas hydrophila (A. hydrophila) challenges, β-catenin increased in gill, intestine, liver and kidney, indicating that β-catenin likely plays a pivotal role in the immune response against pathogen infiltration. Inhibition of the β-catenin pathway using FH535, an inhibitor of Wnt/β-catenin pathway, resulting in pathological damage of the gill, intestine, liver and kidney, significant decrease of innate immune factors (C3, defb3, LYZ-C, INF-γ), upregulation of inflammatory factors (NF-κB, TNF-α, IL-1, IL-8), and downregulation of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activities, increase of Malondialdehyde (MDA) content. Following A. hydrophila invasion, the mortality rate in the FH535 treatment group exceeded that of the control group. In addition, the diversity of intestinal microflora decreased and the community structure was uneven after FH535 treatment. In summary, our findings strongly suggest that β-catenin plays a vital role in combating pathogen invasion and regulating intestinal flora in Qi river crucian carp.
Collapse
Affiliation(s)
- Limin Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| | - Xixi Lv
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Jingjing Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Mengfan Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xi Shi
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| | - Wenge Ma
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China.
| | - Yuanchao Zou
- College of Life Sciences, Neijiang Normal University, Conservation and Utilization of Fishes resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang, Sichuan, 641100, PR China.
| |
Collapse
|
5
|
Li Y, Li M, Duan S, Zhang S, Lu H, Guo X, Zhong K. d-Tetramethrin causes zebrafish hepatotoxicity by inducing oxidative stress and inhibiting cell proliferation. Toxicol Appl Pharmacol 2024; 483:116817. [PMID: 38215995 DOI: 10.1016/j.taap.2024.116817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
d-Tetramethrin is one of the main components of mosquito control products, and is widely used for the control of dengue fever and insecticide production. Due to its widespread use, d-tetramethrin is a ubiquitous environmental pollutant and poses potential risks to human health. However, the effects of d-tetramethrin on liver morphology and function are not clearly established. In this study, we used zebrafish as an animal model to analyze the acute and chronic effects of d-tetramethrin exposure on the liver. We exposed zebrafish larvae and adults to different concentrations of d-tetramethrin and examined the impact of d-tetramethrin on lipid and glycogen metabolism, cellular properties, oxidative stress, cell proliferation, and apoptosis in the liver. We also analyzed transcriptional changes in genes related to apoptosis, inflammation, and cell proliferation using qPCR. Zebrafish exposed to d-tetramethrin exhibited severe liver damage, as evidenced by the presence of vacuoles and nuclear distortion in liver cells. The liver area in zebrafish larvae of the treatment group was significantly smaller than that of the control group. Significant lipid accumulation and decreased glycogen levels were observed in the livers of both zebrafish larvae and adults exposed to d-tetramethrin. Furthermore, d-tetramethrin exposure induced apoptosis and inflammation in zebrafish embryos. Additionally, d-tetramethrin caused liver damage, metabolic dysfunction, and impaired liver function. These results suggest that d-tetramethrin induces liver toxicity in zebrafish, by inducing oxidative stress and inhibiting cell proliferation.
Collapse
Affiliation(s)
- Yang Li
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Mijia Li
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Shiyi Duan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Sijie Zhang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Xinchun Guo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
6
|
Işık S, Çiçek S. Impacts of high-dose riboflavin on cytotoxicity, antioxidant, growth, reproductive gene expressions, and genotoxicity in the rainbow trout gonadal cells. Toxicol In Vitro 2024; 94:105730. [PMID: 37944868 DOI: 10.1016/j.tiv.2023.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Riboflavin (vitamin B2 found in food) is a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which study as coenzymes for a variety of cellular processes including biosynthesis, homocysteine metabolism, detoxification, and various oxidation and reduction reactions. Although studies on the symptoms resulting from riboflavin deficiency are intense, studies on the effects of high doses of riboflavin are almost absent. This report aimed to examine the actions of riboflavin on cell viability, the transcriptional expressions of antioxidant enzyme (gsr and gpx1a), growth (gh1, igf1, and igf2), the reproductive (bol) genes and DNA damage in the rainbow trout gonad cells (RTG-2) for 48 h. All concentrations of riboflavin (3.125, 6.25, 12.5, 25, 50, and 100 μM) significantly reduced the RTG-2 cell viability. Riboflavin (LD50: 12.5 μM) significantly downregulated the transcriptional expressions of gpx1a, igf1, and bol genes, while it non-significantly upregulated or downregulated the transcriptional expression of gsr, igf2, and gh1 genes in the RTG-2 cells in comparison to the control group for 48 h. The comet assay demonstrated that riboflavin significantly raised tail DNA% >10% DMSO (positive control). Based on the outcomes, high doses of riboflavin exhibit the potential to have a role in cellular mechanisms, including especially reproduction, DNA damage, and cell death.
Collapse
Affiliation(s)
- Sevda Işık
- Department of Animal Biotechnology, Faculty of Agriculture, Atatürk University, Erzurum 25400, Turkey
| | - Semra Çiçek
- Department of Animal Biotechnology, Faculty of Agriculture, Atatürk University, Erzurum 25400, Turkey.
| |
Collapse
|
7
|
Hu W, Chen G, Yuan W, Guo C, Liu F, Zhang S, Cao Z. Iprodione induces hepatotoxicity in zebrafish by mediating ROS generation and upregulating p53 signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115911. [PMID: 38181604 DOI: 10.1016/j.ecoenv.2023.115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Iprodione is an effective and broad-spectrum fungicide commonly used for early disease control in fruit trees and vegetables. Due to rainfall, iprodione often finds its way into water bodies, posing toxicity risks to non-target organisms and potentially entering the human food chain. However, there is limited information available regarding the developmental toxicity of iprodione specifically on the liver in existing literature. In this study, we employed larval and adult zebrafish as models to investigate the toxicity of iprodione. Our findings revealed that iprodione exposure led to yolk sac edema and increased mortality in zebrafish. Notably, iprodione exhibited specific effects on zebrafish liver development. Additionally, zebrafish exposed to iprodione experienced an overload of reactive oxygen species, resulting in the upregulation of p53 gene expression. This, in turn, triggered hepatocyte apoptosis and disrupted carbohydrate/lipid metabolism as well as energy demand systems. These results demonstrated the substantial impact of iprodione on zebrafish liver development and function. Furthermore, the application of astaxanthin (an antioxidant) and p53 morpholino partially mitigated the liver toxicity caused by iprodione. To summarize, iprodione induces apoptosis through the upregulation of p53 mediated by oxidative stress signals, leading to liver toxicity in zebrafish. Our study highlights that exposure to iprodione can result in hepatotoxicity in zebrafish, and it may potentially pose toxicity risks to other aquatic organisms and even humans.
Collapse
Affiliation(s)
- Weitao Hu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Guilan Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Wenbin Yuan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Chen Guo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Shouhua Zhang
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang University, Nanchang, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
8
|
Dong P, Wang H, Li Y, Yu J, Liu X, Wang Y, Dai L, Wang S. Active peptides from Eupolyphaga sinensis walker attenuates experimental hyperlipidemia by regulating the gut microbiota and biomarkers in rats with dyslipidemia. Biomed Pharmacother 2024; 170:116064. [PMID: 38154268 DOI: 10.1016/j.biopha.2023.116064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Eupolyphaga sinensis Walker (ESW) is a traditional Chinese medicine formulation used to treat hyperlipidemia. However, the hypolipidemic effect of the active peptides from E. sinensis Walker (APE) is incompletely understood. We studied the hypolipidemic effect of APE and explored the impact of APE on the gut microbiota (GM) in rats suffering from hyperlipidemia. APE was prepared by enzymatic digestion, and its structure was characterized using various methods. The anti-hyperlipidemic activity of APE was assessed using a high-fat diet (HFD)-induced model in zebrafish and rats. In rats, HFD administration caused abnormalities of lipid metabolism and disturbances of the GM and amino acid (AA) profile in plasma. The abundance of bacteria of the phyla Firmicutes and Bacteroides was increased significantly (p < 0.05), and the relative abundance of Lactobacillus species and Clostridium species was decreased significantly (p < 0.05). HFD therapy affected the levels of 12 AAs in vivo: 10 AAs showed increased levels and two AAs had decreased levels (p < 0.05). Similar results were demonstrated in an experiment on fecal microbiota transplantation. APE treatment dose-dependently decreased lipid factors and liver damage (p < 0.05). Sequencing of the 16 S rRNA gene indicated that APE improved the intestinal-flora structure of rats with HL markedly, and increased the relative abundance of Lactobacillus species and Clostridium species. Metabolomics analysis indicated that APE could alter the levels of 10 AAs affected by HFD consumption. Spearman correlation analysis revealed that gamma-aminobutyric acid (GABA) could be a crucial metabolite, and Lactobacillus species and Clostridium species might be important bacteria for the action of APE against hyperlipidemia. We speculate that APE exhibited an anti-hyperlipidemic effect by regulating GABA synthesis in the presence of Lactobacillus species and Clostridium species.
Collapse
Affiliation(s)
- Pingping Dong
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Macao 999078, China
| | - Hong Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Jiayi Yu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xin Liu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yinglei Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
9
|
Zhu X, Luo T, Wang D, Zhao Y, Jin Y, Yang G. The occurrence of typical psychotropic drugs in the aquatic environments and their potential toxicity to aquatic organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165732. [PMID: 37495145 DOI: 10.1016/j.scitotenv.2023.165732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Psychotropic drugs (PDs) and their bioactive metabolites often persist in aquatic environments due to their typical physical properties, which made them resistant to removal by traditional wastewater treatment plants (WWTPs). Consequently, such drugs and/or their metabolites are frequently detected in both aquatic environments and organisms. Even at low concentrations, these drugs can exhibit toxic effects on non-target organisms including bony fish (zebrafish (Danio rerio) and fathead minnows) and bivalves (freshwater mussels and clams). This narrative review focuses on the quintessential representatives of three different categories of PDs-antiepileptics, antidepressants, and antipsychotics. The data regarding their concentrations occurring in the environment, patterns of distribution, the degree of enrichment in various tissues of aquatic organisms, and the toxicological effects on them are summarized. The toxicological assessments of these drugs included the evaluation of their effects on the reproductive, embryonic development, oxidative stress-related, neurobehavioral, and genetic functions in various experimental models. However, the mechanisms underlying the toxicity of PDs to aquatic organisms and their potential health risks to humans remain unclear. Most studies have focused on the effects caused by acute short-term exposure due to limitations in the experimental conditions, thus making it necessary to investigate the chronic toxic effects at concentrations that are in coherence with those occurring in the environment. Additionally, this review aims to raise awareness and stimulate further research efforts by highlighting the gaps in the understanding of the mechanisms behind PD-induced toxicity and potential health risks. Ultimately, the study underscores the importance of developing advanced remediation methods for the removal of PDs in WWTPs and encourages a broader discussion on mitigating their environmental impacts.
Collapse
Affiliation(s)
- Xianghai Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
10
|
Huang L, Wang Z, Liu J, Wan M, Liu J, Liu F, Tu X, Xiao J, Liao X, Lu H, Zhang S, Cao Z. Apatinib induces zebrafish hepatotoxicity by inhibiting Wnt signaling and accumulation of oxidative stress. ENVIRONMENTAL TOXICOLOGY 2023; 38:2679-2690. [PMID: 37551640 DOI: 10.1002/tox.23902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
Apatinib, a small-molecule VEGFR2-tyrosine kinase inhibitor, has shown potent anticancer activity in various clinical cancer treatments, but also different adverse reactions. Therefore, it is necessary to study its potential toxicity and working mechanism. We used zebrafish to investigate the effects of apatinib on the development of embryos. Zebrafish exposed to 2.5, 5, and 10 μM apatinib showed adverse effects such as decreased liver area, pericardial oedema, slow yolk absorption, bladder atrophy, and body length shortening. At the same time, it leads to abnormal liver tissue structure, liver function and related gene expression. Furthermore, after exposure to apatinib, oxidative stress levels were significantly elevated but liver developmental toxicity was effectively ameliorated with oxidative stress inhibitor treatment. Apatinib induces down-regulation of key target genes of Wnt signaling pathway in zebrafish, and it is found that Wnt activator can significantly rescue liver developmental defects. These results suggest that apatinib may induce zebrafish hepatotoxicity by inhibiting the Wnt signaling pathway and up-regulating oxidative stress, helping to strengthen our understanding of rational clinical application of apatinib.
Collapse
Affiliation(s)
- Ling Huang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Zhipeng Wang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Jieping Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Mengqi Wan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Jiejun Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Xiaofei Tu
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| |
Collapse
|
11
|
Kang JK, Lee H, Kim SB, Bae H. Alkyl chain length of quaternized SBA-15 and solution conditions determine hydrophobic and electrostatic interactions for carbamazepine adsorption. Sci Rep 2023; 13:5170. [PMID: 36997526 PMCID: PMC10063578 DOI: 10.1038/s41598-023-32108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Santa Barbara Amorphous-15 (SBA) is a stable and mesoporous silica material. Quaternized SBA-15 with alkyl chains (QSBA) exhibits electrostatic attraction for anionic molecules via the N+ moiety of the ammonium group, whereas its alkyl chain length determines its hydrophobic interactions. In this study, QSBA with different alkyl chain lengths were synthesized using the trimethyl, dimethyloctyl, and dimethyoctadecyl groups (C1QSBA, C8QSBA, and C18QSBA, respectively). Carbamazepine (CBZ) is a widely prescribed pharmaceutical compound, but is difficult to remove using conventional water treatments. The CBZ adsorption characteristics of QSBA were examined to determine its adsorption mechanism by changing the alkyl chain length and solution conditions (pH and ionic strength). A longer alkyl chain resulted in slower adsorption (up to 120 min), while the amount of CBZ adsorbed was higher for longer alkyl chains per unit mass of QSBA at equilibrium. The maximum adsorption capacities of C1QSBA, C8QSBA, and C18QSBA, were 3.14, 6.56, and 24.5 mg/g, respectively, as obtained using the Langmuir model. For the tested initial CBZ concentrations (2-100 mg/L), the adsorption capacity increased with increasing alkyl chain length. Because CBZ does not dissociate readily (pKa = 13.9), stable hydrophobic adsorption was observed despite the changes in pH (0.41-0.92, 1.70-2.24, and 7.56-9.10 mg/g for C1QSBA, C8QSBA, and C18QSBA, respectively); the exception was pH 2. Increasing the ionic strength from 0.1 to 100 mM enhanced the adsorption capacity of C18QSBA from 9.27 ± 0.42 to 14.94 ± 0.17 mg/g because the hydrophobic interactions were increased while the electrostatic attraction of the N+ was reduced. Thus, the ionic strength was a stronger control factor determining hydrophobic adsorption of CBZ than the solution pH. Based on the changes in hydrophobicity, which depends on the alkyl chain length, it was possible to enhance CBZ adsorption and investigate the adsorption mechanism in detail. Thus, this study aids the development of adsorbents suitable for pharmaceuticals with controlling molecular structure of QSBA and solution conditions.
Collapse
Affiliation(s)
- Jin-Kyu Kang
- Institute for Environment and Energy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hyebin Lee
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Song-Bae Kim
- Environmental Functional Materials and Water Treatment Laboratory, Department of Rural Systems Engineering, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyokwan Bae
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
12
|
Yang D, Xiao J, Wan M, Liu J, Huang L, Li X, Zhang L, Liu F, Liang D, Zheng Y, Xie B, Liao X, Xiong G, Lu H, Cao Z, Zhang S. Roxadustat induces hepatotoxicity in zebrafish embryos via inhibiting Notch signaling. J Appl Toxicol 2023. [PMID: 36755374 DOI: 10.1002/jat.4444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Roxadustat is a novel and effective small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PHI). However, little research has been done on its toxicity to vertebrate embryonic development. In this study, we used zebrafish to assess the effects of roxadustat on early embryonic development. Exposure to 14, 28, and 56 μM roxadustat resulted in abnormal embryonic development in zebrafish embryos, such as shortened body length and early liver developmental deficiency. Roxadustat exposure resulted in liver metabolic imbalance and abnormal liver tissue structure in adult zebrafish. In addition, roxadustat could up-regulate oxidative stress, and astaxanthin (AS) could partially rescue liver developmental defects by down-regulation of oxidative stress. After exposure to roxadustat, the Notch signaling is down-regulated, and the use of an activator of Notch signaling can partially rescue hepatotoxicity. Therefore, our research indicates that roxadustat may induce zebrafish hepatotoxicity by down-regulating Notch signaling. This study provides a reference for the clinical use of roxadustat.
Collapse
Affiliation(s)
- Dou Yang
- College of Pharmacy, Nanchang University, Nanchang, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang University, Nanchang, China
| | - Mengqi Wan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Jieping Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Ling Huang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Xue Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Li Zhang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Desheng Liang
- College of Pharmacy, Nanchang University, Nanchang, China
| | - Yongliang Zheng
- Affiliated Hospital of Jinggangshan University, Ji'an, China
| | - Baogang Xie
- College of Pharmacy, Nanchang University, Nanchang, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Liraglutide Attenuates Hepatic Oxidative Stress, Inflammation, and Apoptosis in Streptozotocin-Induced Diabetic Mice by Modulating the Wnt/ β-Catenin Signaling Pathway. Mediators Inflamm 2023; 2023:8974960. [PMID: 36756089 PMCID: PMC9899592 DOI: 10.1155/2023/8974960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/19/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023] Open
Abstract
Liraglutide has been extensively applied in the treatment of type 2 diabetes mellitus and also has hepatoprotective effects. However, the role of liraglutide treatment on liver injury in a mouse model of type 1 diabetes mellitus (T1DM) induced by streptozotocin (STZ) and its underlying mechanisms remain to be elucidated. In the present study, diabetes was initiated in experimental animals by single-dose intraperitoneal inoculation of STZ. Forty female C57BL/6J mice were equally assigned into five groups: diabetic group, insulin+diabetic group, liraglutide+diabetic group, insulin+liraglutide+diabetic group, and control group for eight weeks. Diabetic mice exhibited a significantly elevated blood glucose level and decreased body weight, and morphological changes of increased steatosis and apoptosis were observed in the liver compared with the control. Furthermore, a significant increase in the levels of malondialdehyde and inflammatory markers such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin 1β (IL-1β) and the proapoptotic proteins caspase-3 and Bax were observed in the livers of diabetic mice, together with marked increases in antioxidants superoxide dismutase (SOD) and glutathione peroxidase (GPX) as well as antiapoptotic protein Bcl-2, all of which were significantly mitigated by treatment with liraglutide, insulin, and their combinations. Interestingly, liraglutide monotherapy showed better efficacy in ameliorating liver injury in T1DM mice than insulin monotherapy, similar to the combined drug therapy. Furthermore, the expression of Wnt/β-catenin signaling pathway-associated molecules was upregulated in the liver of mice treated with liraglutide or insulin. The results of the present study suggested that liraglutide improves T1DM-induced liver injury and may have important implications for the treatment of nonalcoholic fatty liver disease (NAFLD) in patients with T1DM.
Collapse
|
14
|
Wang Q, Chen G, Tian L, Kong C, Gao D, Chen Y, Junaid M, Wang J. Neuro- and hepato-toxicity of polystyrene nanoplastics and polybrominated diphenyl ethers on early life stages of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159567. [PMID: 36272476 DOI: 10.1016/j.scitotenv.2022.159567] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Nanoplastics (NPs) are good carriers of persistent organic pollutants (POPs) such as polybrominated diphenyl ethers (PBDEs) and can modify their bioavailability and toxicity to aquatic organisms. This study highlights the single and combined toxic effects of polystyrene nanoplastics (PS-NPs) and 2,2 ',4,4 '-tetrabromodiphenyl ether (BDE-47, one of the major PBDE congeners) on zebrafish embryos after an exposure of up to 120 hpf. Our results showed that PS-NPs and BDE-47 formed larger particle aggregates during co-exposure, which attached to the surface of the yolk membrane and even changed its structure, and these particles also bioaccumulated in the intestine of zebrafish larvae, compared with the PS-NPs single exposure. Further, the co-exposure significantly increased mortality, accelerated voluntary movements, enhanced hatching rate, and decreased heart rate. Hepatoxicity analyses revealed that the mixture exposure induced a darker/browner liver colour, atrophied liver and greater hepatotoxicity in zebrafish larvae. In addition to increased ROS accumulation, the reduced expression of the antioxidant gpx1a gene and increased expression of cyp1a1 were found after co-treatment. Moreover, ache and chrn7α genes associated with neurocentral development, were significantly downregulated, mainly in the co-exposure group. In conclusion, simultaneous exposure to PS-NPs and BDE-47 exacerbated oxidative stress, developmental impacts, hepatotoxicity, and neurodevelopmental toxicity in zebrafish larvae. Therefore, neurotoxic effects of complex chemical interactions between PS-NPs and persistent organic pollutants in freshwater environments should be paid more attention.
Collapse
Affiliation(s)
- Qiuping Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Liyan Tian
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yurou Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
15
|
Yang Y, Guo X, Xu T, Yin D. Effects of carbamazepine on gut microbiota, ARGs and intestinal health in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114473. [PMID: 38321688 DOI: 10.1016/j.ecoenv.2022.114473] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 02/08/2024]
Abstract
Carbamazepine (CBZ) in the aquatic environment is recognized as a potential threat to aquatic organisms and public health. However, the response of organism intestinal health, resistome, microbiota, and their relationship after CBZ exposure has been rarely reported. This study aimed to explore the impacts of CBZ on gut microbiota, antibiotic resistance genes (ARGs) and the expression of intestinal health related genes as well as their interaction using the zebrafish model. 16 S ribosomal RNA sequencing indicated CBZ altered the composition of gut microbiota. Using high-throughput quantitative polymerase chain reaction (HT-qPCR), we found the number and abundance of ARGs were impacted by CBZ levels and exposure duration. We also observed the upregulated expression of the pro-inflammatory gene IL6 and downregulated expression of toll-like receptor gene TLR2 and intestinal barrier gene TJP2a at different exposure times. Correlation analyses revealed that Geobacillus, Rhodococcus, Ralstonia, Delftia, Luteolibacter and Escherichia-Shigella might be the main bacterial genera carrying ARGs. Meanwhile, Cetobacterium and Aeromonas could be the dominant bacteria affecting intestinal health related genes. Our results could contribute to understanding the health risks of CBZ to the intestinal microecology of aquatic animals.
Collapse
Affiliation(s)
- Yiting Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
16
|
Duan M, Guo X, Chen X, Guo M, Zhang M, Xu H, Wang C, Yang Y. Transcriptome analysis reveals hepatotoxicity in zebrafish induced by cyhalofop‑butyl. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106322. [PMID: 36240591 DOI: 10.1016/j.aquatox.2022.106322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Cyhalofop‑butyl is a highly effective aryloxyphenoxypropionate herbicide and widely used for weed control in paddy fields. With the increasing residue of cyhalofop‑butyl, it poses a threat to the survival of aquatic organisms. Here, we investigated the effect of cyhalofop‑butyl on zebrafish to explore its potential hepatotoxic mechanism. The results showed that cyhalofop‑butyl induced hepatocyte degeneration, vacuolation and necrosis of larvae after embryonic exposure for 4 days and caused liver atrophy after 5 days. Meanwhile, the activities of enzymes related to liver function were significantly increased by 0.2 mg/L cyhalofop‑butyl and higher, such as alanine transaminase (ALT) and aspartate transaminase (AST). And the contents of triglyceride (TG) involved in lipid metabolism were significantly decreased by 0.4 mg/L cyhalofop-buty. The expression of genes related to liver development was also significantly down-regulated. Furthermore, transcriptome results showed that the pathways involved in metabolism, immune system and endocrine system were significantly impacted, which may be related to hepatoxicity. To sum up, the present study demonstrated the hepatoxicity caused by cyhalofop-buty and its underlying mechanism. The results may provide new insights for the risk of cyhalofop‑butyl to aquatic organisms and new horizons for the pathogenesis of hepatotoxicity.
Collapse
Affiliation(s)
- Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuanjun Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Mengyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Mengna Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Hao Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
17
|
Chen C, Zheng Y, Li X, Zhang L, Liu K, Sun S, Zhong Z, Hu H, Liu F, Xiong G, Liao X, Lu H, Bi Y, Chen J, Cao Z. Cysteamine affects skeletal development and impairs motor behavior in zebrafish. Front Pharmacol 2022; 13:966710. [PMID: 36059963 PMCID: PMC9437517 DOI: 10.3389/fphar.2022.966710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Cysteamine is a kind of feed additive commonly used in agricultural production. It is also the only targeted agent for the treatment of cystinosis, and there are some side effects in clinical applications. However, the potential skeletal toxicity remains to be further elucidated. In this study, a zebrafish model was for the first time utilized to synthetically appraise the skeletal developmental defects induced by cysteamine. The embryos were treated with 0.35, 0.70, and 1.05 mM cysteamine from 6 h post fertilization (hpf) to 72 hpf. Substantial skeletal alterations were manifested as shortened body length, chondropenia, and abnormal somite development. The results of spontaneous tail coiling at 24 hpf and locomotion at 120 hpf revealed that cysteamine decreased behavioral abilities. Moreover, the level of oxidative stress in the skeleton ascended after cysteamine exposure. Transcriptional examination showed that cysteamine upregulated the expression of osteoclast-related genes but did not affect osteoblast-related genes expression. Additionally, cysteamine exposure caused the downregulation of the Notch signaling and activating of Notch signaling partially attenuated skeletal defects. Collectively, our study suggests that cysteamine leads to skeletal developmental defects and reduces locomotion activity. This hazard may be associated with cysteamine-mediated inhibition of the Notch signaling and disorganization of notochordal cells due to oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Chao Chen
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongliang Zheng
- Department of Hematology, Affiliated Hospital of Jinggangshan University, Ji’an, JX, China
- Department of Hematology, The Second Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Xue Li
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Zhang
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kangyu Liu
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sujie Sun
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zilin Zhong
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongmei Hu
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| | - Jianjun Chen
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| |
Collapse
|
18
|
Jia K, Chen G, Zeng J, Liu F, Liao X, Guo C, Luo J, Xiong G, Lu H. Low trifloxystrobin-tebuconazole concentrations induce cardiac and developmental toxicity in zebrafish by regulating notch mediated-oxidative stress generation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113752. [PMID: 35709675 DOI: 10.1016/j.ecoenv.2022.113752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Trifloxystrobin-tebuconazole (TFS-TBZ) is a novel, broad-spectrum fungicide that has been frequently detected in both the environment and agricultural products. However, its adverse effects on aquatic organisms remain unknown. In this study, the adverse effects of ecologically relevant TFS-TBZ concentrations (i.e., 75.0, 112.5, and 150.0 μg/L) on the heart and development of zebrafish were investigated. TFS-TBZ was found to substantially hinder development, inhibit growth, and cause significant abnormity at higher concentrations. Moreover, TFS-TBZ caused severe pericardial edema, heart loop failure, cardiac linearization, and ultra-slow heartbeat, implying that TFS-TBZ might induce congenital heart disease. TFS-TBZ inhibited Notch signaling and increased the intracellular generation of reactive oxygen species, resulting in decreased myocardial cell proliferation and increased apoptosis. The use of sodium valproate and Gadofullerene illustrated the relevance of the Notch signaling system and oxidative stress. Finally, TFS-TBZ exposure conveys severe developmental toxicity to the zebrafish heart. The underlying mechanism is regulation notch mediated-oxidative stress generation, implying that TFS-TBZ may be potentially hazardous to aquatic organisms in the environment.
Collapse
Affiliation(s)
- Kun Jia
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Guilan Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Junquan Zeng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Chen Guo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Jiaqi Luo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
19
|
Yousuf S, Shabir S, Singh MP. Protection Against Drug-Induced Liver Injuries Through Nutraceuticals via Amelioration of Nrf-2 Signaling. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022; 42:495-515. [PMID: 35771985 DOI: 10.1080/27697061.2022.2089403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatotoxicity caused by the overdose of various medications is a leading cause of drug-induced liver injury. Overdose of drugs causes hepatocellular necrosis. Nutraceuticals are reported to prevent drug-induced liver failure. The present article aims to review the protection provided by various medicinal plants against hepatotoxic drugs. Ayurveda is considered a conventional restorative arrangement in India. It is consistently used for ages and is still used today to cure drug-induced hepatotoxicity by focusing on antioxidant stress response pathways such as the nuclear factor erythroid-2 (Nrf-2) antioxidant response element signaling pathway. Nrf-2 is a key transcription factor that entangles Kelch-like ECH-associating protein 1, a protein found in the cell cytoplasm. Some antioxidant enzymes, such as gamma glycine cysteine ligase (γ-GCL) and heme oxygenase-1 (HO-1), are expressed in Nrf-2 targeted genes. Their expression, in turn, decreases the stimulation of hepatic macrophages and induces the messenger RNA (mRNA) articulation of proinflammatory factors including tumor necrosis factor α. This review will cover various medicinal plants from a mechanistic view and how they stimulate and interact with Nrf-2, the master regulator of the antioxidant response to counterbalance oxidative stress. Interestingly, therapeutic plants have become popular in the medical sector due to safer yet effective supplementation for the prevention and treatment of new human diseases. The contemporary study is expected to collect information on a variety of therapeutic traditional herbs that have been studied in the context of drug-induced liver toxicity, as nutraceuticals are the most effective treatments for oxidative stress-induced hepatotoxicity. They are less genotoxic, have a lower cost, and are readily available. Together, nutraceuticals exert protective effects against drug-induced hepatotoxicity through the inhibition of oxidative stress, inflammation, and apoptosis. Its mechanism(s) are considered to be associated with the γ-GCL/HO-1 and Nrf-2 signaling pathways. KEY TEACHING POINTSThe liver is the most significant vital organ that carries out metabolic activities of the body such as the synthesis of glycogen, the formation of triglycerides and cholesterol, as well as the formation of bile.Acute liver failure is caused by the consumption of certain drugs; drug-induced liver injury is the major condition.The chemopreventive activity of nutraceuticals may be related to oxidative stress reduction and attenuation of biosynthetic processes involved in hepatic injury via amelioration of the nuclear factor erythroid-2 (Nrf-2) signaling pathway.Nrf-2 is a key transcription factor that is found in the cell cytoplasm resulting in the expression of various genes such as gamma glycine cysteine ligase and heme oxygenase-1.Nutraceutical-rich phytochemicals possess high antioxidant activity, which helps in the prevention of hepatic injury.
Collapse
Affiliation(s)
- Sumaira Yousuf
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Mahendra P Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
20
|
Zhang J, Cheng C, Lu C, Li W, Li B, Wang J, Wang J, Du Z, Zhu L. Comparison of the toxic effects of non-task-specific and task-specific ionic liquids on zebrafish. CHEMOSPHERE 2022; 294:133643. [PMID: 35051520 DOI: 10.1016/j.chemosphere.2022.133643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Ionic liquids (ILs) are composed of only anions and cations and are liquid solvents at room temperature. Different functional groups were introduced into the ILs, conferring them with specific functions or purposes and thus forming special ILs, namely task-specific ILs (TSILs). Imidazolium-based ILs are the most widely used ILs in industrial production. To date, there have been some studies on the toxic effects of ILs on different organisms. However, the effect of functionalized groups on the toxicity of ILs is still unclear. In the present study, zebrafish were used as model organisms to study the toxic effects of 1-ethyl-3-methylimidazolium nitrate ([C2mim]NO3) and 1-hydroxyethyl-3-methylimidazolium nitrate ([HOC2mim]NO3). The results showed that both promoted an increase in reactive oxygen species (ROS) contents, leading to lipid peroxidation and DNA damage. Furthermore, integrated biological response analysis showed that [HOC2mim]NO3 was less toxic to zebrafish than [C2mim]NO3, which indicated that adding functional groups decreased the toxicity of ILs to organisms. The influence of chemical structure on IL toxicity was also reported. These results could provide a scientific basis for better synthesis and utilization of ILs in the future.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Chao Cheng
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Wenxiu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
21
|
Lu J, Yang Y, Zhu L, Li M, Xu W, Zhang C, Cheng J, Tao L, Li Z, Zhang Y. Exposure to environmental concentrations of natural pyrethrins induces hepatotoxicity: Assessment in HepG2 cell lines and zebrafish models. CHEMOSPHERE 2022; 288:132565. [PMID: 34662635 DOI: 10.1016/j.chemosphere.2021.132565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Natural pyrethrins are one variety of botanical pesticide, and are commonly used in organic and ecological agriculture. However, the hepatotoxicity of natural pyrethrins is unknown. In this study, the impact of natural pyrethrins on human HepG2 cells, which are prominent cell model for toxic-induced hepatotoxicity evaluations, was investigated in accordance with the ROS production and the mechanism of DNA damage and repair. And we report the liver toxicity of natural pyrethrins in zebrafish. Our result revealed a significant increase in ROS production, suggesting oxidative stress. Besides, the most notable genotoxic effect of oxidation-induced DNA damage was observed for natural pyrethrins, as detected by neutral comet assay and γH2AX/8-oxoG staining. As revealed by the results, oxidative DNA damage is responsible for the cytotoxic exposure of natural pyrethrins to HepG2 cells in humans. The observed damage is chronic toxicity, which may cause irreversible DNA damage and more severe toxic effects on human HepG2 cells. This can account for the complicated response to DNA impairment. Visual observations of zebrafish liver and oil red staining also demonstrated that natural pyrethrins induced liver degeneration, liver size changes and liver steatosis in zebrafish. In conclusion, the health of humans can be endangered by natural pyrethrins as a result of hepatotoxicity.
Collapse
Affiliation(s)
- Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lianhua Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
22
|
Li Z, Guo J, Jia K, Zheng Z, Chen X, Bai Z, Yang Y, Chen B, Yuan W, Chen W, Yang J. Oxyfluorfen induces hepatotoxicity through lipo-sugar accumulation and inflammation in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113140. [PMID: 34979306 DOI: 10.1016/j.ecoenv.2021.113140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Oxyfluorfen (OXY) is widely used in agriculture as a herbicide, resulting in its continuous accumulation in the environment. The presence of OXY can be detected in soil and rivers. However, until now, the potential toxicity of OXY to aquatic organisms has not been evaluated. In this study, zebrafish was used as a model animal to evaluate OXY-induced liver toxicity. The study found that 0.25, 0.5, and 1 mg/L of OXY affected the early development of zebrafish and severely damaged the lipid and sugar metabolism in the liver of zebrafish larvae. Furthermore, a metabolic function disorder caused liver damage. OXY also caused inflammation by upregulating the inflammatory factors IL-6, IL-8, and TNF-α, and activated the apoptotic pathway to inhibit hepatocyte proliferation, resulting in zebrafish liver toxicity. Our research showed that OXY had certain toxic effects on zebrafish development and liver and could cause potential harm to other aquatic organisms and humans.
Collapse
Affiliation(s)
- Zekun Li
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Jun Guo
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Kun Jia
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 30031, Jiangxi, China; Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Zhiguo Zheng
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Xiaomei Chen
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Zhonghui Bai
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yuhao Yang
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Bo Chen
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Wei Yuan
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Weihua Chen
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China.
| | - Jian Yang
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
23
|
Navon G, Novak L, Shenkar N. Proteomic changes in the solitary ascidian Herdmania momus following exposure to the anticonvulsant medication carbamazepine. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105886. [PMID: 34134060 DOI: 10.1016/j.aquatox.2021.105886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
The increasing use of pharmaceuticals in human and veterinary medicine, along with their poor removal rates at wastewater treatment facilities is resulting in the chronic release of pharmaceutically-active compounds (PhACs) into the marine environment, where they pose a threat to non-target organisms. A useful approach, as applied in the current study for assessing the effects of PhACs on non-target organisms, is the proteomic approach: the large-scale study of an organism's proteins. Using 'shotgun' proteomics, we identified differentially-expressed proteins based on peptide fragments in the solitary ascidian, Herdmania momus, following a 14-day laboratory experimental exposure to the PhAC carbamazepine (CBZ), an anticonvulsant and antidepressant medication, frequently detected in the aquatic environment. Individuals were exposed to environmentally relevant concentrations: 5 or 10 µg/L of CBZ, in addition to a control treatment. Out of 199 identified proteins, 24 were differentially expressed (12%) between the treatment groups, and thus can potentially be developed as biomarkers for CBZ contamination. Ascidians' phylogenetic position within the closest sister group to vertebrates presents an advantage in examining the pathological effects of PhACs on vertebrate-related organs and systems. Together with the world-wide distribution of some model ascidian species, and their ability to flourish in pristine and polluted sites, they provide a promising tool through which to study the extent and effects of PhAC contamination on marine organisms.
Collapse
Affiliation(s)
- Gal Navon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Lion Novak
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
24
|
Ji Q, Ma J, Wang S, Liu Q. Systematic identification of a panel of strong promoter regions from Listeria monocytogenes for fine-tuning gene expression. Microb Cell Fact 2021; 20:132. [PMID: 34247599 PMCID: PMC8273982 DOI: 10.1186/s12934-021-01628-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/05/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Attenuated Listeria monocytogenes (Lm) has been widely used as a vaccine vector in the prevention and treatment of pathogen infection and tumor diseases. In addition, previous studies have proved that the attenuated Lm can protect zebrafish from Vibrio infections, indicating that the attenuated Lm has a good application prospect in the field of aquatic vaccines. However, the limitation mainly lies in the lack of a set of well-characterized natural promoters for the expression of target antigens in attenuated Lm. RESULTS In our study, candidate strong promoters were identified through RNA-seq analysis, and characterized in Lm through enhanced green fluorescent protein (EGFP). Nine native promoters that showed stronger activities than that of the known strong promoter P36 under two tested temperatures (28 and 37 °C) were selected from the set, and P29 with the highest activity was 24-fold greater than P36. Furthermore, we demonstrated that P29 could initiate EGFP expression in ZF4 cells and zebrafish embryos. CONCLUSIONS This well-characterized promoter library can be used to fine-tune the expression of different proteins in Lm. The availability of a well-characterized promoter toolbox of Lm is essential for the analysis of yield increase for biotechnology applications.
Collapse
Affiliation(s)
- Qianyu Ji
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Shuying Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China.
| |
Collapse
|