1
|
Zgolli A, Fizer M, Mariychuk R, Dhaouadi H. Insights into the Adsorption Mechanism of Chlorpyrifos on Activated Carbon Derived from Prickly Pear Seeds Waste: An Experimental and DFT Modeling Study. ENVIRONMENTAL RESEARCH 2024:120221. [PMID: 39448016 DOI: 10.1016/j.envres.2024.120221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The removal of chlorpyrifos (CPF) from water was achieved using activated carbon (AC) derived from prickly pear seeds (PPS) wastes, developed through chemical activation with phosphoric acid. Several physico-chemical characterization methods were employed. The determination of surface functions using the Boehm assay indicated that the processed AC predominantly possesses acidic functions. The results obtained from the Boehm assay were corroborated by the pH value of the point of zero charge (pHpzc), which was equal to 2.5. Specific area calculation by the BET (Brunauer Emmett Teller) method revealed a large specific area (SBET) of 1077.66 m2 g⁻1. Adsorption experiments of CPF on AC demonstrated that the pseudo-second order (PSO) model and the Freundlich model were the most suitable for kinetic and isothermal modeling, respectively. The maximum CPF adsorption capacity of the PPS AC was found to be approximately 35 mg g⁻1. A theoretical study employing the density functional theory (DFT) was conducted using the B3LYP/6-311G (d, p) method. The most reliable adsorption energy (Eads) and Gibbs free energy (ΔGads) values between CPF and the functional groups on the AC surface were calculated. Results indicated a strong interaction between the lactone group of AC and CPF (ΔGads = -7.15 kcal mol⁻1, ΔEads = -21.55 kcal mol⁻1) and the hydroxyl group (ΔGads = -6.61 kcal mol⁻1, ΔEads = -20.66 kcal mol⁻1). This study demonstrates that activated carbon possesses significant adsorption power, making it highly effective for depolluting water contaminated by pesticides. The application of the theoretical DFT method enhances the understanding of the adsorption phenomenon of CPF on AC.
Collapse
Affiliation(s)
- Amira Zgolli
- University of Monastir, Faculty of Sciences, Laboratory of Environmental Chemistry and Clean Processes, LR21ES04, Monastir, Tunisia
| | - Maksym Fizer
- Department of Organic Chemistry, Educational and Scientific Institute of Chemistry and Ecology, Uzhhorod National University, Pidhirna 46, Uzhhorod 88000, Ukraine
| | - Ruslan Mariychuk
- Department of Ecology, Faculty of Humanity and Natural Sciences, University of Presov, 17(th) November str. 1, Presov, 08116, Slovakia
| | - Hatem Dhaouadi
- University of Monastir, Faculty of Sciences, Laboratory of Environmental Chemistry and Clean Processes, LR21ES04, Monastir, Tunisia.
| |
Collapse
|
2
|
Dulsat-Masvidal M, Ciudad C, Infante O, Mateo R, Lacorte S. Impact of organic contaminants in soils from Important Bird and Biodiversity areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35274-7. [PMID: 39436512 DOI: 10.1007/s11356-024-35274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Soils act as sinks for many organic contaminants, posing a threat to biodiversity and essential ecosystem services. In this study, we assessed the contamination status of soils in 140 Important Bird and Biodiversity Areas (IBAs) in Spain. Fifty-two organic contaminants including organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and plasticizers or plastic related such as phthalates, bisphenol A, nonylphenol, and organophosphate esters (OPEs) were analyzed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). The mean soil concentration ranged from 1.41 to 917 ng/g and plasticizer and PAHs were detected at the highest concentrations, while OCPs were the most frequently detected. Hierarchical clustering on principal components (HCPC) and land use data associated PCBs with artificial land, phthalates with industrial sites and incineration plants and PAHs with burned areas, and in a lesser extent pesticides with agricultural activities. A tier I environmental risk assessment (ERA) was performed to identify the most impacted natural areas and the most concerning compounds. Out of the 140 IBAs, 95 presented at least one compound at high-risk concentrations (RQ > 1) for soil organisms. The OPPs chlorpyrifos and malathion, together with the PAH benzo[b]fluoranthene, were detected at high-risk concentrations. Overall, this study highlights the widespread presence of organic contaminants in areas of high natural value and the importance of implementing monitoring studies to identify potential contaminated sites that require conservation and remediation actions for the protection of biodiversity.
Collapse
Affiliation(s)
- Maria Dulsat-Masvidal
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Carlos Ciudad
- SEO/BirdLife, Melquiades Biencinto, 34, 28053, Madrid, Spain
| | - Octavio Infante
- SEO/BirdLife, Melquiades Biencinto, 34, 28053, Madrid, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13005, Ciudad Real, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
3
|
Zhang Y, Li JN, Wang JX, Li YF, Kallenborn R, Xiao H, Cai MG, Tang ZH, Zhang ZF. High-throughput screening of 222 pesticides in road environments in a megacity of northern China: A new approach to urban population exposure. ENVIRONMENTAL RESEARCH 2024; 257:119379. [PMID: 38851374 DOI: 10.1016/j.envres.2024.119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
A large number of pesticides have been widely manufactured and applied, and are released into the environment with negative impact on human health. Pesticides are largely used in densely populated urban environments, in green zones, along roads and on private properties. In order to characterize the potential exposure related health effects of pesticide and their occurrence in the urban environment, 222 pesticides were screened and quantified in 228 road dust and 156 green-belt soil samples in autumn and spring from Harbin, a megacity in China, using GC-MS/MS base quantitative trace analysis. The results showed that a total of 33 pesticides were detected in road dust and green-belt soil, with the total concentrations of 650 and 236 ng/g (dry weight = dw), respectively. The concentrations of pesticides in road dust were significantly higher than that in green-belt soil. Pesticides in the environment were influenced by the seasons, with the highest concentrations of insecticides in autumn and the highest levels of herbicides in spring. In road dust, the concentrations of highways in autumn and spring (with the mean values of 94.1 and 68.2 ng/g dw) were much lower than that of the other road classes (arterial roads, sub-arterial roads and branch ways). Whereas in the green-belt soil, there was no significant difference in the concentration of pesticides between the different road classes. A first risk assessment was conducted to evaluate the potential adverse health effects of the pesticides, the results showed that the highest hazard index (HI) for a single pesticide in dust and soil was 0.12, the hazard index for children was higher than that for adults, with an overall hazard index of less than 1. Our results indicated that pesticide levels do not have a significant health impact on people.
Collapse
Affiliation(s)
- Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jin-Nong Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jian-Xin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| | - Roland Kallenborn
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Faculty of Chemistry, Biotechnology & Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ming-Gang Cai
- Coastal and Ocean Management Institute, Xiamen University, Xiamen, 361102, China
| | - Zhong-Hua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
4
|
Qiu Y, Liu L, Xu C, Zhao B, Lin H, Liu H, Xian W, Yang H, Wang R, Yang X. Farmland's silent threat: Comprehensive multimedia assessment of micropollutants through non-targeted screening and targeted analysis in agricultural systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135064. [PMID: 38968823 DOI: 10.1016/j.jhazmat.2024.135064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Intricate agricultural ecosystems markedly influence the dynamics of organic micropollutants, posing substantial threats to aquatic organisms and human health. This study examined the occurrence and distribution of organic micropollutants across soils, ditch sediment, and water within highly intensified farming setups. Using a non-targeted screening method, we identified 405 micropollutants across 10 sampling sites, which mainly included pesticides, pharmaceuticals, industrial chemicals, and personal care products. This inventory comprised emerging contaminants, banned pesticides, and controlled pharmaceuticals that had eluded detection via conventional monitoring. Targeted analysis showed concentrations of 3.99-1021 ng/g in soils, 4.67-2488 ng/g in sediment, and 12.5-9373 ng/L in water, respectively, for Σ40pesticides, Σ8pharmaceuticals, and Σ3industrial chemicals, indicating notable spatial variability. Soil organic carbon content and wastewater discharge were likely responsible for their spatial distribution. Principal component analysis and correlation analysis revealed a potential transfer of micropollutants across the three media. Particularly, a heightened correlation was decerned between soil and sediment micropollutant levels, highlighting the role of sorption processes. Risk quotients surpassed the threshold of 1 for 13-23 micropollutants across the three media, indicating high environmental risks. This study highlights the importance of employing non-targeted and targeted screening in assessing and managing environmental risks associated with micropollutants.
Collapse
Affiliation(s)
- Yang Qiu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Lijun Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Caifei Xu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Bo Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Hang Lin
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Weixuan Xian
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Han Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
5
|
Manjarrés-López DP, Montemurro N, Ulrich N, Ebert RU, Jahnke A, Pérez S. Assessment, distribution, and ecological risk of contaminants of emerging concern in a surface water-sediment-fish system impacted by wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173358. [PMID: 38768727 DOI: 10.1016/j.scitotenv.2024.173358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
The presence of contaminants of emerging concern in aquatic ecosystems represents an ever-increasing environmental problem. Aquatic biota is exposed to these contaminants, which can be absorbed and distributed to their organs. This study focused on the assessment, distribution, and ecological risk of 32 CECs in a Spanish river impacted by effluents from a wastewater treatment plant, analyzing the organs and plasma of common carp. Environmental concentrations in water and sediment were examined at sites upstream and downstream of the wastewater treatment plant. The two downstream sites showed 15 times higher total concentrations (12.4 μg L-1 and 30.1 μg L-1) than the two upstream sites (2.08 μg L-1 and 1.66 μg L-1). Half of the CECs were detected in fish organs, with amantadine having the highest concentrations in the kidney (158 ng g-1 w.w.) and liver (93 ng g-1 w.w.), followed by terbutryn, diazepam, and bisphenol F in the brain (50.2, 3.82 and 1.18 ng g-1 w.w.). The experimental bioaccumulation factors per organ were compared with the bioconcentration factors predicted by a physiologically based pharmacokinetic model, obtaining differences of one to two logarithmic units for most compounds. Risk quotients indicated a low risk for 38 % of the contaminants. However, caffeine and terbutryn showed an elevated risk for fish. The mixed risk quotient revealed a medium risk for most of the samples in the three environmental compartments: surface water, sediment, and fish.
Collapse
Affiliation(s)
- Diana P Manjarrés-López
- Environmental and Water Chemistry for Human Health (ONHEALTH) group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Nicola Montemurro
- Environmental and Water Chemistry for Human Health (ONHEALTH) group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Nadin Ulrich
- Department of Exposure Science, Helmholtz-Centre for Environmental Research (UFZ), Permoserstr. 15, 04318 Leipzig, Germany
| | - Ralf-Uwe Ebert
- Department of Exposure Science, Helmholtz-Centre for Environmental Research (UFZ), Permoserstr. 15, 04318 Leipzig, Germany
| | - Annika Jahnke
- Department of Exposure Science, Helmholtz-Centre for Environmental Research (UFZ), Permoserstr. 15, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Sandra Pérez
- Environmental and Water Chemistry for Human Health (ONHEALTH) group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
6
|
Fernández-García A, Martínez-Piernas AB, Moreno-González D, Gilbert-López B, Molina-Díaz A, García-Reyes JF. Occurrence and risk assessment of pesticides and their transformation products related to olive groves in surface waters of the Guadalquivir river basin. CHEMOSPHERE 2024; 357:142075. [PMID: 38648985 DOI: 10.1016/j.chemosphere.2024.142075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Pesticides are considered one of the main sources of contamination of surface waters, especially in rural areas highly influenced by traditional agricultural practices. The objective of this work was to evaluate the impact caused by pesticides and their transformation products (TPs) related to olive groves in surface waters with strong agricultural pressure. 11 streams were monitored during four sampling campaigns over 2 years. A solid-phase extraction, followed by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) analysis was used in the quantitative target approach, with more than 70 validated compounds. Target method was combined with a suspect screening strategy involving more than 500 pesticides and TPs, using ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) to identify additional pesticides and TPs out of the scope of analysis. A total of 43 different compounds were detected with the target method. The herbicide MCPA was present in all samples and at the highest concentration (1260 ng L-1), followed by the fungicide carbendazim (1110 ng L-1), and the herbicide chlorotoluron (706 ng L-1). The suspect screening strategy revealed the presence of 7 compounds out of the target analysis (1 pesticide and 6 TPs). 6 analytes were confirmed with the analytical standards. Semi-quantification results revealed that TPs exhibited higher concentrations than their corresponding parent compounds, indicating higher persistency. Some small streams showed a comparable number of pesticides and concentrations to the most polluted large river. The determined pesticide and TPs concentrations represented an estimated environmental hazard in almost all sampling sites under study. This work underscores the importance of including pesticide TPs and small streams impacted by extensive agricultural activities in water quality monitoring programs.
Collapse
Affiliation(s)
- Alfonso Fernández-García
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain
| | - Ana B Martínez-Piernas
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain.
| | - David Moreno-González
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain
| | - Juan F García-Reyes
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain
| |
Collapse
|
7
|
Kerhoas M, Carteret J, Huchet L, Jouan E, Huc L, Vée ML, Fardel O. Induction of human hepatic cytochrome P-450 3A4 expression by antifungal succinate dehydrogenase inhibitors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116261. [PMID: 38574644 DOI: 10.1016/j.ecoenv.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these agrochemicals, the interactions of 15 SDHIs with expression and activity of human cytochrome P-450 3A4 (CYP3A4), a major hepatic drug metabolizing enzyme, were investigated in vitro. 12/15 SDHIs, i.e., bixafen, boscalid, fluopyram, flutolanil, fluxapyroxad, furametpyr, isofetamid, isopyrazam, penflufen, penthiopyrad, pydiflumetofen and sedaxane, were found to enhance CYP3A4 mRNA expression in human hepatic HepaRG cells and primary human hepatocytes exposed for 48 h to 10 µM SDHIs, whereas 3/15 SDHIs, i.e., benzovindiflupyr, carboxin and thifluzamide, were without effect. The inducing effects were concentrations-dependent for boscalid (EC50=22.5 µM), fluopyram (EC50=4.8 µM) and flutolanil (EC50=53.6 µM). They were fully prevented by SPA70, an antagonist of the Pregnane X Receptor, thus underlining the implication of this xenobiotic-sensing receptor. Increase in CYP3A4 mRNA in response to SDHIs paralleled enhanced CYP3A4 protein expression for most of SDHIs. With respect to CYP3A4 activity, it was directly inhibited by some SDHIs, including bixafen, fluopyram, fluxapyroxad, isofetamid, isopyrazam, penthiopyrad and sedaxane, which therefore appears as dual regulators of CYP3A4, being both inducer of its expression and inhibitor of its activity. The inducing effect nevertheless predominates for these SDHIs, except for isopyrazam and sedaxane, whereas boscalid and flutolanil were pure inducers of CYP3A4 expression and activity. Most of SDHIs appear therefore as in vitro inducers of CYP3A4 expression in cultured hepatic cells, when, however, used at concentrations rather higher than those expected in humans in response to environmental or dietary exposure to these agrochemicals.
Collapse
Affiliation(s)
- Marie Kerhoas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France
| | - Lilou Huchet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France
| | - Laurence Huc
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France; Laboratoire Interdisciplinaire Sciences Innovations Sociétés (LISIS), INRAE/CNRS/Université Gustave Eiffel, Marne-La-Vallée 77454, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France.
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France
| |
Collapse
|
8
|
Bedrossiantz J, Goyenechea J, Prats E, Gómez-Canela C, Barata C, Raldúa D, Cachot J. Cardiac and neurobehavioral impairments in three phylogenetically distant aquatic model organisms exposed to environmentally relevant concentrations of boscalid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123685. [PMID: 38460591 DOI: 10.1016/j.envpol.2024.123685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Boscalid (2-Chloro-N-(4'-chlorobiphenyl-2-yl) nicotinamide), a pyridine carboxamide fungicide, is an inhibitor of the complex II of the respiration chain in fungal mitochondria. As boscalid is only moderately toxic for aquatic organisms (LC50 > 1-10 mg/L), current environmental levels of this compound in aquatic ecosystems, in the range of ng/L-μg/L, are considered safe for aquatic organisms. In this study, we have exposed zebrafish (Danio rerio), Japanese medaka (Oryzias latipes) and Daphnia magna to a range of concentrations of boscalid (1-1000 μg/L) for 24 h, and the effects on heart rate (HR), basal locomotor activity (BLA), visual motor response (VMR), startle response (SR), and habituation (HB) to a series of vibrational or light stimuli have been evaluated. Moreover, changes in the profile of the main neurotransmitters have been determined. Boscalid altered HR in a concentration-dependent manner, leading to a positive or negative chronotropic effect in fish and D. magna, respectively. While boscalid decreased BLA and increased VMR in Daphnia, these behaviors were not altered in fish. For SR and HB, the response was more species- and concentration-specific, with Daphnia exhibiting the highest sensitivity. At the neurotransmission level, boscalid exposure decreased the levels of L-aspartic acid in fish larvae and increased the levels of dopaminergic metabolites in D. magna. Our study demonstrates that exposure to environmental levels of boscalid alters cardiac activity, impairs ecologically relevant behaviors, and leads to changes in different neurotransmitter systems in phylogenetically distinct vertebrate and invertebrate models. Thus, the results presented emphasize the need to review the current regulation of this fungicide.
Collapse
Affiliation(s)
- Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain.
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), IQS School of Engineering, Ramon Llull University, Via Augusta 390, 08017, Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Cristián Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), IQS School of Engineering, Ramon Llull University, Via Augusta 390, 08017, Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Jérôme Cachot
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| |
Collapse
|
9
|
Lannan MC, Guédot C. Attract-and-kill for managing Popillia japonica (Coleoptera: Scarabaeidae) abundance and leaf injury in commercial vineyards. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:508-515. [PMID: 38428947 DOI: 10.1093/jee/toae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Popillia japonica Newman (Coleoptera: Scarabaeidae) feeding negatively impacts many plant species, including grapes, potentially reducing fruit quality and yield. Chemical control, representing the current grower standard, relies on frequent broadcast applications of broad-spectrum insecticides, with alternative management strategies mostly lacking. Attract-and-kill (A&K) is a behavioral management strategy that combines semiochemical attractants and a killing agent on a substrate. This study assessed the impact of A&K on (i) the number of P. japonica adults and (ii) the percent of P. japonica feeding injury on grape foliage compared to the grower standard in commercial vineyards. This 2-year study was conducted at 3 commercial vineyards with 4 paired plots consisting of a grower standard control and an A&K treatment. The A&K treatment consisted of commercial lures, each placed on outside-edge grapevines, and weekly applications of carbaryl on the plants holding lures. The grower standard received broadcast insecticide applications at the grower's discretion. The A&K treatment experienced similar numbers of P. japonica adults and similar proportions of leaf injury compared to the grower standard. The use of A&K reduced by 96% the crop area treated with insecticides compared to the grower standard. The area treated by A&K was at the edge of the vineyards, where more leaf injury occurred regardless of treatment. A&K is a targeted approach that was effective at managing P. japonica and reducing chemical inputs on a small scale. It has the potential to be scaled up and refined to provide growers with a new management strategy.
Collapse
Affiliation(s)
- Mitchell C Lannan
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
10
|
Rohani FG, Mahdavi V, Assari MJ. Pesticide residues in fresh Mazafati date fruit, soil, and water, and assessment of potential health risks to consumers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25227-25237. [PMID: 38468010 DOI: 10.1007/s11356-024-32760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
A quantitative method based on quick, easy, cheap, effective, rugged, and safe technique (QuEChERS) sample extraction and ultra-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) was evolved for the determination of 47 pesticide residues in fresh Mazafati date fruits from Bam City of Kerman Province, Iran. The recoveries for selected pesticides ranged from 88 to 110% with a relative standard deviation (RSD) of less than 20% at concentrations of 0.05 and 0.1 mg kg-1. The proposed method had a linear range from the limit of quantification (LOQ) to 1.00 mg kg-1, and the LOQ of the 47 pesticides was ≤ 0.005 mg kg-1. The coefficients of determination (R2) were more than 0.99. This technique was used on 12 fresh date fruits samples, three water samples, and three soil samples with three replications per sample. Forty-seven pesticide were detected collectively, but only diazinon was detected in the date fruit samples. The mean value of diazinon residues was 0.037 mg kg-1, and the concentration of diazinon in most samples was below the national maximum residue limit (MRL) for date fruit (0.05 mg kg-1). Among the pesticides measured, diazinon residues were also detected in the water samples, but not in the soil samples. The dietary intake assessment showed no health risk to humans from the consumption of fresh date fruit concerning the pesticides investigated.
Collapse
Affiliation(s)
- Fatemeh Ganjeizadeh Rohani
- Plant Protection Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran.
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Mohammad Javad Assari
- Plant Protection Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
| |
Collapse
|
11
|
Zhang Y, Zhang D, Liu H, Sun B. Photostimulus-Responsive Peptide Dot-Centered Covalent Organic Polymers: Effective Pesticide Sensing via Enhancing Accessibility. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14208-14217. [PMID: 38445958 DOI: 10.1021/acsami.4c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Pesticide detection and monitoring are necessary for human health as the overapplication has serious consequences for environmental pollution. Herein, a proper modulation strategy was implemented to construct the photostimulus-responsive peptide-dot-centered covalent organic polymer (P-PCOP) nanoarchitecture for selective sensing of pesticides. The as-constructed P-PCOP was prepared at room temperature by using amino-containing peptide dots as a building block instead of common organic molecules, and the merits of P-PCOP enable it to reduce the steric hindrance of recognition, enhance the interfacial contact of the target, and facilitate the accessibility of sites, which promises to improve the sensitivity. The P-PCOF exhibited a low detection limit of 0.38 μg L-1 to cartap over the range of 1-80 μg L-1 (R2 = 0.9845), and the recoveries percentage in real samples was estimated to be 93.39-105.82%. More importantly, the DFT calculation confirmed the selective recognition ability of P-PCOP on chemical pesticides. In conjunction with a smartphone-integrated portable reading device, on-site chemical sensing is achieved. The proper modulation strategy of fixing a functional guest on the COP system contributes to the advanced structure-chemical properties that are conducive to their applications in chemical sensing.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Dianwei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
12
|
Iturburu FG, Bertrand L, Soursou V, Scheibler EE, Calderon G, Altamirano JC, Amé MV, Menone ML, Picó Y. Pesticides and PPCPs in aquatic ecosystems of the andean central region: Occurrence and ecological risk assessment in the Uco valley. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133274. [PMID: 38128229 DOI: 10.1016/j.jhazmat.2023.133274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Uco valley (Mendoza, Argentina) suffers the concomitant effect of climate change, anthropic pressure and water scarcity. Moreover chemical pollution to aquatic ecosystems could be another pressuring factor, but it was not studied enough to the present. In this sense, the aim of this study was to assess the occurrence of pesticides, pharmaceuticals and personal care products (PPCPs) in aquatic ecosystems of the Uco Valley and to perform an ecological risk assessment (ERA). The presence of several insecticides (mainly neonicotinoids), herbicides (atrazine, diuron, metolachlor, terbutryn) and fungicides (strobilurins, triazolic and benzimidazolic compounds) in water samples in two seasons, related to crops like vineyards, garlic or fruit trees was associated to medium and high-risk probabilities for aquatic biota. Moreover, PPCPs of the group of non-steroidal anti-inflammatory drugs, parabens and bisphenol A were detected in all the samples and their calculated risk quotients also indicated a high risk. This is the first record of pesticides and PPCPs with an ERA in this growing agricultural oasis. Despite the importance of these findings in Uco Valley for decision makers in the region, this multilevel approach could bring a wide variety of tools for similar regions in with similar productive and environmental conditions, in order to afford actions to reach Sustainable Development Goals. SYNOPSIS: Aquatic ecosystems in arid mountain regions are threatened worldwide. This study reports relevant data about chemical pollution in Central Andes, which could be a useful tool to enhance SDGs' accomplishment.
Collapse
Affiliation(s)
- Fernando G Iturburu
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Juan B. Justo 2550, 7600 Mar del Plata, Argentina.
| | - Lidwina Bertrand
- Laboratorio de Investigaciones en Contaminación Acuática y Ecotoxicología (LICAE), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Vasiliki Soursou
- Food and Environmental Safety Research Group (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV) University of Valencia, Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Erica E Scheibler
- Laboratorio de Entomología, Instituto Argentino de Investigaciones de Zonas Áridas (IADIZA), CONICET-Universidad Nacional de Cuyo (UNCuyo)-Government of Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina
| | - Gabriela Calderon
- Instituto del Hábitat y del Ambiente (IHAM), Facultad de Arquitectura, Urbanismo y Diseño (FAUD, UNMdP), Dean Funes 3350, 7600 Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorgelina C Altamirano
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, 5500 (P.O. Box 331), Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales (FCEN), UNCuyo, Padre Jorge Contreras 1300, 5502 (P.O. Box 331), Mendoza, Argentina
| | - María V Amé
- Laboratorio de Investigaciones en Contaminación Acuática y Ecotoxicología (LICAE), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Mirta L Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Juan B. Justo 2550, 7600 Mar del Plata, Argentina
| | - Yolanda Picó
- Food and Environmental Safety Research Group (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV) University of Valencia, Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| |
Collapse
|
13
|
Teju E, Legesse A, Megersa N. The non-edible and disposable parts of oyster mushroom, as novel adsorbent for quantitative removal of atrazine and its degradation products from synthetic wastewater. Heliyon 2024; 10:e26278. [PMID: 38375288 PMCID: PMC10875584 DOI: 10.1016/j.heliyon.2024.e26278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
In this study, the non-edible part of oyster mushroom was utilized for quantitative removal of the most commonly used s-triazine herbicide; atrazine and its breakdown products including deethylatrazine (DEA), hydroxyatrazine (ATOH) and deisopropylatrazine (DIA) from aqueous samples. The functional groups available on the oyster mushroom were studied applying FTIR before and after adsorption. Experimental parameters influencing the uptake process including acidity, sorbent mass, sorption time, initial analyte quantities, and agitation speed were analysed and the maximum removal was found at 4, 0.3 g, 120 min, 0.5 mg L-1, and 150 rpm, respectively. Accordingly, the adsorption capacities of 0.994, 1.113, 0.991 and 1.016 mg g-1 were obtained for DIA, DEA, ATOH and atrazine, respectively. The adsorption characteristics were discussed utilizing Langmuir and Freundlich isotherm models. The fundamental characteristic of the Langmuir isotherm, which can be elaborated using separation factor or equilibrium parameter, RL, and coefficient of variation, R2, were (0.761, 0.996), (0.884, 0.975), (0.908, 0.983) and (0.799, 0.984) for DIA, DEA, ATOH and Atrazine, respectively. These findings showed that all analytes' adsorption processes were fitted well to the Langmuir adsorption isotherm, indicating that the adsorbent surface was covered in a monolayer. The kinetics was also evaluated using the pseudo-first and pseudo-second order models. The coefficient of determination, r2, were found to be 0.09703, 0.9989, 0.9967 and 0.9998 for DIA DEA, ATOH and atrazine, respectively, for pseudo-second order, signifying that, all analytes were found to follow the pseudo-second order rate model showing that the rate limiting step is chemisorption in the sorption process. Based on these findings, the non-edible and disposable part of the oyster mushrooms can be utilized as a preferred alternative biosorbent for the uptake of the target compounds analysed and other pollutants possessing comparable physicochemical characteristics occurring in various water bodies.
Collapse
Affiliation(s)
- Endale Teju
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, P. O. Box 138, Haromaya, Ethiopia
| | - Abi Legesse
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Negussie Megersa
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
14
|
Yue Y, Sun X, Tian S, Yan S, Sun W, Miao J, Huang S, Diao J, Zhou Z, Zhu W. Multi-omics and gut microbiome: Unveiling the pathogenic mechanisms of early-life pesticide exposure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105770. [PMID: 38458664 DOI: 10.1016/j.pestbp.2024.105770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 03/10/2024]
Abstract
The extensive application of pesticides in agricultural production has raised significant concerns about its impact on human health. Different pesticides, including fungicides, insecticides, and herbicides, cause environmental pollution and health problems for non-target organisms. Infants and young children are so vulnerable to the harmful effects of pesticide exposure that early-life exposure to pesticides deserves focused attention. Recent research lays emphasis on understanding the mechanism between negative health impacts and early-life exposure to various pesticides. Studies have explored the impacts of exposure to these pesticides on model organisms (zebrafish, rats, and mice), as well as the mechanism of negative health effects, based on advanced methodologies like gut microbiota and multi-omics. These methodologies help comprehend the pathogenic mechanisms associated with early-life pesticide exposure. In addition to presenting health problems stemming from early-life exposure to pesticides and their pathogenic mechanisms, this review proposes expectations for future research. These proposals include focusing on identifying biomarkers that indicate early-life pesticide exposure, investigating transgenerational effects, and seeking effective treatments for diseases arising from such exposure. This review emphasizes how to understand the pathogenic mechanisms of early-life pesticide exposure through gut microbiota and multi-omics, as well as the adverse health effects of such exposure.
Collapse
Affiliation(s)
- Yifan Yue
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoxuan Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Sen Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jiyan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Fernández-Fernández V, Ramil M, Cela R, Rodríguez I. Occurrence and risk assessment of pesticides and pharmaceuticals in viticulture impacted watersheds from Northwest Spain. CHEMOSPHERE 2023; 341:140098. [PMID: 37683952 DOI: 10.1016/j.chemosphere.2023.140098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
An automated analytical methodology was developed, validated and applied to monitor 73 organic pollutants (pesticides and pharmaceuticals) in surface and groundwater samples obtained in watersheds from an intensive viticulture, rural region, in the Northwest of Spain. Filtered samples were concentrated using a reusable solid-phase extraction sorbent, on-line combined with liquid chromatography tandem mass spectrometry (LC-MS/MS). The analytical procedure achieved limits of quantification between 1 ng L-1 and 10 ng L-1, with a throughput of 2 samples hour-1, providing accurate recoveries for more than 90% of the 73 selected compounds, using calibration solutions prepared in ultrapure water (in presence of methanol and formic acid) as neat solvent. The distribution and the concentrations of pesticides in small streams impacted by discharges of treated municipal wastewaters were different in rural and residential areas. On the other hand, pharmaceuticals showed a similar distribution in both streams. In surface waters from viticulture impacted watersheds, with a limited influence of municipal wastewaters, pulses of pesticides were noticed, with values above 100 ng L-1 for several fungicides. Cardiovascular pharmaceuticals, psychiatric drugs and/or their transformation products were also ubiquitous in these samples, with low, but relatively stable concentrations among sampling campaigns. Within the suite of investigated compounds, maximum pesticide residues remained below their predicted-non effect concentration (PNEC) in all samples. On the other hand, the environmental concentrations of the cardiovascular drug olmesartan stayed systematically above its PNEC in fresh water samples.
Collapse
Affiliation(s)
- V Fernández-Fernández
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain
| | - M Ramil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain
| | - R Cela
- Mestrelab Research Center (CIM), Av. Barcelona 7, 15706, Santiago de Compostela, Spain
| | - I Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Cui N, Wang P, Xu N. Sorption behaviour of tebuconazole on microplastics: kinetics, isotherms and influencing factors. ENVIRONMENTAL TECHNOLOGY 2023; 44:3937-3948. [PMID: 35546061 DOI: 10.1080/09593330.2022.2077133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) and pesticides are two classes of environmental pollutants and have become global challenges. MPs could adsorb substantial environmental pollutants, which may affect their transportation, distribution and cause combination toxicity. Therefore, the study of sorption properties and mechanisms is the basis of the ecological risk assessment of co-exposure of pesticides and MPs. In this research, typical triazole fungicide tebuconazole (TEB) is selected as a model pollutant, and its sorption behaviour was investigated by kinetic and isotherm models. Meanwhile, a series of environmental influencing factors, like pH, salinity, and metals were conducted. Results showed that the sorption of TEB on MPs could reach equilibrium at 24 h, and the sorption capacity followed the order of PA (polyamide) > PS (polystyrene) > PP (polypropylene). The pseudo-second-order model was the most appropriate model to describe kinetic data, and the Freundlich model was well fit for PA sorption isotherms, in contrast the Langmuir model is better for PP and PS. Additionally, the pH of the solution, salinity, and metals have an important effect on sorption. Combined with Fourier Transform Infrared Spectroscopy and environmental influencing factors, the sorption mechanisms were mainly electrostatic interaction and hydrogen bond for PA and PP, and hydrophobic force, intermolecular force, and electrostatic force for PS, respectively.
Collapse
Affiliation(s)
- Ning Cui
- Medical college, Xi'an International University, Xi'an, People's Republic of China
| | - Pei Wang
- Medical college, Xi'an International University, Xi'an, People's Republic of China
| | - Ningxia Xu
- Medical college, Xi'an International University, Xi'an, People's Republic of China
| |
Collapse
|
17
|
Rösch A, Wettstein FE, Wächter D, Reininger V, Meuli RG, Bucheli TD. A multi-residue method for trace analysis of pesticides in soils with special emphasis on rigorous quality control. Anal Bioanal Chem 2023; 415:6009-6025. [PMID: 37550544 PMCID: PMC10556155 DOI: 10.1007/s00216-023-04872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
A multi-residue trace analytical method is presented to accurately quantify 146 currently used pesticides in (agricultural) soils with varying soil properties. Pesticides were extracted using an optimized quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach and chemical analysis was carried out by liquid chromatography coupled to tandem mass spectrometry (triple quadrupole). Quantification was based on matrix-matched internal standards calibration, using 95 isotopically labeled analyte analogues. In contrast to the common approach of method validation using soils freshly spiked with analytes shortly before the extraction, our method is additionally validated via an in-house prepared partly aged soil, which contains all target pesticides and via agricultural field soils with native pesticide residues. The developed method is highly sensitive (median method limit of quantification: 0.2 ng/g), precise (e.g., median intra-day and inter-day method precision both ~ 4% based on field soils), and true ((i) quantified pesticide concentrations of the partly aged soil remained stable during 6 months, were close to the initially spiked nominal concentration of 10 ng/g, and thus can be used to review trueness in the future; (ii) median freshly spiked relative recovery: 103%; and (iii) participation in a ring trial: median z-scores close to one (good to satisfactory result)). Its application to selected Swiss (agricultural) soils revealed the presence of in total 77 different pesticides with sum concentrations up to 500 ng/g. The method is now in use for routine soil monitoring as part of the Swiss Action Plan for Risk Reduction and Sustainable Use of Plant Protection Products.
Collapse
Affiliation(s)
- Andrea Rösch
- Environmental Analytics, Agroscope, 8046, Zurich, Switzerland
| | | | - Daniel Wächter
- Soil Quality and Soil Use, Agroscope, 8046, Zurich, Switzerland
| | | | - Reto G Meuli
- Soil Quality and Soil Use, Agroscope, 8046, Zurich, Switzerland
| | | |
Collapse
|
18
|
Wang R, Yang X, Wang T, Kou R, Liu P, Huang Y, Chen C. Synergistic effects on oxidative stress, apoptosis and necrosis resulting from combined toxicity of three commonly used pesticides on HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115237. [PMID: 37451096 DOI: 10.1016/j.ecoenv.2023.115237] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The widespread use of pesticides performs a vital role in safeguarding crop yields and quality, providing the opportunity for multiple pesticides to co-exist, which poses a significant potential risk to human health. To assess the toxic effects caused by exposures to individual pesticides (chlorpyrifos, carbofuran and acetamiprid), binary combinations and ternary combinations, individual and combined exposure models were developed using HepG2 cells and the types of combined effects of pesticide mixtures were assessed using concentration addition (CA), independent action (IA) and combination index (CI) models, respectively, and the expression of biomarkers related to oxidative stress, apoptosis and cell necrosis was further examined. Our results showed that both individual pesticides and mixtures exerted toxic effects on HepG2 cells. The CI model indicated that the toxic effects of pesticide mixtures exhibited synergistic effects. The results of the lactate dehydrogenase (LDH) release and apoptosis assay revealed that the pesticide mixture increased the release of LDH and apoptosis levels. Moreover, our results also showed that individual pesticides and mixtures disrupted redox homeostasis and that pesticide mixtures produced more intense oxidative stress effects. In conclusion, we have illustrated the enhanced combined toxicity of pesticide mixtures by in-vitro experiments, which provides a theoretical basis and scientific basis for further toxicological studies.
Collapse
Affiliation(s)
- Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xi Yang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Tiancai Wang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Ruirui Kou
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Panpan Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Yueqing Huang
- Department of General Medicine, The Affliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou 215026, China.
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
19
|
Strouhova A, Velisek J, Stara A. Selected neonicotinoids and associated risk for aquatic organisms. VET MED-CZECH 2023; 68:313-336. [PMID: 37982123 PMCID: PMC10646545 DOI: 10.17221/78/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/16/2023] [Indexed: 11/21/2023] Open
Abstract
Neonicotinoids are one of the newest groups of systemic pesticides, effective on a wide range of invertebrate pests. The success of neonicotinoids can be assessed according to the amount used, for example, in the Czech Republic, which now accounts for 1/3 of the insecticide market. The European Union (EU) has a relatively interesting attitude towards neonicotinoids. Three neonicotinoid substances (imidacloprid, clothianidin and thiamethoxam) were severely restricted in 2013. In 2019, imidacloprid and clothianidin were banned, while thiamethoxam and thiacloprid were banned in 2020. In 2022, another substance, sulfoxaflor, was banned. Therefore, only two neonicotinoid substances (acetamiprid and flupyradifurone) are approved for outdoor use in the EU. Neonicotinoids enter aquatic ecosystems in many ways. In European rivers, neonicotinoids usually occur in nanograms per litre. Due to the low toxicity of neonicotinoids to standard test species, they were not expected to significantly impact the aquatic ecosystem until later studies showed that aquatic invertebrates, especially insects, are much more sensitive to neonicotinoids. In addition to the lethal effects, many studies point to sublethal impacts - reduced reproductive capacity, initiation of downstream drift of organisms, reduced ability to eat, or a change in feeding strategies. Neonicotinoids can affect individuals, populations, and entire ecosystems.
Collapse
Affiliation(s)
- Alzbeta Strouhova
- Laboratory of Aquatic Toxicology and Ichtyopathology, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Josef Velisek
- Laboratory of Aquatic Toxicology and Ichtyopathology, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Alzbeta Stara
- Laboratory of Aquatic Toxicology and Ichtyopathology, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| |
Collapse
|
20
|
Tsiantas P, Bempelou E, Doula M, Karasali H. Validation and Simultaneous Monitoring of 311 Pesticide Residues in Loamy Sand Agricultural Soils by LC-MS/MS and GC-MS/MS, Combined with QuEChERS-Based Extraction. Molecules 2023; 28:molecules28114268. [PMID: 37298746 DOI: 10.3390/molecules28114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Soil can be contaminated by pesticide residues through agricultural practices, by direct application or through spray-drift in cultivations. The dissipation of those chemicals in the soil may pose risks to the environment and human health. A simple and sensitive multi-residue analytical method was optimized and validated for the simultaneous determination of 311 active substances of pesticides in agricultural soils. The method involves sample preparation with QuEChERS-based extraction, and determination of the analytes with a combination of GC-MS/MS and LC-MS/MS techniques. Calibration plots were linear for both detectors over the range of five concentration levels, using matrix-matched calibration standards. The obtained recoveries from fortified-soil samples ranged from 70 to 119% and from 72.6 to 119% for GC-MS/MS and LC-MS/MS, respectively, while precision values were <20% in all cases. As regards the matrix effect (ME), signal suppression was observed in the liquid chromatography (LC)-amenable compounds, which was further estimated to be negligible. The gas chromatography (GC)-amenable compounds showed enhancement in the chromatographic response estimated as medium or strong ME. The calibrated limit of quantification (LOQ) value was 0.01 μg g-1 dry weight for most of the analytes, while the corresponding calculated limit of determination (LOD) value was 0.003 μg g-1 d.w. The proposed method was subsequently applied to agricultural soils from Greece, and positive determinations were obtained, among which were non-authorized compounds. The results indicate that the developed multi-residue method is fit for the purpose of analyzing low levels of pesticides in soil, according to EU requirements.
Collapse
Affiliation(s)
- Petros Tsiantas
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Eleftheria Bempelou
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Maria Doula
- Laboratory of Non-Parasitic Diseases, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Helen Karasali
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| |
Collapse
|
21
|
He J, Li J, Gao Y, He X, Hao G. Nano-based smart formulations: A potential solution to the hazardous effects of pesticide on the environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131599. [PMID: 37210783 DOI: 10.1016/j.jhazmat.2023.131599] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 05/23/2023]
Abstract
Inefficient usage, overdose, and post-application losses of conventional pesticides have resulted in severe ecological and environmental issues, such as pesticide resistance, environmental contamination, and soil degradation. Advances in nano-based smart formulations are promising novel methods to decrease the hazardous impacts of pesticide on the environment. In light of the lack of a systematic and critical summary of these aspects, this work has been structured to critically assess the roles and specific mechanisms of smart nanoformulations (NFs) in mitigating the adverse impacts of pesticide on the environment, along with an evaluation of their final environmental fate, safety, and application prospects. Our study provides a novel perspective for a better understanding of the potential functions of smart NFs in reducing environmental pollution. Additionally, this study offers meaningful information for the safe and effective use of these nanoproducts in field applications in the near future.
Collapse
Affiliation(s)
- Jie He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Jianhong Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Xiongkui He
- College of Science, China Agricultural University, Beijing 100193, PR China; College of Agricultural Unmanned System, China Agricultural University, Beijing 100193, PR China.
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
22
|
Bakanov N, Honert C, Eichler L, Lehmann GUC, Schulz R, Brühl CA. A new sample preparation approach for the analysis of 98 current-use pesticides in soil and herbaceous vegetation using HPLC-MS/MS in combination with an acetonitrile-based extraction. CHEMOSPHERE 2023; 331:138840. [PMID: 37149096 DOI: 10.1016/j.chemosphere.2023.138840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
A simple acetonitrile-based extraction method for the determination of 98 current-use pesticides (CUPs) in soil and herbaceous vegetation using HPLC-ESI-MS/MS is reported. The method was optimized in terms of extraction time, buffer (ammonium formate) ratio, and graphitized carbon black (GCB) ratio for the clean-up of vegetation. The validated method yielded accuracy in terms of percentage recovery of 71-125% (soil) and 70-117% (vegetation) for the majority of 98 CUPs. The precision in terms of relative standard deviation was at 1-14% (soil), and 1-13% (vegetation). Matrix-matched calibration curves exhibited good linearities (R2 > 0.99). The limits of quantitation ranged between 0.008 and 21.5 μg kg-1 in soil and vegetation. The reported method was applied to soils and vegetation from 13 agricultural sites across Germany. Overall, 44 of the 98 common CUPs were detected in our samples and the qualitative load is well above the average for arable soils in the EU.
Collapse
Affiliation(s)
- Nikita Bakanov
- RPTU Institute of Environmental Sciences, Landau, Fortstrasse 7, 76829 Landau, Germany.
| | - Carolina Honert
- RPTU Institute of Environmental Sciences, Landau, Fortstrasse 7, 76829 Landau, Germany.
| | - Lisa Eichler
- Leibniz Institute of Ecological Urban and Regional Development (IOER), Dresden, Germany.
| | - Gerlind U C Lehmann
- Nature and Biodiversity Conservation Union (NABU), Charitéstrasse 3, 10117, Berlin, Germany.
| | - Ralf Schulz
- RPTU Institute of Environmental Sciences, Landau, Fortstrasse 7, 76829 Landau, Germany.
| | - Carsten A Brühl
- RPTU Institute of Environmental Sciences, Landau, Fortstrasse 7, 76829 Landau, Germany.
| |
Collapse
|
23
|
Li W, Wang B, Yuan Y, Wang S. Spatiotemporal distribution patterns and ecological risk of multi-pesticide residues in the surface water of a typical agriculture area in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161872. [PMID: 36716873 DOI: 10.1016/j.scitotenv.2023.161872] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
This study systematically investigated the occurrence, spatiotemporal distribution, and ecological risk of 106 pesticides in the surface water of the Jiaodong Peninsula in China. The results show that 52 pesticides, including 21 insecticides, 10 fungicides, and 21 herbicides, were detectable in the surface water. The concentrations of target pesticides in water samples ranged from 0.42 (tebuconazole in the wet season) to 645.31 ng/L (thiamethoxam in the normal season). The two most polluting and widespread pesticides were quintozene (maximum concentration of 481.46 ng/L and detection rate of 94 %) and atrazine (maximum concentration of 465.73 ng/L and detection rate of 100 %). The total pesticide concentrations in surface water in different seasons revealed the order of dry season > wet season > normal season. Based on aquatic pesticide concentrations, their frequency of occurrence, and effect concentrations, insecticides posed higher risks to aquatic organisms and human health than either fungicides or herbicides. Total pesticide concentrations were significantly positively correlated with suspended particulate matter, dissolved organic carbon, soil pH, normalized difference vegetation index, adjacent cropland area; and were negatively associated with adjacent grassland area. The cropland area largely influences pesticide distribution in the surface water of the Jiaodong Peninsula.
Collapse
Affiliation(s)
- Wanting Li
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Bingbing Wang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yin Yuan
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Shiliang Wang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
24
|
Cao H, Chen Y, Qian Z, Huang T, Zou N, Zhang D, Mu W, Li B, Liu F. Amphiphilicity-Driven Small Alcohols Regulate the Flexibility of Pesticide-Loaded Microcapsules for Better Foliar Adhesion and Utilization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21444-21456. [PMID: 37077037 DOI: 10.1021/acsami.3c01221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The foliar loss of pesticides causes serious utilization decline and environmental risk. On the basis of biomimetics, pesticide-loaded microcapsules (MCs) with spontaneous deformation on foliar micro/nanostructures, like the snail suction cup, are prepared by interfacial polymerization. By controlling the usage or types of small alcohols in the MC preparation system, the flexibility of MCs is tunable. Through the investigation of emulsions and MC structures, we discover that the migration and distribution of small alcohols driven by amphiphilicity affect the process of interfacial polymerization between polyethylene glycol and 4,4-methylenediphenyl diisocyanate. By hydrophobic modification of the polymer and competition for oil monomers of small alcohols, the thickness and compactness of shells are reduced, whereas the density of the core is increased. As a result of the regulation in structures, the flexibility of MCs is improved significantly. In particularly, the MCs-N-pentanol (0.1 mol kg-1) with the best flexibility show strong scouring resistance on varied foliar structures, sustained release property on the air/solid interface, and persistent control effect against foliar diseases. The pesticide-loaded soft MCs provide an effective way to improve pesticide foliar utilization.
Collapse
Affiliation(s)
- Haichao Cao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P.R. China
| | - Yue Chen
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P.R. China
| | - Zhigang Qian
- Zhejiang Xinan Chemical Industrial Group Co., Ltd. (WYNCA), Xinanjiang, Jiande, Zhejiang 311600, China
| | - Tingjie Huang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P.R. China
| | - Nan Zou
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P.R. China
| | - Daxia Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P.R. China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P.R. China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong 271018, P.R. China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P.R. China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P.R. China
| |
Collapse
|
25
|
Wu B, Lu J, Zhou B, Song Z. Exploring consumers' environmental ethical preferences in the context of unmanned aerial vehicle utilization for plant protection. Sci Rep 2023; 13:3716. [PMID: 36878938 PMCID: PMC9987396 DOI: 10.1038/s41598-023-30557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
The use of unmanned aerial vehicles (UAVs) has increased agricultural productivity, achieved food security, and eased the pressure associated with environmental degradation and population growth. However, consumer sentiment remains unclear. The results show that pressures regarding food safety, production safety, and ecological safety have different degrees of positive impact on perceived benefits but no significant impact on perceived barriers. They strongly influence both perceived benefits to the adoption of UAV plant protection agricultural products. Perceived benefits demonstrated a mediating role between the three safety pressures and the adoption of UAVs. Lay beliefs showed a positive moderating effect on perceived benefits and obstacles to the adoption of UAV-based plant protection products. Based on these findings, this paper concludes that consumers are developing new consumer ethics that integrate concepts of food safety, safe production, and regional environmental protection with their acceptance of new technology, which is directly dependent on the combined effect of environmental and consumer ethics. To promote sustainable development, policies must be further optimized on this original basis.
Collapse
Affiliation(s)
- Baoshu Wu
- School of Business Administration, Jiangxi University of Finance and Economics, Nanchang, 330032, China
| | - Jinlian Lu
- College of Economics and Management, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bo Zhou
- College of Economics and Management, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zhenjiang Song
- College of Economics and Management, Jiangxi Agricultural University, Nanchang, 330045, China. .,Rural Development Research Center of Jiangxi Province, Jiangxi Agricultural University, Nanchang, 330045, China. .,Institute of Jiangxi Selenium-Rich Agricultural Research, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
26
|
Effects of Different Types of Agricultural Land Use on the Occurrence of Common Aquatic Bugs (Nepomorpha, Heteroptera) in Habitats with Slow Flowing Water in Bulgaria, Southeast Europe. DIVERSITY 2023. [DOI: 10.3390/d15020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Agricultural activities can have a significant impact on aquatic organisms, including aquatic insects. Most of the aquatic Heteroptera are known as moderately tolerant to low oxygen and high nutrient concentrations. Nevertheless, the complex effects of agriculture (source of both pesticides and nutrient loads) on this group are still unclear. Therefore, the relationship between six agricultural land use classes and the occurrence of common aquatic bugs in Bulgaria was studied. In order to avoid detection bias, presence-only models were applied; Maxent algorithm was used. According to the results, land use practices connected to arable land (annual crops) have stronger influence on the occurrence of the selected aquatic Heteroptera species than those connected to perennial crops (vineyards and fruit trees). Higher sensitivity to the effects of agriculture was indicated for species preferring microhabitats without macrophyte vegetation, Aphelocheirus aestivalis (Fabricius, 1794) and Micronecta griseola Horváth, 1899, compared to species preferring macrophyte dominated sites, Nepa cinerea Linnaeus, 1758, Ilyocoris cimicoides (Linnaeus, 1758) and Sigara striata (Linnaeus, 1758).
Collapse
|
27
|
Giacomini RX, Barnes Rodrigues Cerqueira M, Primel EG, Garda-Buffon J. Monitoring of mycotoxins and pesticides in winemaking. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2023. [DOI: 10.1051/ctv/ctv20233801010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study monitored concentrations of both pesticides 2,4-dichlorophenoxyacetic acid (2,4-D) and procymidone, and mycotoxin ochratoxin A (OTA) in stages of the winemaking process. Sampling was carried out in the usual vinification process of red wine in a winery between the steps to obtain must and alcoholic fermentation. The highest transference of contaminants in the process occurred in the crushing step to 2,4-D (100%) and maceration to OTA and procymidone (100%). Removal of contaminants in the winemaking process corresponded to 100%, with a half-life (T1/2) longer for procymidone (216.5 h) and shorter for 2,4-D (38.5 h) and OTA (96 h). The processing factors (PFs) (0) for the contaminants, together with the data obtained, characterize winemaking as a process of reducing mycotoxin and pesticides. Results highlight the importance of fermentation to reduce contaminants and that yeasts promote detoxification
Collapse
|
28
|
Han L, Xu M, Kong X, Liu X, Wang Q, Chen G, Xu K, Nie J. Deciphering the diversity, composition, function, and network complexity of the soil microbial community after repeated exposure to a fungicide boscalid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120060. [PMID: 36058318 DOI: 10.1016/j.envpol.2022.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Boscalid is a novel, highly effective carboximide fungicide that has been substantially and irrationally applied in greenhouses. However, little is known about the residual characteristics of boscalid and its ecological effects in long-term polluted greenhouse soils. Therefore, actual boscalid pollution status in greenhouse soils was simulated by repeatedly introducing boscalid into the soil under laboratory conditions. The degradation characteristics of boscalid, and its effects on the diversity, composition, function, and co-occurrence patterns of the soil microbial community were systematically investigated. Boscalid degraded slowly, with its degradation half-lives ranging from 31.5 days to 180.1 days in the soil. Boscalid degradation was further delayed by repeated treatment and increasing its initial concentration. Boscalid significantly decreased soil microbial diversity, particularly at the recommended dosage. Amplicon sequencing analysis showed that boscalid altered the soil microbial community and further stimulated the phylum Proteobacteria and four potential boscalid-degrading bacterial genera, Sphingomonas, Starkeya, Citrobacter, and Castellaniella. Although the network analysis revealed that boscalid significantly reduced the microbial network complexity, it enhanced the vital roles of Proteobacteria by increasing its proportion and strengthening the relationships among the internal bacteria in the network. The soil microbial function in the boscalid treatment were simulated at the recommended dosage and two-fold recommended dosage but showed an inhibition-recovery-stimulation trend at the five-fold recommended dosage with an increase in treatment frequency. Moreover, the expression of nitrogen cycling functional genes, nifH, AOA amoA, AOB amoA, nirK, and nirS in all boscalid treatments displayed an inhibition-recovery-stimulation trend during the entire experimental period, and the effects were more pronounced at the five-fold recommended dosage. In conclusion, repeated boscalid treatments delayed degradation, reduced soil microbial diversity and network complexity, disturbed soil microbial community, and interfered with soil microbial function.
Collapse
Affiliation(s)
- Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Min Xu
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Xiabing Kong
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Qianwen Wang
- Central Laboratory, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guilan Chen
- Central Laboratory, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kun Xu
- Central Laboratory, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| |
Collapse
|
29
|
Qi H, Ren W, Shi X, Sun Z. Hydrothermally modified graphite felt as the electro-Fenton cathode for effective degradation of diuron: The acceleration of Fe2+ regeneration and H2O2production. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Li X, Zhang J, Jin Y, Liu Y, Li N, Wang Y, Du C, Xue Z, Zhang N, Chen Q. Effect of pH-Dependent Homo/Heteronuclear CAHB on Adsorption and Desorption Behaviors of Ionizable Organic Compounds on Carbonaceous Materials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12118. [PMID: 36231423 PMCID: PMC9566536 DOI: 10.3390/ijerph191912118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Herein, the adsorption/desorption behaviors of benzoic acid (BA) and phthalic acid (PA) on three functionalized carbon nanotubes (CNTs) at various pH were investigated, and the charge-assisted H-bond (CAHB) was verified by DFT and FTIR analyses to play a key role. The results indicated that the adsorption order of BA and PA on CNTs was different from Kow of that at pH 2.0, 4.0, and 7.0 caused by the CAHB interaction. The strength of homonuclear CAHB (≥78.96 kJ·mol-1) formed by BA/PA on oxidized CNTs is stronger than that of heteronuclear CAHB formed between BA/PA and amino-functionalized CNTs (≤51.66 kJ·mol-1). Compared with the heteronuclear CAHB (Hysteresis index, HI ≥ 1.47), the stronger homonuclear CAHB leads to clearly desorption hysteresis (HI ≥ 3.51). Additionally, the contribution of homonuclear CAHB (≥52.70%) was also greater than that of heteronuclear CAHB (≤45.79%) at pH 7.0. These conclusions were further confirmed by FTIR and DFT calculation, and the crucial evidence of CAHB formation in FTIR was found. The highlight of this work is the identification of the importance and difference of pH-dependent homonuclear/heteronuclear CAHB on the adsorption and desorption behaviors of ionizable organic compounds on carbonaceous materials, which can provide a deeper understanding for the removal of ionizable organic compounds by designed carbonaceous materials.
Collapse
Affiliation(s)
- Xiaoyun Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Jinlong Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Yaofeng Jin
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Yifan Liu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Nana Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Yue Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Cong Du
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Zhijing Xue
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Nan Zhang
- Environmental Protection Department of Mahe Town, Yuyang District, Yulin 719000, China
| | - Qin Chen
- Northwest Land and Resource Research Center, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
31
|
Wang Y, Ruan H, Zhang J, Wang Y, Guo M, Ke T, Luo J, Yang M. CHA-based dual signal amplification immunofluorescence biosensor for ultrasensitive detection of dimethomorph. Anal Chim Acta 2022; 1227:340323. [DOI: 10.1016/j.aca.2022.340323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
|
32
|
Xochihua Juan JL, Solis Maldonado C, Luna Sánchez RA, Enciso Díaz OJ, Rojas Ronquillo MR, Sandoval-Rangel L, Pineda Aguilar N, Ramos Delgado NA, Martínez-Vargas DX. TiO2 doped with europium (Eu): Synthesis, characterization and catalytic performance on pesticide degradation under solar irradiation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Wang JY, Li JX, Ning J, Huo XK, Yu ZL, Tian Y, Zhang BJ, Wang Y, Sa D, Li YC, Lv X, Ma XC. Human cytochrome P450 3A-mediated two-step oxidation metabolism of dimethomorph: Implications in the mechanism-based enzyme inactivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153585. [PMID: 35121040 DOI: 10.1016/j.scitotenv.2022.153585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Dimethomorph (DMM), an effective and broad-spectrum fungicide applied in agriculture, is toxic to environments and living organisms due to the hazardous nature of its toxic residues. This study aims to investigate the human cytochrome P450 enzyme (CYP)-mediated oxidative metabolism of DMM by combining experimental and computational approaches. Dimethomorph was metabolized predominantly through a two-step oxidation process mediated by CYPs, and CYP3A was identified as the major contributor to DMM sequential oxidative metabolism. Meanwhile, DMM elicited the mechanism-based inactivation (MBI) of CYP3A in a suicide manner, and the iminium ion and epoxide reactive intermediates generated in DMM metabolism were identified as the culprits of MBI. Furthermore, three common pesticides, prochloraz (PCZ), difenoconazole (DFZ) and chlorothalonil (CTL), could significantly inhibit CYP3A-mediated DMM metabolism, and consequently trigger elevated exposure to DMM in vivo. Computational studies elucidated that the differentiation effects in charge distribution and the interaction pattern played crucial roles in DMM-induced MBI of CYP3A4 during sequential oxidative metabolism. Collectively, this study provided a global view of the two-step metabolic activation process of DMM mediated by CYP3A, which was beneficial for elucidating the environmental fate and toxicological mechanism of DMM in humans from a new perspective.
Collapse
Affiliation(s)
- Jia-Yue Wang
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China; Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian 116000, Liaoning, China; Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jing-Xin Li
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China; School of Public Health, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Jing Ning
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Xiao-Kui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Zhen-Long Yu
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Yan Tian
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Bao-Jing Zhang
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Yan Wang
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Deng Sa
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Ya-Chen Li
- School of Public Health, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Xia Lv
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China.
| | - Xiao-Chi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian 116000, Liaoning, China.
| |
Collapse
|
34
|
Preparation and application of tebuconazole molecularly imprinted polymer for detection of pesticide residues in tobacco leaves. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03036-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Screening and assessing of pesticide residues and their health risks in vegetable field soils from the Eastern Nile Delta, Egypt. Toxicol Rep 2022; 9:1281-1290. [DOI: 10.1016/j.toxrep.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
|