1
|
Wu H, Li SN, Hou RQ, Du PR, Zhao KY, Zeeshan M, Xu HH, Zhang ZX, Zhang PW. Mechanisms of selectivity for azadirachtin in honeybees (Apis cerana): A new strategy for avoiding thiamethoxam ingestion. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106208. [PMID: 39672620 DOI: 10.1016/j.pestbp.2024.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
The high toxicity of thiamethoxam (Thi) to foragers has threatened the development of bee populations and the use of neonicotinoid pesticides. In this study, we explored the mechanism of selective feeding on azadirachtin (Aza) by foragers to reduce the feeding of Aza-Thi and improve foragers' safety. The results showed that foragers under selective feeding significantly reduced the Aza sucrose solution intake. The Thi content in foragers was significantly lower, and the mortality rate was significantly reduced. In order to further analyze the selective feeding of foragers on Aza, the classic proboscis extension response (PER) experiment showed that Aza did not affect the learning ability of foragers, and the expression of related genes was not significantly different from the regular PER foragers. Further analysis of transcriptomics and metabolomics showed that compared with the regular PER foragers, treated with Aza were significantly affected in metabolic pathways and peroxisome and 67 differentially expressed genes (DEGs) were up-regulated and 136 were down-regulated. Differential metabolite analysis showed that metabolites primarily enriched in caffeine metabolism and microbial metabolism in diverse environments, and only dibucaine was up-regulated in response to Aza treatment. It is worth noting that dibucaine was significantly positively correlated with differentially expressed genes. Thus, our findings revealed that Aza does not affect the expression of memory genes in foragers. Aza affected the regular metabolic levels of foragers, leading to selective feeding of foragers on Aza, reduced intake of Aza-Thi, and increased safety for foragers. This study provides a reference for applying Aza to selective mechanisms in foragers.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Sheng-Nan Li
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Rui-Quan Hou
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Peng-Rui Du
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Kun-Yu Zhao
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Zeeshan
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Guangzhou 510642, China
| | - Han-Hong Xu
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Zhi-Xiang Zhang
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| | - Pei-Wen Zhang
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Keodara A, Jeker L, Straub L, Grossar D, Müller J, Christen V. Novel fungicide and neonicotinoid insecticide impair flight behavior in pollen foraging honey bees, Apis mellifera. Sci Rep 2024; 14:22865. [PMID: 39354118 PMCID: PMC11445536 DOI: 10.1038/s41598-024-73235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Abstract
Bees are often exposed to pesticides affecting physiological functions and molecular mechanisms. Studies showed a potential link between altered expression of energy metabolism related transcripts and increased homing flight time of foragers exposed to pesticides. In this study, we investigated the effects of thiamethoxam and pyraclostrobin on longevity, flight behavior, and expression of transcripts involved in endocrine regulation (hbg-3, buffy, vitellogenin) and energy metabolism (cox5a, cox5b, cox17) using radio frequency identification (RFID) technology and quantitative polymerase chain reaction. Parallel, a laboratory study was conducted investigating whether pesticide exposure alone without the influence of flight activity caused similar expression patterns as in the RFID experiment. No significant effect on survival, homing flight duration, or return rate of exposed bees was detected. The overall time foragers spent outside the hive was significantly reduced post-exposure. Irrespective of the treatment group, a correlation was observed between cox5a, cox5b, cox17 and hbg-3 expression and prolonged homing flight duration. Our results suggest that flight behavior can impact gene expression and exposure to pesticides adversely affects the expression of genes that are important for maintaining optimal flight capacity. Our laboratory-based experiment showed significantly altered expression levels of cox5a, cox6c, and cox17. However, further work is needed to identify transcriptional profiles responsible for prolonged homing flight duration.
Collapse
Affiliation(s)
- Anna Keodara
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Lukas Jeker
- Agroscope, Swiss Bee Research Center, Schwarzenburgstrasse 161, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology, North Bangkok, Rayong Campus, Rayong, Thailand
- Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Daniela Grossar
- Agroscope, Swiss Bee Research Center, Schwarzenburgstrasse 161, Bern, Switzerland
| | - Jan Müller
- Federal Office of Information Technology, Systems and Telecommunication, Bern, Switzerland
| | - Verena Christen
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
| |
Collapse
|
3
|
Wueppenhorst K, Alkassab AT, Beims H, Ernst U, Friedrich E, Illies I, Janke M, Kirchner WH, Seidel K, Steinert M, Yurkov A, Erler S, Odemer R. Honey bee colonies can buffer short-term stressor effects of pollen restriction and fungicide exposure on colony development and the microbiome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116723. [PMID: 39024947 DOI: 10.1016/j.ecoenv.2024.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Honey bees (Apis mellifera) have to withstand various environmental stressors alone or in combination in agriculture settings. Plant protection products are applied to achieve high crop yield, but residues of their active substances are frequently detected in bee matrices and could affect honey bee colonies. In addition, intensified agriculture could lead to resource limitation for honey bees. This study aimed to compare the response of full-sized and nucleus colonies to the combined stressors of fungicide exposure and resource limitation. A large-scale field study was conducted simultaneously at five different locations across Germany, starting in spring 2022 and continuing through spring 2023. The fungicide formulation Pictor® Active (active ingredients boscalid and pyraclostrobin) was applied according to label instructions at the maximum recommended rate on oil seed rape crops. Resource limitation was ensured by pollen restriction using a pollen trap and stressor responses were evaluated by assessing colony development, brood development, and core gut microbiome alterations. Furthermore, effects on the plant nectar microbiome were assessed since nectar inhabiting yeast are beneficial for pollination. We showed, that honey bee colonies were able to compensate for the combined stressor effects within six weeks. Nucleus colonies exposed to the combined stressors showed a short-term response with a less favorable brood to bee ratio and reduced colony development in May. No further impacts were observed in either the nucleus colonies or the full-sized colonies from July until the following spring. In addition, no fungicide-dependent differences were found in core gut and nectar microbiomes, and these differences were not distinguishable from local or environmental effects. Therefore, the provision of sufficient resources is important to increase the resilience of honey bees to a combination of stressors.
Collapse
Affiliation(s)
- Karoline Wueppenhorst
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany; Zoological Institute, Technische Universität Braunschweig, Mendelsohnstraße 4, Braunschweig 38106, Germany.
| | - Abdulrahim T Alkassab
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany
| | - Hannes Beims
- Fachberatung für Imkerei, Bezirk Oberbayern, Prinzregentenstraße 14, München 80538, Germany; Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Ulrich Ernst
- State Institute of Bee Research, University of Hohenheim, Erna-Hruschka-Weg 6, Stuttgart 70599, Germany; KomBioTa - Center for Biodiversity and Integrative Taxonomy, University of Hohenheim, Stuttgart, Germany
| | - Elsa Friedrich
- State Institute of Bee Research, University of Hohenheim, Erna-Hruschka-Weg 6, Stuttgart 70599, Germany
| | - Ingrid Illies
- Institute for Bee Research and Beekeeping, Bavarian State Institute for Viticulture and Horticulture, An der Steige 15, Veitshöchheim 97209, Germany
| | - Martina Janke
- Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Wolfgang H Kirchner
- Behavioral Biology and Biology Education, Ruhr-University-Bochum, Universitätsstraße 150, Bochum 44780, Germany
| | - Kim Seidel
- Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Michael Steinert
- Institute for Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, Braunschweig 38106, Germany
| | - Andrey Yurkov
- DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Leibnitz Institute, Inhoffenstraße 7b, Braunschweig 38124, Germany
| | - Silvio Erler
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany; Zoological Institute, Technische Universität Braunschweig, Mendelsohnstraße 4, Braunschweig 38106, Germany
| | - Richard Odemer
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany
| |
Collapse
|
4
|
Gomes DS, Miranda FR, Fernandes KM, Farder-Gomes CF, Bastos DSS, Bernardes RC, Serrão JE. Acute exposure to fungicide fluazinam induces cell death in the midgut, oxidative stress and alters behavior of the stingless bee Partamona helleri (Hymenoptera: Apidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116677. [PMID: 38971098 DOI: 10.1016/j.ecoenv.2024.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Stingless bees (Hymenoptera: Meliponini) are pollinators of both cultivated and wild crop plants in the Neotropical region. However, they are susceptible to pesticide exposure during foraging activities. The fungicide fluazinam is commonly applied in bean and sunflower cultivation during the flowering period, posing a potential risk to the stingless bee Partamona helleri, which serves as a pollinator for these crops. In this study, we investigated the impact of acute oral exposure (24 h) fluazinam on the survival, morphology and cell death signaling pathways in the midgut, oxidative stress and behavior of P. helleri worker bees. Worker bees were exposed for 24 h to fluazinam (field concentrations 0.5, 1.5 and 2.5 mg a.i. mL-1), diluted in 50 % honey aqueous solution. After oral exposure, fluazinam did not harm the survival of worker bees. However, sublethal effects were revealed using the highest concentration of fluazinam (2.5 mg a.i. mL-1), particularly a reduction in food consumption, damage in the midgut epithelium, characterized by degeneration of the brush border, an increase in the number and size of cytoplasm vacuoles, condensation of nuclear chromatin, and an increase in the release of cell fragments into the gut lumen. Bees exposed to fluazinam exhibited an increase in cells undergoing autophagy and apoptosis, indicating cell death in the midgut epithelium. Furthermore, the fungicide induced oxidative stress as evidenced by an increase in total antioxidant and catalase enzyme activities, along with a decrease in glutathione S-transferase activity. And finally, fluazinam altered the walking behavior of bees, which could potentially impede their foraging activities. In conclusion, our findings indicate that fluazinam at field concentrations is not lethal for workers P. helleri. Nevertheless, it has side effects on midgut integrity, oxidative stress and worker bee behavior, pointing to potential risks for this pollinator.
Collapse
Affiliation(s)
- Davy Soares Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Franciane Rosa Miranda
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Cliver Fernandes Farder-Gomes
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Campus Araras, Araras, São Paulo 13.600-970, Brazil
| | - Daniel Silva Sena Bastos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
5
|
Rondeau S, Raine NE. Size-dependent responses of colony-founding bumblebee (Bombus impatiens) queens to exposure to pesticide residues in soil during hibernation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174852. [PMID: 39029756 DOI: 10.1016/j.scitotenv.2024.174852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Bumblebees and other key pollinators are experiencing global declines, a phenomenon driven by multiple environmental stressors, including pesticide exposure. While bumblebee queens spend most of their life hibernating underground, no study to date has examined how exposure to pesticide-contaminated soils might affect bumblebee queens during this solitary phase of their lifecycle. We exposed Bombus impatiens queens (n = 303) to soil treated with field-realistic concentrations of two diamide insecticides (chlorantraniliprole and cyantraniliprole) and two fungicides (boscalid and difenoconazole), alone or combined, during a 30-week hibernation period. We found that exposure to boscalid residues in soil doubled the likelihood of queens surviving through the colony initiation period (after successful hibernation) and laying eggs. Our data also revealed complex interactions between pesticide exposure and queen body mass on aspects of colony founding. Among others, exposure to cyantraniliprole led to lethal and sublethal post-hibernation effects that were dependent on queen size, with larger queens showing higher mortality rates, delayed emergence of their first brood, and producing smaller workers. Our results show that effects of pesticide exposure depend on intrinsic traits of bumblebee queen physiology and challenge our understanding of how bees respond to pesticides under environmentally realistic exposure scenarios.
Collapse
Affiliation(s)
- Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Ye H, Jiang J, Lei Y, Fang N, Luo Y, Cheng Y, Li Y, Wang X, He H, Yu J, Xu Z, Zhang C. A systemic study of cyenopyrafen in strawberry cultivation system: Efficacy, residue behavior, and impact on honeybees (Apis mellifera L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123601. [PMID: 38373624 DOI: 10.1016/j.envpol.2024.123601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The pesticide application method is one of the important factors affecting its effectiveness and residues, and the risk of pesticides to non-target organisms. To elucidate the effect of application methods on the efficacy and residue of cyenopyrafen, and the toxic effects on pollinators honeybees in strawberry cultivation, the efficacy and residual behavior of cyenopyrafen were investigated using foliar spray and backward leaf spray in field trials. The results showed that the initial deposition of cyenopyrafen using backward leaf spray on target leaves reached 5.06-9.81 mg/kg at the dose of 67.5-101.25 g a.i./ha, which was higher than that using foliar spray (2.62-3.71 mg/kg). The half-lives of cyenopyrafen in leaves for foliar and backward leaf spray was 2.3-3.3 and 5.3-5.9 d, respectively. The residues (10 d) of cyenopyrafen in leaves after backward leaf spray was 1.41-3.02 mg/kg, which was higher than that after foliar spraying (0.25-0.37 mg/kg). It is the main reason for the better efficacy after backward leaf spray. However, the residues (10 d) in strawberry after backward leaf spray and foliar spray was 0.04-0.10 and < 0.01 mg/kg, which were well below the established maximum residue levels of cyenopyrafen in Japan and South Korea for food safety. To further investigate the effects of cyenopyrafen residues after backward leaf spray application on pollinator honeybees, sublethal effects of cyenopyrafen on honeybees were studied. The results indicated a significant inhibition in the detoxification metabolic enzymes of honeybees under continuous exposure of cyenopyrafen (0.54 and 5.4 mg/L) over 8 d. The cyenopyrafen exposure also alters the composition of honeybee gut microbiota, such as increasing the relative abundance of Rhizobiales and decreasing the relative abundance of Acetobacterales. The comprehensive data on cyenopyrafen provide basic theoretical for environmental and ecological risk assessment, while backward leaf spray proved to be effective and safe for strawberry cultivation.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Yuan Lei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Nan Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Yuqin Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Youpu Cheng
- Tianjin Agricultural University, Tianjin, 300392, PR China
| | - Yanjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Xianghu Laboratory, Hangzhou, 311231, PR China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Hongmei He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| |
Collapse
|
7
|
Moural TW, Koirala B K S, Bhattarai G, He Z, Guo H, Phan NT, Rajotte EG, Biddinger DJ, Hoover K, Zhu F. Architecture and potential roles of a delta-class glutathione S-transferase in protecting honey bee from agrochemicals. CHEMOSPHERE 2024; 350:141089. [PMID: 38163465 DOI: 10.1016/j.chemosphere.2023.141089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The European honey bee, Apis mellifera, serves as the principle managed pollinator species globally. In recent decades, honey bee populations have been facing serious health threats from combined biotic and abiotic stressors, including diseases, limited nutrition, and agrochemical exposure. Understanding the molecular mechanisms underlying xenobiotic adaptation of A. mellifera is critical, considering its extensive exposure to phytochemicals and agrochemicals present in the environment. In this study, we conducted a comprehensive structural and functional characterization of AmGSTD1, a delta class glutathione S-transferase (GST), to unravel its roles in agrochemical detoxification and antioxidative stress responses. We determined the 3-dimensional (3D) structure of a honey bee GST using protein crystallography for the first time, providing new insights into its molecular structure. Our investigations revealed that AmGSTD1 metabolizes model substrates, including 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrophenyl acetate (PNA), phenylethyl isothiocyanate (PEITC), propyl isothiocyanate (PITC), and the oxidation byproduct 4-hydroxynonenal (HNE). Moreover, we discovered that AmGSTD1 exhibits binding affinity with the fluorophore 8-Anilinonaphthalene-1-sulfonic acid (ANS), which can be inhibited with various herbicides, fungicides, insecticides, and their metabolites. These findings highlight the potential contribution of AmGSTD1 in safeguarding honey bee health against various agrochemicals, while also mitigating oxidative stress resulting from exposure to these substances.
Collapse
Affiliation(s)
- Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Sonu Koirala B K
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Gaurab Bhattarai
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA.
| | - Ziming He
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Haoyang Guo
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Ngoc T Phan
- Department of Entomology and Plant Pathology, University of Arkansas, AR 72701, USA; Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Gia Lam, Hanoi 100000, Viet Nam.
| | - Edwin G Rajotte
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - David J Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Penn State Fruit Research and Extension Center, Biglerville, PA 17307, USA.
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
8
|
Duan X, Wang L, Wang R, Xiong M, Qin G, Huang S, Li J. Variation in the physiological response of adult worker bees of different ages (Apis mellifera L.) to pyraclostrobin stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115754. [PMID: 38043416 DOI: 10.1016/j.ecoenv.2023.115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The social division of labor within the honeybee colony is closely related to the age of the bees, and the age structure is essential to the development and survival of the colony. Differences in tolerance to pesticides and other external stresses among worker bees of different ages may be related to their social division of labor and corresponding physiological states. Pyraclostrobin was widely used to control the fungal diseases of nectar and pollen plants, though it was not friend to honey bees and other pollinators. This work aimed to determine the effects of field recommended concentrations of pyraclostrobin on the activities of protective and detoxifying enzymes, on the expression of genes involved in nutrient metabolism, and immune response in worker bees of different ages determined to investigate the physiological and biochemical differences in sensitivity to pyraclostrobin among different age of worker bees. The result demonstrates that the tolerance of adult worker bees to pyraclostrobin was negatively correlated with their age, and the significantly reduced survival rate of forager bees (21 day-old) with continued fungicide exposure. The activities of protective enzymes (CAT and SOD) and detoxifying enzymes (CarE, GSTs and CYP450) in different ages of adult worker bees were significantly altered, indicating the physiological response and the regulatory capacity of worker bees of different ages to fungicide stress was variation. Compared with 1 and 8 day-old worker bees, the expression of nutrient-related genes (ilp1 and ilp2) and immunity-related genes (apidaecin and defensin1) in forager bees (21 day-old) was gradually downregulated with increasing pyraclostrobin concentrations. Moreover, the expression of vitellogenin and hymenoptaecin in forager bees (21 day-old) was also decreased in high concentration treatment groups (250 and 313 mg/L). The present study confirmed the findings of the chronic toxicity of pyraclostrobin on the physiology and biochemistry of worker bees of different ages, especially to forager bees (21 day-old). These results would provide important physiological and biochemical insight for better understanding the potential risks of pyraclostrobin on honeybees and other non-target pollinators.
Collapse
Affiliation(s)
- Xinle Duan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China.
| | - Lizhu Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruyi Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Manqiong Xiong
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gan Qin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaokang Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Jianghong Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
9
|
DesJardins NS, Macias J, Soto Soto D, Harrison JF, Smith BH. 'Inert' co-formulants of a fungicide mediate acute effects on honey bee learning performance. Sci Rep 2023; 13:19458. [PMID: 37945797 PMCID: PMC10636155 DOI: 10.1038/s41598-023-46948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Managed honey bees have experienced high rates of colony loss recently, with pesticide exposure as a major cause. While pesticides can be lethal at high doses, lower doses can produce sublethal effects, which may substantially weaken colonies. Impaired learning performance is a behavioral sublethal effect, and is often present in bees exposed to insecticides. However, the effects of other pesticides (such as fungicides) on honey bee learning are understudied, as are the effects of pesticide formulations versus active ingredients. Here, we investigated the effects of acute exposure to the fungicide formulation Pristine (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) on honey bee olfactory learning performance in the proboscis extension reflex (PER) assay. We also exposed a subset of bees to only the active ingredients to test which formulation component(s) were driving the learning effects. We found that the formulation produced negative effects on memory, but this effect was not present in bees fed only boscalid and pyraclostrobin. This suggests that the trade secret "other ingredients" in the formulation mediated the learning effects, either through exerting their own toxic effects or by increasing the toxicities of the active ingredients. These results show that pesticide co-formulants should not be assumed inert and should instead be included when assessing pesticide risks.
Collapse
Affiliation(s)
| | - Jessalynn Macias
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
10
|
Wu WY, Liao LH, Lin CH, Johnson RM, Berenbaum MR. Effects of pesticide-adjuvant combinations used in almond orchards on olfactory responses to social signals in honey bees (Apis mellifera). Sci Rep 2023; 13:15577. [PMID: 37730836 PMCID: PMC10511525 DOI: 10.1038/s41598-023-41818-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
Exposure to agrochemical sprays containing pesticides and tank-mix adjuvants has been implicated in post-bloom mortality, particularly of brood, in honey bee colonies brought into California almond orchards for pollination. Although adjuvants are generally considered to be biologically inert, some adjuvants have exhibited toxicity and sublethal effects, including decreasing survival rates of next-generation queens. Honey bees have a highly developed olfactory system to detect and discriminate among social signals. To investigate the impact of pesticide-adjuvant combinations on honey bee signal perception, we performed electroantennography assays to assess alterations in their olfactory responsiveness to the brood ester pheromone (BEP), the volatile larval pheromone β-ocimene, and the alarm pheromone 2-heptanone. These assays aimed to uncover potential mechanisms underlying changes in social behaviors and reduced brood survival after pesticide exposure. We found that combining the adjuvant Dyne-Amic with the fungicide Tilt (propiconazole) and the insecticide Altacor (chlorantraniliprole) synergistically enhanced olfactory responses to three concentrations of BEP and as well exerted dampening and compensatory effects on responses to 2-heptanone and β-ocimene, respectively. In contrast, exposure to adjuvant alone or the combination of fungicide and insecticide had no effect on olfactory responses to BEP at most concentrations but altered responses to β-ocimene and 2-heptanone. Exposure to Dyne-Amic, Altacor, and Tilt increased BEP signal amplitude, indicating potential changes in olfactory receptor sensitivity or sensilla permeability to odorants. Given that, in a previous study, next-generation queens raised by nurses exposed to the same treated pollen experienced reduced survival, these new findings highlight the potential disruption of social signaling in honey bees and its implications for colony reproductive success.
Collapse
Affiliation(s)
- Wen-Yen Wu
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Ling-Hsiu Liao
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| | - Chia-Hua Lin
- Department of Entomology, Rothenbuhler Honey Bee Research Laboratory, The Ohio State University, 2501 Carmack Road, Columbus, OH, 43210, USA
| | - Reed M Johnson
- Department of Entomology, Rothenbuhler Honey Bee Research Laboratory, The Ohio State University, 2501 Carmack Road, Columbus, OH, 43210, USA
| | - May R Berenbaum
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
11
|
DesJardins NS, Smith BH, Harrison JF. A mitotoxic fungicide alters post-ingestive glucose signals necessary for associative learning in honey bees. JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104554. [PMID: 37586476 DOI: 10.1016/j.jinsphys.2023.104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The Proboscis Extension Reflex (PER) paradigm trains honey bees to associate an odor with a sugar reward and is commonly used to assess impacts on associative learning after exposure to pesticides. While the effects of some types of pesticides have been well-investigated, relatively little attention has been focused on fungicides that are applied to flowering crops. We have previously shown that consumption of field-relevant concentrations of the fungicide Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) impairs honey bee performance in an associative learning assay, but the mechanism of its action has not been investigated. We hypothesized that Pristine® interferes with carbohydrate absorption and/or regulation, thereby disrupting the post-ingestive feedback mechanisms necessary for robust learning. To test this hypothesis, we measured hemolymph glucose and trehalose levels at five time points during the ten minutes after bees consumed a sucrose solution. Pristine®-exposed bees had elevated baseline glucose concentrations in the hemolymph relative to control bees. Hemolymph glucose levels rose significantly within five minutes of feeding in control bees, but not in Pristine®-fed bees. These data suggest that the post-ingestive feedback mechanisms necessary for robust learning are disrupted in bees that have consumed this fungicide, providing a plausible mechanistic explanation for its effects on learning performance in the PER assay. Pristine®-exposed bees may have elevated hemolymph glucose levels because the fungicide elicits an inflammatory response. These results provide additional mechanistic understanding of the negative physiological effects of mitotoxic fungicides on this important pollinator.
Collapse
Affiliation(s)
- Nicole S DesJardins
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA.
| | - Brian H Smith
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
12
|
Huang M, Dong J, Yang S, Xiao M, Guo H, Zhang J, Wang D. Ecotoxicological effects of common fungicides on the eastern honeybee Apis cerana cerana (Hymenoptera). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161637. [PMID: 36649770 DOI: 10.1016/j.scitotenv.2023.161637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The widespread use of fungicides for plant protection has increased the potential for pollinator exposure. This study therefore aimed at assessing the acute and chronic effects of fungicides on pollinators. For this purpose, the acute oral toxicity of the common fungicides azoxystrobin, pyraclostrobin, and boscalid to Eastern honeybee Apis cerana cerena was first evaluated, and the chronic effects on multiple aspects were investigated after exposure to a one-tenth medium lethal dose (LD50) for 10 days. This study revealed that the LD50 values of azoxystrobin, pyraclostrobin and boscalid for adult Eastern honeybees were 12.7 μg/bee, 36.6 μg/bee, and >119 μg/bee, respectively. Midgut epithelial cells revealed that fungicide exposure caused increased intercellular spaces and varying degrees of vacuolization. Exposure to these three fungicides and their binary mixtures significantly affected glycerophospholipid, alanine, aspartate, and glutamate metabolism in Eastern honeybee midguts. Additionally, the relative composition of Lactobacillus, the dominant functional genus in Eastern honeybee guts decreased and microbial balance was disrupted. All fungicides and their mixtures induced strong transcriptional upregulation of genes associated with the immune response and encoding enzymes related to oxidative phosphorylation and metabolism, including abaecin, apidaecin, hymenotaecin, cyp4c3, cyp6a2 and hbg3. Our study provides important insight for understanding the effects of commonly used fungicides on nontarget pollinator and contributes to a more comprehensive assessment of fungicide effects on ecological and environmental safety.
Collapse
Affiliation(s)
- Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Shuyuan Yang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Minghui Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Haikun Guo
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Hangzhou 310021, China
| | - Jiawen Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China.
| |
Collapse
|
13
|
Pineaux M, Grateau S, Lirand T, Aupinel P, Richard FJ. Honeybee queen exposure to a widely used fungicide disrupts reproduction and colony dynamic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121131. [PMID: 36709033 DOI: 10.1016/j.envpol.2023.121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Pollinators have to cope with a wide range of stressful, not necessarily lethal factors limiting their performance and the ecological services they provide. Among these stressors are pesticides, chemicals that are originally designed to target crop-harming organisms but that also disrupt various functions in pollinators, including flight, communication, orientation and memory. Although all these functions are crucial for reproductive individuals when searching for mates or nesting places, it remains poorly understood how pesticides affect reproduction in pollinators. In this study, we investigated how a widely used fungicide, boscalid, affects reproduction in honey bees (Apis mellifera), an eusocial insect in which a single individual, the queen, fulfills the reproductive functions of the whole colony. Boscalid is a succinate dehydrogenase inhibitor (SDHI) fungicide mainly used on rapeseed flowers to target mitochondrial respiration in fungi but it is also suspected to disrupt foraging-linked functions in bees. We found that immature queen exposure to sublethal, field relevant doses of boscalid disrupted reproduction, as indicated by a dramatic increase in queen mortality during and shortly after the nuptial flights period and a decreased number of spermatozoa stored in the spermatheca of surviving queens. However, we did not observe a decreased paternity frequency in exposed queens that successfully established a colony. Queen exposure to boscalid had detrimental consequences on the colonies they later established regarding brood production, Varroa destructor infection and pollen storage but not nectar storage and population size. These perturbations at the colony-level correspond to nutritional stress conditions, and may have resulted from queen reduced energy provisioning to the eggs. Accordingly, we found that exposed queens had decreased gene expression levels of vitellogenin, a protein involved in egg-yolk formation. Overall, our results indicate that boscalid decreases honey bee queen reproductive quality, thus supporting the need to include reproduction in the traits measured during pesticide risk assessment procedures.
Collapse
Affiliation(s)
- Maxime Pineaux
- Unité Expérimentale d'Entomologie, INRAe, Le Magneraud, Surgères, France; Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions UMR CNRS 7267, Equipe Ecologie Evolution Symbiose, France.
| | - Stéphane Grateau
- Unité Expérimentale d'Entomologie, INRAe, Le Magneraud, Surgères, France
| | - Tiffany Lirand
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions UMR CNRS 7267, Equipe Ecologie Evolution Symbiose, France
| | - Pierrick Aupinel
- Unité Expérimentale d'Entomologie, INRAe, Le Magneraud, Surgères, France
| | - Freddie-Jeanne Richard
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions UMR CNRS 7267, Equipe Ecologie Evolution Symbiose, France.
| |
Collapse
|
14
|
Dong J, Huang M, Guo H, Zhang J, Tan X, Wang D. Ternary Mixture of Azoxystrobin, Boscalid and Pyraclostrobin Disrupts the Gut Microbiota and Metabolic Balance of Honeybees (Apis cerana cerana). Int J Mol Sci 2023; 24:ijms24065354. [PMID: 36982426 PMCID: PMC10049333 DOI: 10.3390/ijms24065354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
There is a growing risk of pollinators being exposed to multiple fungicides due to the widespread use of fungicides for plant protection. A safety assessment of honeybees exposed to multiple commonly used fungicides is urgently required. Therefore, the acute oral toxicity of the ternary mixed fungicide of ABP (azoxystrobin: boscalid: pyraclostrobin = 1:1:1, m/m/m) was tested on honeybees (Apis cerana cerana), and its sublethal effect on foragers’ guts was evaluated. The results showed that the acute oral median lethal concentration (LD50) of ABP for foragers was 12.6 μg a.i./bee. ABP caused disorder of the morphological structure of midgut tissue and affected the intestinal metabolism; the composition and structure of the intestinal microbial community was perturbed, which altered its function. Moreover, the transcripts of genes involved in detoxification and immunity were strongly upregulated with ABP treatment. The study implies that exposure to a fungicide mixture of ABP can cause a series of negative effects on the health of foragers. This work provides a comprehensive understanding of the comprehensive effects of common fungicides on non-target pollinators in the context of ecological risk assessment and the future use of fungicides in agriculture.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (M.H.); (D.W.)
| | - Haikun Guo
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiawen Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaodong Tan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (M.H.); (D.W.)
| |
Collapse
|
15
|
Xiong M, Qin G, Wang L, Wang R, Zhou R, Luo X, Lou Q, Huang S, Li J, Duan X. Field recommended concentrations of pyraclostrobin exposure disturb the development and immune response of worker bees ( Apis mellifera L.) larvae and pupae. Front Physiol 2023; 14:1137264. [PMID: 36846328 PMCID: PMC9947242 DOI: 10.3389/fphys.2023.1137264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
The strobilurin fungicide pyraclostrobin is widely used to prevent and control the fungal diseases of various nectar and pollen plants. Honeybees also directly or indirectly contact this fungicide with a long-term exposure period. However, the effects of pyraclostrobin on the development and physiology of Apis mellifera larvae and pupae during continuous exposure have been rarely known. To investigate the effects of field-realistic concentrations of pyraclostrobin on honeybee survival and development, the 2-day-old larvae were continuously fed with different pyraclostrobin solutions (100 mg/L and 83.3 mg/L), and the expression of development-, nutrient-, and immune-related genes in larvae and pupae were examined. The results showed that two field-realistic concentrations of pyraclostrobin (100 and 83.3 mg/L) significantly decreased the survival and capped rate of larvae, the weight of pupae and newly emerged adults, and such decrease was a positive correlation to the treatment concentrations. qPCR results showed that pyraclostrobin could induce the expression of Usp, ILP2, Vg, Defensin1, and Hymenoptaecin, decrease the expression of Hex100, Apidaecin, and Abaecin in larvae, could increase the expression of Ecr, Usp, Hex70b, Vg, Apidaecin, and Hymenoptaecin, and decreased the expression of ILP1, Hex100 and Defensin1in pupae. These results reflect pyraclostrobin could decrease nutrient metabolism, immune competence and seriously affect the development of honeybees. It should be used cautiously in agricultural practices, especially in the process of bee pollination.
Collapse
Affiliation(s)
- Manqiong Xiong
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gan Qin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lizhu Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruyi Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruiqi Zhou
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaotian Luo
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qun Lou
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaokang Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China,Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Jianghong Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China,Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Xinle Duan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China,Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou, China,*Correspondence: Xinle Duan,
| |
Collapse
|
16
|
Siviter H, Pardee GL, Baert N, McArt S, Jha S, Muth F. Wild bees are exposed to low levels of pesticides in urban grasslands and community gardens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159839. [PMID: 36334673 DOI: 10.1016/j.scitotenv.2022.159839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Globally documented wild bee declines threaten sustainable food production and natural ecosystem functioning. Urban environments are often florally abundant, and consequently can contain high levels of pollinator diversity compared with agricultural environments. This has led to the suggestion that urban environments are an increasingly important habitat for pollinators. However, pesticides, such as commercial bug sprays, have a range of lethal and sub-lethal impacts on bees and are widely available for public use, with past work indicating that managed bees (honeybees and bumblebees) are exposed to a range of pesticides in urban environments. Despite this, we still have a poor understanding of (i) whether wild bees foraging in urban environments are exposed to pesticides and (ii) if exposure differs between genera. Here we assessed pesticide exposure in 8 bee genera foraging across multiple urban landscapes. We detected 13 different pesticides, some at concentrations known to have sub-lethal impacts on pollinators. Both the likelihood of pesticides being detected, and the concentrations observed, were higher for larger bees, likely due to their greater foraging ranges. Our results suggest that restricting agrochemical use in urban environments, where the economic benefits are limited, is a simple way to reduce anthropogenic stress on wild bees.
Collapse
Affiliation(s)
- Harry Siviter
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; School of Biological Sciences, University of Bristol, 24, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Gabriella L Pardee
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Nicolas Baert
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Scott McArt
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Shalene Jha
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Lady Bird Johnson Wildflower Center, Austin, TX 78739, USA
| | - Felicity Muth
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| |
Collapse
|
17
|
Chaves A, Faita MR, Nodari RO. Effects of fungicides on the ultrastructure of the hypopharyngeal glands and the strength of the hives of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae). Toxicol Appl Pharmacol 2023; 459:116340. [PMID: 36509231 DOI: 10.1016/j.taap.2022.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/12/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Several crops of agronomic interest depend on bees' pollination, and Apis mellifera L (Hymanoptera: Apidae) is the most studied direct pollinator. Nevertheless, the use of pesticides in agricultural environments is common, including fungicides. Studies that seek to evaluate the effects of fungicides on the hypopharyngeal glands of bees, the site of royal jelly synthesis, are lacking. Thus, this work aimed to evaluate the effect of field doses of fungicides (Captan SC® and Zignal®), alone or in mixture, on the hypopharyngeal glands and their subsequent effect on the strength of hives. The evaluations were carried out under field conditions in three hives per treatment. For a period of one month, bee hives received feed containing sugar syrup, pollen and 1.2 mL of Zignal® and 3 mL of Captan SC® in the isolated treatments and 4.2 mL in the mixture. The action of fungicides on the hypopharyngeal glands was determined by transmission electron microscopy analysis in bees 7 and 15 days old, collected in the hives one month after exposure to fungicides. The strength of the hives was evaluated for six months based on the number of frames with adult bees, open and closed brood, and stored food. The results indicate that fungicides promote early degeneration of the rough endoplasmic reticulum and morphological and structural changes in mitochondria. In addition, a reduction in adult population, open and closed breeding and food stock was observed. More pronounced damage occurred when bees were exposed to the mixture of fungicides. Overall, it can be concluded that the presence of fungicides in bee diets promotes harm accentuated over time and compromises the survival of hives. It will be worth estimating the fungicide effects of the queen development and on the colony heath.
Collapse
Affiliation(s)
- Adriana Chaves
- Universidade Federal de Santa Catarina - UFSC, Programa de Pós-graduação em Recursos Genéticos Vegetais - PPGRGV, Rodovia Admar Gonzaga, 1346 - Bairro Itacorubi, 88034-001 Florianópolis, Santa Catarina, Brazil
| | - Márcia Regina Faita
- Universidade Federal de Santa Catarina - UFSC, Programa de Pós-graduação em Recursos Genéticos Vegetais - PPGRGV, Rodovia Admar Gonzaga, 1346 - Bairro Itacorubi, 88034-001 Florianópolis, Santa Catarina, Brazil
| | - Rubens Onofre Nodari
- Universidade Federal de Santa Catarina - UFSC, Programa de Pós-graduação em Recursos Genéticos Vegetais - PPGRGV, Rodovia Admar Gonzaga, 1346 - Bairro Itacorubi, 88034-001 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
18
|
Fisher Ii A, Glass JR, Ozturk C, DesJardins N, Raka Y, DeGrandi-Hoffman G, Smith BH, Fewell JH, Harrison JF. Seasonal variability in physiology and behavior affect the impact of fungicide exposure on honey bee (Apis mellifera) health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120010. [PMID: 36002100 DOI: 10.1016/j.envpol.2022.120010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Honey bee pollination services are of tremendous agricultural and economic importance. Despite this, honey bees and other pollinators face ongoing perils, including population declines due to a variety of environmental stressors. Fungicides may be particularly insidious stressors for pollinators due to their environmental ubiquity and widespread approval for application during crop bloom. The mechanisms by which fungicides affect honey bees are poorly understood and any seasonal variations in their impact are unknown. Here we assess the effects on honey bee colonies of four-week exposure (the approximate duration of the almond pollination season) of a fungicide, Pristine® (25.2% boscalid, 12.8% pyraclostrobin), that has been commonly used for almonds. We exposed colonies to Pristine® in pollen patties placed into the hive, in either summer or fall, and assessed colony brood and worker populations, colony pollen collection and consumption, and worker age of first foraging and longevity. During the summer, Pristine® exposure induced precocious foraging, and reduced worker longevity resulting in smaller colonies. During the fall, Pristine® exposure induced precocious foraging but otherwise had no significant measured effects. During the fall, adult and brood population levels, and pollen consumption and collection, were all much lower, likely due to preparations for winter. Fungicides and other pesticides may often have reduced effects on honey bees during seasons of suppressed colony growth due to bees consuming less pollen and pesticide.
Collapse
Affiliation(s)
- Adrian Fisher Ii
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA.
| | - Jordan R Glass
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Cahit Ozturk
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Nicole DesJardins
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Yash Raka
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Gloria DeGrandi-Hoffman
- United States Department of Agriculture, Agricultural Research Service, Carl Hayden Bee Research Center, 2000 E Allen Rd., Tucson, AZ, 85719, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Jennifer H Fewell
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| |
Collapse
|
19
|
Siviter H, Muth F. Exposure to the novel insecticide flupyradifurone impairs bumblebee feeding motivation, learning, and memory retention. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119575. [PMID: 35691445 DOI: 10.1016/j.envpol.2022.119575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Bees are vital pollinators of crops and wildflowers and as such, wild bee declines threaten food security and functioning ecosystems. One driver of bee declines is the use of systemic insecticides, such as commonly used neonicotinoids. However, rising pest resistance to neonicotinoids, and restrictions on their use in the EU, has increased the demand for replacement insecticides to control crop pests. Flupyradifurone is a novel systemic insecticide that is thought to be relatively 'bee safe' although it can be present in the nectar and pollen of bee-attractive crops. Bumblebees rely on learning to forage efficiently, and thus detriments to learning performance may have downstream consequences on their ability to forage. While neonicotinoids negatively influence bumblebee learning and memory, whether this is also the case for their replacements is unclear. Here, we exposed bumblebees (Bombus impatiens) to an acute, field-realistic dose of flupyradifurone before training them to learn either an olfactory or colour association. We found that flupyradifurone impaired bumblebees' learning and memory performance in both olfactory and visual modalities. Flupyradifurone-treated bees were also less motivated to feed. Given the similarity between the detriments to cognition found here and those previously reported for neonicotinoids, this implies that these insecticides may have similar sub-lethal effects on bees. Restrictions on neonicotinoid use are therefore unlikely to benefit bees if novel insecticides like flupyradifurone are used as an alternative, highlighting that current agrochemical risk assessments are not protecting bees from the unwanted consequences of pesticide use. Sub-lethal assessments on non-Apis bees should be made mandatory in agrochemical regulation to ensure that novel insecticides are indeed 'bee safe'.
Collapse
Affiliation(s)
- Harry Siviter
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX, 78712, USA.
| | - Felicity Muth
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX, 78712, USA
| |
Collapse
|
20
|
Graham KK, Milbrath MO, Zhang Y, Baert N, McArt S, Isaacs R. Pesticide risk to managed bees during blueberry pollination is primarily driven by off-farm exposures. Sci Rep 2022; 12:7189. [PMID: 35504929 PMCID: PMC9065077 DOI: 10.1038/s41598-022-11156-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
When managed bee colonies are brought to farms for crop pollination, they can be exposed to pesticide residues. Quantifying the risk posed by these exposures can indicate which pesticides are of the greatest concern and helps focus efforts to reduce the most harmful exposures. To estimate the risk from pesticides to bees while they are pollinating blueberry fields, we sampled blueberry flowers, foraging bees, pollen collected by returning honey bee and bumble bee foragers at colonies, and wax from honey bee hives in blooming blueberry farms in southwest Michigan. We screened the samples for 261 active ingredients using a modified QuEChERS method. The most abundant pesticides were those applied by blueberry growers during blueberry bloom (e.g., fenbuconazole and methoxyfenozide). However, we also detected highly toxic pesticides not used in this crop during bloom (or other times of the season) including the insecticides chlorpyrifos, clothianidin, avermectin, thiamethoxam, and imidacloprid. Using LD50 values for contact and oral exposure to honey bees and bumble bees, we calculated the Risk Quotient (RQ) for each individual pesticide and the average sample RQ for each farm. RQ values were considered in relation to the U.S. Environmental Protection Agency acute contact level of concern (LOC, 0.4), the European Food Safety Authority (EFSA) acute contact LOC (0.2) and the EFSA chronic oral LOC (0.03). Pollen samples were most likely to exceed LOC values, with the percent of samples above EFSA's chronic oral LOC being 0% for flowers, 3.4% for whole honey bees, 0% for whole bumble bees, 72.4% for honey bee pollen in 2018, 45.4% of honey bee pollen in 2019, 46.7% of bumble bee pollen in 2019, and 3.5% of honey bee wax samples. Average pollen sample RQ values were above the EFSA chronic LOC in 92.9% of farms in 2018 and 42.9% of farms in 2019 for honey bee collected pollen, and 46.7% of farms for bumble bee collected pollen in 2019. Landscape analyses indicated that sample RQ was positively correlated with the abundance of apple and cherry orchards located within the flight range of the bees, though this varied between bee species and landscape scale. There was no correlation with abundance of blueberry production. Our results highlight the need to mitigate pesticide risk to bees across agricultural landscapes, in addition to focusing on the impact of applications on the farms where they are applied.
Collapse
Affiliation(s)
- Kelsey K Graham
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI, 48824, USA.
- Pollinating Insect - Biology, Management, Systematics Research Unit, U.S. Department of Agriculture - Agricultural Research Service, 1410 N 800 E, Logan, UT, 84341, USA.
| | - Meghan O Milbrath
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI, 48824, USA
| | - Yajun Zhang
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI, 48824, USA
| | - Nicolas Baert
- Department of Entomology, Cornell University, 4129 Comstock Hall, Ithaca, NY, 14853, USA
| | - Scott McArt
- Department of Entomology, Cornell University, 4129 Comstock Hall, Ithaca, NY, 14853, USA
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI, 48824, USA
| |
Collapse
|
21
|
Schuhmann A, Schmid AP, Manzer S, Schulte J, Scheiner R. Interaction of Insecticides and Fungicides in Bees. FRONTIERS IN INSECT SCIENCE 2022; 1:808335. [PMID: 38468891 PMCID: PMC10926390 DOI: 10.3389/finsc.2021.808335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 03/13/2024]
Abstract
Honeybees and wild bees are among the most important pollinators of both wild and cultivated landscapes. In recent years, however, a significant decline in these pollinators has been recorded. This decrease can have many causes including the heavy use of biocidal plant protection products in agriculture. The most frequent residues in bee products originate from fungicides, while neonicotinoids and, to a lesser extent, pyrethroids are among the most popular insecticides detected in bee products. There is abundant evidence of toxic side effects on honeybees and wild bees produced by neonicotinoids, but only few studies have investigated side effects of fungicides, because they are generally regarded as not being harmful for bees. In the field, a variety of substances are taken up by bees including mixtures of insecticides and fungicides, and their combinations can be lethal for these pollinators, depending on the specific group of insecticide or fungicide. This review discusses the different combinations of major insecticide and fungicide classes and their effects on honeybees and wild bees. Fungicides inhibiting the sterol biosynthesis pathway can strongly increase the toxicity of neonicotinoids and pyrethroids. Other fungicides, in contrast, do not appear to enhance toxicity when combined with neonicotinoid or pyrethroid insecticides. But the knowledge on possible interactions of fungicides not inhibiting the sterol biosynthesis pathway and insecticides is poor, particularly in wild bees, emphasizing the need for further studies on possible effects of insecticide-fungicide interactions in bees.
Collapse
Affiliation(s)
- Antonia Schuhmann
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Anna Paulina Schmid
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Sarah Manzer
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Janna Schulte
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|