1
|
Cao M, Lv W, Wang F, Ma S, Geng H, Li J, Gao Z, Xu Q, Guo J, Leng W, Chen K, Tan Z, Zhang P, Sun K, Xing B. Foliar Application of Zinc Oxide Nanoparticles Alleviates Phenanthrene and Cadmium-Induced Phytotoxicity in Lettuce: Regulation of Plant-Rhizosphere-Microbial Long Distance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:730-743. [PMID: 39704184 DOI: 10.1021/acs.est.4c07881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Foliar application of beneficial nanoparticles exhibits potential in mitigating combined stresses from heavy metals and polycyclic aromatic hydrocarbons (PAHs) in crops, necessitating a comprehensive understanding of plant-rhizosphere-microbial processes to promote sustainable nanotechnology in agriculture. Herein, we investigated the mitigating mechanisms of foliar application of zinc oxide nanoparticles (nZnO) on lettuce growth under phenanthrene (Phe) and cadmium (Cd) costress. Compared to Phe + Cd treatment, low (L-nZnO) and high (H-nZnO) concentration of nZnO increased fresh biomass (27.2% and 8.42%) and root length (20.4% and 39.6%) and decreased MDA (35.0% and 40.0%) and H2O2 (29.0% and 15.6%) levels. L-nZnO and H-nZnO decreased Cd in roots (26.8% and 41.8%) and enhanced Zn in roots (19.9% and 107%), stems (221% and 2510%), and leaves (233% and 1500%), suggesting the long-distance migration of Zn from leaves to roots and subsequently regulating the metabolic pathways and microbial communities. Metabolomics revealed that nZnO modulated leaf glycerophospholipid metabolism and amino acid pathways and promoted rhizosphere soil carbon and phosphorus metabolism. Additionally, nZnO enriched the plant-growth-promoting, extreme, and stress-resistant bacteria in roots and leaves and heavy-metal-resistant and PAH-degrading bacteria in rhizosphere soil. These findings underscore the promising nanostrategy of nZnO to benefit plant growth in soil cocontaminated with heavy metals and PAHs.
Collapse
Affiliation(s)
- Manman Cao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Wenxiao Lv
- Zhongcheng Yuan (Beijing) Environmental Technology Co., Ltd., Beijing 100120, China
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Shuai Ma
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Junhong Li
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Ziqi Gao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Qing Xu
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Jing Guo
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Wenjun Leng
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Ke Chen
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ke Sun
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Xu Y, Yan Y, Zhou T, Lu Y, Yang X, Tang K, Liu F. Synergy between Arbuscular Mycorrhizal Fungi and Rhizosphere Bacterial Communities Increases the Utilization of Insoluble Phosphorus and Potassium in the Soil by Maize. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23631-23642. [PMID: 39389770 DOI: 10.1021/acs.jafc.4c07428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi can enhance plant uptake of phosphorus (P) and potassium (K), but it is not yet clear whether rhizosphere bacteria can enhance the ability of AM fungi to acquire insoluble P and K from the soil. Here, pot experiments confirmed that AM fungus-promoted insoluble P and K uptake by plants requires rhizosphere bacteria. The changes of rhizosphere bacterial communities associated with AM fungi were explored by 16S rRNA amplicon sequencing and metagenomic sequencing. Five core bacteria genera identified were involved in P and K cycles. Synthetic community (SynCom) inoculation revealed that SynCom increased soil available P and K and its coinoculation with AM fungi increased P and K concentration in the plants. This study revealed that AM fungi interact with rhizosphere bacteria and promote insoluble P and K acquisition, which provided a foundation for the application of AM fungal-bacterial biofertilizers and was beneficial for the sustainable development of agriculture.
Collapse
Affiliation(s)
- Yunjian Xu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Yixiu Yan
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Tianyi Zhou
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Yufan Lu
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Xinyu Yang
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Kailei Tang
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Fang Liu
- School of Agriculture, Yunnan University, Kunming 650504, China
| |
Collapse
|
3
|
Jeon Y, Kwon YS, Noh YJ, Lee SM, Song JW, Kim JH, Seo JS. Unraveling the mechanisms of benzo[a]pyrene degradation by Pigmentiphaga kullae strain KIT-003 using a multi-omics approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116665. [PMID: 38964062 DOI: 10.1016/j.ecoenv.2024.116665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), notably benzo[a]pyrene (BaP), are environmental contaminants with multiple adverse ecological implications. Numerous studies have suggested the use of BaP biodegradation using various bacterial strains to remove BaP from the environment. This study investigates the BaP biodegradation capability of Pigmentiphaga kullae strain KIT-003, isolated from the Nak-dong River (South Korea) under specific environmental conditions. The optimum conditions of biodegradation were found to be pH 7.0, 35°C, and a salinity of 0 %. GC-MS analysis suggested alternative pathways by which KIT-003 produced catechol from BaP through several intermediate metabolites, including 4-formylchrysene-5-carboxylic acid, 5,6-dihydro-5,6-dihydroxychrysene-5-carboxylic acid (isomer: 3,4-dihydro-3,4-dihydroxychrysene-4-carboxylic acid), naphthalene-1,2-dicarboxylic acid, and 2-hydroxy-1-naphthoic acid. Proteomic profiles indicated upregulation of enzymes associated with aromatic compound degradation, such as nahAc and nahB, and of those integral to the tricarboxylic acid cycle, reflecting the strain's adaptability to and degradation of BaP. Lipidomic analysis of KIT-003 demonstrated that BaP exposure induced an accumulation of glycerolipids such as diacylglycerol and triacylglycerol, indicating their crucial role in bacterial adaptation mechanisms under BaP stress. This study provides significant scientific knowledge regarding the intricate mechanisms involved in BaP degradation by microorganisms.
Collapse
Affiliation(s)
- Yoonjeong Jeon
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Young Sang Kwon
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Young Ji Noh
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Seung-Min Lee
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jong-Wook Song
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea.
| | - Jong-Su Seo
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea.
| |
Collapse
|
4
|
Wang B, Wang P, Liu S, Shi H, Teng Y. A commercial humic acid inhibits benzo(a)pyrene biodegradation by Paracoccus aminovorans HPD-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171966. [PMID: 38537831 DOI: 10.1016/j.scitotenv.2024.171966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
Benzo(a)pyrene (BaP) is posing serious threats to soil ecosystems and its bioremediation usually limited by environmental factors and microbial activity. Humic acid (HA), a ubiquitous heterogeneous organic matter, which could affect the fate of environmental pollutants. However, the impact of HA on bioremediation of organic contamination remains controversial. In the present study, the biodegradation of BaP by Paracoccus aminovorans HPD-2 with and without HA was explored. Approximately 87.4 % of BaP was biodegraded in the HPD-2 treatment after 5 days of incubation, whereas the addition of HA dramatically reduced BaP biodegradation to 56.0 %. The limited BaP biodegradation in the HA + HPD-2 treatment was probably due to the decrease of BaP bioavailability which induced by the adsorption of HA with unspecific interactions. The excitation-emission matrix (EEM) of fluorescence characteristics showed that strain HPD-2 was responsible for the presence of protein-like substances and the microbial original humic substances in the HPD-2 treatment. Addition of HA would result in the increase of soluble microbial humic-like material, which should ascribe to the biodegradation of BaP and probably utilization of HA. Furthermore, both the growth and survival of strain HPD-2 were inhibited in the HA + HPD-2 treatment, because of the limited available carbon source (i.e. BaP) at the presence of HA. The expression of gene1789 and gene2589 dramatically decreased in the HA + HPD-2 treatment, and this should be responsible for the decrease of BaP biodegradation as well. This study reveals the mechanism that HA affect the BaP biodegradation, and the decrease of biodegradation should ascribe to the interaction of HA and bacterial strain. Thus, the bioremediation strategies of PAHs need to consider the effects of organic matter in environment.
Collapse
Affiliation(s)
- Beibei Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Peiheng Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Ministry of Natural Resources, Nanjing 210018, China.
| |
Collapse
|
5
|
Meng S, Peng T, Liu Y, Zhang S, Qian Z, Huang T, Xie Q, Gu JD, Hu Z. Novel insights into the synergetic degradation of pyrene by microbial communities from mangroves in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133907. [PMID: 38471380 DOI: 10.1016/j.jhazmat.2024.133907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
Pyrene is a high molecular weight polycyclic aromatic hydrocarbon (HMW-PAHs). It is a ubiquitous, persistent, and carcinogenic environmental contaminant that has raised concern worldwide. This research explored synergistic bacterial communities for efficient pyrene degradation in seven typical Southern China mangroves. The bacterial communities of seven typical mangroves were enriched by pyrene, and enriched bacterial communities showed an excellent pyrene degradation capacity of > 95% (except for HK mangrove and ZJ mangrove). Devosia, Hyphomicrobium, Flavobacterium, Marinobacter, Algoriphahus, and Youhaiella all have significant positive correlations with pyrene (R>0, p < 0.05) by 16SrRNA gene sequencing and metagenomics analysis, indicated that these genera play a vital role in pyrene metabolism. Meanwhile, the functional genes were involved in pyrene degradation that was enriched in the bacterial communities, including the genes of nagAa, ndoR, pcaG, etc. Furthermore, the analyses of functional genes and binning genomes demonstrated that some bacterial communities as a unique teamwork to cooperatively participate in pyrene degradation. Interestingly, the genes related to biogeochemical cycles were enriched, such as narG , soxA, and cyxJ, suggested that bacterial communities were also helpful in maintaining the stability of the ecological environment. In addition, some novel species with pyrene-degradation potential were identified in the pyrene-degrading bacterial communities, which can enrich the resource pool of pyrene-degrading strains. Overall, this study will help develop further research strategies for pollutant removal.
Collapse
Affiliation(s)
- Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yongjin Liu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Zhihui Qian
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Qingyi Xie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China; Offshore Environmental Pollution Control Engineering Research, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
6
|
Liu Y, Zhao N, Dai S, He R, Zhang Y. Metagenomic insights into phenanthrene biodegradation in electrical field-governed biofilms for groundwater bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133477. [PMID: 38218033 DOI: 10.1016/j.jhazmat.2024.133477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Electrical fields (EFs)-assisted in-situ bioremediation of petroleum-contaminated groundwater, such as polycyclic aromatic hydrocarbons, has drawn increasing attention. However, the long-term stability, the EFs influence, and metabolic pathways are still poorly understood, hindering the further development of robust technology design. Herein, a series of EFs was applied to the phenanthrene-contaminated groundwater, and the corresponding system performance was investigated. The highest removal capacity of phenanthrene (phe) (7.63 g/(m3·d)) was achieved with EF_0.8 V biofilm at a hydrolytic retention time of 0.5 d. All the biofilms with four EFs exhibited a high removal efficiency of phe over 80% during a 100-d continuous-flow operation. Intermediates analysis revealed the main pathways of phe degradation: phthalate and salicylate via hydroxylation, methylation, carboxylation, and ring cleavage steps. Synergistic effects between phe-degraders (Dechloromonas), fermentative bacteria (Delftia), and electroactive microorganisms (Geobacter) were the main contributors to the complete phe mineralization. Genes encoding various proteins of methyl-accepting (mcp), response regulator (cheABDRY), and type IV pilus (pilABCMQV) were dominant, revealing the importance of cell motility and extracellular electron transfer. Metagenomics analysis unveiled phe-degrading genes, including ring reduction enzymes (bamBCDE), carboxylase of aromatics (ubiD), and methyltransferase protein (ubiE, pcm). These findings offered a molecular understanding of refractory organics' decompositions in EFs-governed biotechnology.
Collapse
Affiliation(s)
- Yue Liu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Nannan Zhao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Shuo Dai
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
7
|
Ma J, Zhuang Y, Wang Y, Zhu N, Wang T, Xiao H, Chen J. Update on new trend and progress of the mechanism of polycyclic aromatic hydrocarbon biodegradation by Rhodococcus, based on the new understanding of relevant theories: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93345-93362. [PMID: 37548784 DOI: 10.1007/s11356-023-28894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Rapid industrial and societal developments have led to substantial increases in the use and exploitation of petroleum, and petroleum hydrocarbon pollution has become a serious threat to human health and the environment. Polycyclic aromatic hydrocarbons (PAHs) are primary components of petroleum hydrocarbons. In recent years, microbial remediation of PAHs pollution has been regarded as the most promising and cost-effective treatment measure because of its low cost, robust efficacy, and lack of secondary pollution. Rhodococcus bacteria are regarded as one of main microorganisms that can effectively degrade PAHs because of their wide distribution, broad degradation spectrum, and network-like evolution of degradation gene clusters. In this review, we focus on the biological characteristics of Rhodococcus; current trends in PAHs degradation based on knowledge maps; and the cellular structural, biochemical, and enzymatic basis of degradation mechanisms, along with whole genome and transcriptional regulation. These research advances provide clues for the prospects of Rhodococcus-based applications in environmental protection.
Collapse
Affiliation(s)
- Jinglin Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yan Zhuang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ning Zhu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ting Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Hongbin Xiao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
8
|
Lin W, Fan F, Xu G, Gong K, Cheng X, Yuan X, Zhang C, Gao Y, Wang S, Ng HY, Dong Y. Microbial community assembly responses to polycyclic aromatic hydrocarbon contamination across water and sediment habitats in the Pearl River Estuary. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131762. [PMID: 37285790 DOI: 10.1016/j.jhazmat.2023.131762] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Along with rapid urbanization and intensive human activities, polycyclic aromatic hydrocarbon (PAH) pollution in the Pearl River Estuary (PRE) and its effects on the microbial community have attracted extensive attention. However, the potential and mechanism of microbial degradation of PAHs across water and sediment habitats remain obscure. Herein, the estuarine microbial community structure, function, assembly process and co-occurrence patterns impacted by PAHs were comprehensively analyzed using environmental DNA-based approaches. The contamination and distribution of PAHs were jointly affected by anthropogenic and natural factors. Some of the keystone taxa were identified as PAH-degrading bacteria (i.e., genera Defluviimonas, Mycobacterium, families 67-14, Rhodobacteraceae, Microbacteriaceae and order Gaiellales in water) or biomarkers (i.e., Gaiellales in sediment) that were significantly correlated with PAH levels. The proportion of deterministic process in the high PAH-polluted water (76%) was much higher than that in the low pollution area (7%), confirming the significant effect of PAHs on the microbial community assembly. In sediment, the communities with high phylogenetic diversity demonstrated a great extent of niche differentiation, exhibited a stronger response to environmental variables and were strongly influenced by deterministic processes (40%). Overall, deterministic and stochastic processes are closely related to the distribution and mass transfer of pollutants, and substantially affect the biological aggregation and interspecies interaction within communities in the habitats.
Collapse
Affiliation(s)
- Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Fuqiang Fan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Guangming Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Kaiyuan Gong
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xiang Cheng
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xingyu Yuan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Cheng Zhang
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China; School of Engineering Technology, Beijing Normal University, Zhuhai 519087, China
| | - Yuan Gao
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China
| | - Shengrui Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - How Yong Ng
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yue Dong
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
9
|
Zheng Z, Liu W, Zhou Q, Li J, Zeb A, Wang Q, Lian Y, Shi R, Wang J. Effects of co-modified biochar immobilized laccase on remediation and bacterial community of PAHs-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130372. [PMID: 36444066 DOI: 10.1016/j.jhazmat.2022.130372] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Considering the stability and economy of immobilized enzymes, this study prepared co-modified biochar immobilized laccase product named Fe3O4@NaBC@GA@LC via orthogonal experimental design and explored its possibility of remediating polycyclic aromatic hydrocarbons (PAHs) contaminated soil in steel plants. Compared with the free laccase treatment, the relative activity of Fe3O4@NaBC@GA@LC remained 60 % after 50 days of incubation at room temperature. The relative activity of Fe3O4@NaBC@GA@LC could still retain nearly 80 % after five reuses. In the process of simulating the PAHs-contaminated site treatment experiment in Hangzhou Iron and steel plant, immobilized laccase exhibited efficient adsorption and degradation performances and even the removal rate of 5-ring PAHs reached more than 90 % in 40 days, resulting in improving urease activity and dehydrogenase in the soil and promoted the growth of a PAH degrading bacteria (Massilia). Our results further explained the efficient degradation effects of Fe3O4@NaBC@GA@LC on PAHs, which make it a promising candidate for PAHs-contaminated soil remediation.
Collapse
Affiliation(s)
- Zeqi Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiantao Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhang Lian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianlin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Ali M, Song X, Wang Q, Zhang Z, Che J, Chen X, Tang Z, Liu X. Mechanisms of biostimulant-enhanced biodegradation of PAHs and BTEX mixed contaminants in soil by native microbial consortium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120831. [PMID: 36509345 DOI: 10.1016/j.envpol.2022.120831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Despite the co-occurrence of polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, and xylene (BTEX) in the field, to date, knowledge on the bioremediation of benzene and benzo[a]pyrene (BaP) mixed contaminants is limited. In this study, the mechanisms underlying the biodegradation of benzene and BaP under individual and co-contaminated conditions followed by the enhanced biodegradation using methanol, ethanol, and vegetable oil as biostimulants were investigated. The results demonstrated that the benzene biodegradation was highly reduced under the co-contaminated condition compared to the individual benzene contamination, whereas the BaP biodegradation was slightly enhanced with the co-contamination of benzene. Moreover, biostimulation significantly improved the biodegradation of both contaminants under co-contaminated conditions. A trend of significant reduction in the bioavailable BaP contents was observed in all biostimulant-enhanced groups, implying that the bioavailable BaP was the preferred biodegradable BaP fraction. Furthermore, the enzymatic activity analysis revealed a significant increase in lipase and dehydrogenase (DHA) activities, as well as a reduction in the catalase and polyphenol oxidase, suggesting that the increased hydrolysis of fats and proton transfer, as well as the reduced oxidative stress, contributed to the enhanced benzene and BaP biodegradation in the vegetable oil treatment. In addition, the microbial composition analysis results demonstrated that the enriched functional genera contributed to the increased biodegradation efficiency, and the functional genera in the microbial consortium responded differently to different biostimulants, and competitive growth was observed in the biostimulant-enhanced treatments. In addition, the enrichment of Pseudomonas and Rhodococcus species was noticed during the biostimulation of benzene and BaP co-contamination soil, and was positively correlated with the DHA enzyme activities, indicating that these species encode DHA genes which contributed to the higher biodegradation. In conclusion, multiple lines of evidence were provided to shed light on the mechanisms of biostimulant-enhanced biodegradation of PAHs and BTEX co-contamination with native microbial consortiums.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jilu Che
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xing Chen
- China Construction 8th Engineering Division Corp., LTD, Shanghai, 200122, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
11
|
Guo B, Mu W, Mao S, Li S, Yang S, Liu A, Wei S, Li X, Sang F, Deng H, Dong Y, Liu H, Chen Z. Flavihumibacter fluminis sp. nov., a novel thermotolerant bacterium isolated from river silt. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748466 DOI: 10.1099/ijsem.0.005619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A yellow, Gram-stain-positive, strictly aerobic, thermotolerant, non-motile and rod-shaped bacterial strain, designated RY-1T, was isolated from a silt sample of Fuyang River, Wuqiang County, Hengshui City, Hebei Province, PR China. Cells showed oxidase- and catalase-positive activities. Growth occurred at 20-45 °C (optimum, 37 °C) and pH 6.0-8.0 (optimum, pH 7.0), and in the presence of 0-1.5 % (w/v) NaCl (optimum, 0%). A phylogenetic tree based on 16S rRNA gene sequences revealed that strain RY-1T formed a phylogenetic lineage with Flavihumibacter members within the family Chitinophagaceae. A comparison of 16S rRNA gene sequences showed that strain RY-1T was most closely related to Flavihumibacter cheonanensis WS16T (98.6 %), Flavihumibacter sediminis CJ663T (97.7 %) and Flavihumibacter solisilvae 3-3T (97.6 %). The genome size of strain RY-1T was 4.71 Mb, and the DNA G+C content was 44.3 %. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between strain RY-1T and reference strains were all lower than the threshold values for species delineation. Strain RY-1T contained menaquinone-7 and iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1G as the sole respiratory isoprenoid quinone and major cellular fatty acids (≥5 %), respectively. The major polar lipids consisted of phosphatidylethanolamine, three unidentified aminolipids and four unidentified lipids. According to the results of phenotypic, phylogenetic and chemotaxonomic characteristics, strain RY-1T represents a novel species of the genus Flavihumibacter, for which the name Flavihumibacter fluminis sp. nov. is proposed. The type strain is RY-1T (=GDMCC 1.2775T=JCM 34870T).
Collapse
Affiliation(s)
- Bai Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Weidong Mu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Sidi Mao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Shucheng Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Shaomei Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Aijv Liu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Shuzhen Wei
- Center for Wetland Conservation and Research, Hengshui University, Hengshui, 053000, Hebei Province, PR China.,Collaborative Innovation Center for Wetland Conservation and Green Development of Hebei Province, Hengshui, 053000, Hebei Province, PR China.,Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui, 053000, Hebei Province, PR China
| | - Xiuyun Li
- Shandong Provincial Maternal and Child Health Care Hospital, Jinan, 250014, Shandong Province, PR China
| | - Feng Sang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Hongkuan Deng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Yuling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Hongliang Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China.,Collaborative Innovation Center for Wetland Conservation and Green Development of Hebei Province, Hengshui, 053000, Hebei Province, PR China
| | - Zhiwei Chen
- Institute of Food and Nutrition Science, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| |
Collapse
|
12
|
Nie Z, Zheng Z, Zhu H, Sun Y, Gao J, Gao J, Xu P, Xu G. Effects of submerged macrophytes ( Elodea nuttallii) on water quality and microbial communities of largemouth bass ( Micropterus salmoides) ponds. Front Microbiol 2023; 13:1050699. [PMID: 36713211 PMCID: PMC9880226 DOI: 10.3389/fmicb.2022.1050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Traditional aquaculture ponds are one of the most vulnerable ecosystems; thus, ecological aquaculture is increasingly valued for its beneficial ecological properties and ecosystem services. However, little is known about ecological aquaculture of largemouth bass with submerged vegetation. Here, we designed three ecological ponds of cultured largemouth bass with submerged macrophytes (the EM group) and three ponds with traditional aquaculture (the M group) to reveal the response of water quality, and phytoplankton and bacterial communities, to submerged macrophyte bioremediation during a 90-day culture period. We observed that Cyanobacterial outbreak occurred in the M group ponds from day 7 to the end of the experiment; however, there were no Cyanobacterial blooms in the EM group ponds throughout the culture period. Compared with the M group ponds, the EM group ponds, which had submerged hydrophytes, had significantly decreased concentrations of TP, TN, and CODMn, but significantly increased DO concentrations throughout the experimental period. Moreover, ecological aquaculture with submerged macrophytes showed strong effects on the phytoplankton and bacterial community compositions. In particular, the M group ponds had higher phytoplankton density and mainly included Cyanobacteria, whereas the EM group had lower phytoplankton density and mainly included Chlorophyta. Moreover, higher alpha diversity, as determined by Ace and Simpson index values, was detected for bacterial communities in the EM group ponds. Furthermore, PCoA clearly grouped the bacterial communities according to the two culture modes throughout the culture period. These results indicate that ecological aquaculture with submerged macrophytes can improve water quality, control Cyanobacterial blooms, and affect the diversity and composition of bacterial communities. These valuable effects seem to be beneficial and consistent to maintaining aquaculture ecosystem stability.
Collapse
Affiliation(s)
- Zhijuan Nie
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Zhaowei Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Haojun Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Jun Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Gangchuan Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China,*Correspondence: Gangchuan Xu, ✉
| |
Collapse
|
13
|
Marzuki I, Rosmiati R, Mustafa A, Sahabuddin S, Tarunamulia T, Susianingsih E, Hendrajat EA, Sahrijanna A, Muslimin M, Ratnawati E, Kamariah K, Nisaa K, Herlambang S, Gunawan S, Santi IS, Isnawan BH, Kaseng ES, Septiningsih E, Asaf R, Athirah A, Basri B. Potential Utilization of Bacterial Consortium of Symbionts Marine Sponges in Removing Polyaromatic Hydrocarbons and Heavy Metals, Review. BIOLOGY 2023; 12:86. [PMID: 36671778 PMCID: PMC9855174 DOI: 10.3390/biology12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
Toxic materials in waste generally contain several components of the global trending pollutant category, especially PAHs and heavy metals. Bioremediation technology for waste management that utilizes microorganisms (bacteria) has not been fully capable of breaking down these toxic materials into simple and environmentally friendly chemical products. This review paper examines the potential application of a consortium of marine sponge symbionts with high performance and efficiency in removing PAHs and heavy metal contaminants. The method was carried out through a review of several related research articles by the author and published by other researchers. The results of the study conclude that the development of global trending pollutant (GTP) bioremediation technology could be carried out to increase the efficiency of remediation. Several types of marine sponge symbiont bacteria, hydrocarbonoclastic (R-1), metalloclastic (R-2), and metallo-hydro-carbonoclastic (R-3), have the potential to be applied to improve waste removal performance. A consortium of crystalline bacterial preparations is required to mobilize into GTP-exposed sites rapidly. Bacterial symbionts of marine sponges can be traced mainly to sea sponges, whose body surface is covered with mucus.
Collapse
Affiliation(s)
- Ismail Marzuki
- Department of Chemical Engineering, Fajar University, Makassar 90231, South Sulawesi, Indonesia
| | - Rosmiati Rosmiati
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Akhmad Mustafa
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Sahabuddin Sahabuddin
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Tarunamulia Tarunamulia
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Endang Susianingsih
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Erfan Andi Hendrajat
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Andi Sahrijanna
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Muslimin Muslimin
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Erna Ratnawati
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Kamariah Kamariah
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Khairun Nisaa
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Susila Herlambang
- Soil Science Departement of Agriculture Faculty Universitas Pembangunan Nasional Veteran, Yogyakarta 55283, DI Yogyakarta, Indonesia
| | - Sri Gunawan
- Department of Agrotechnology, Institut Pertanian Stiper, Yogyakarta 55283, DI Yogyakarta, Indonesia
| | - Idum Satia Santi
- Department of Agrotechnology, Institut Pertanian Stiper, Yogyakarta 55283, DI Yogyakarta, Indonesia
| | - Bambang Heri Isnawan
- Department of Agrotechnology, Universitas Muhammadiyah Yogyakarta, Bantul 55183, DI Yogyakarta, Indonesia
| | - Ernawati Syahruddin Kaseng
- Agricultural Technology Education Department, Faculty of Engineering, Makassar State University, Makassar 90222, South Sulawesi, Indonesia
| | - Early Septiningsih
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Ruzkiah Asaf
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Admi Athirah
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Basri Basri
- Institute of Health Science (STIK), Makassar 90231, South Sulawesi, Indonesia
| |
Collapse
|
14
|
Khandelwal A, Sugavanam R, Ramakrishnan B, Dutta A, Varghese E, Banerjee T, Nain L, Singh SB, Singh N. Bio-polysaccharide composites mediated degradation of polyaromatic hydrocarbons in a sandy soil using free and immobilized consortium of Kocuria rosea and Aspergillus sydowii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80005-80020. [PMID: 35220535 DOI: 10.1007/s11356-022-19252-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Based on our previous study in minimal medium, Kocuria rosea and Aspergillus sydowii were identified as the best microbes for degradation of mixture of polyaromatic hydrocarbons (PAHs). The present study reports PAH degradation potential of these microbes in free and immobilized form. PAHs were extracted using QuEChERS-mediated process followed by quantification by high performance liquid chromatography. The microbial consortium of Kocuria rosea + Aspergillus sydowii was formulated in three bio-formulations, namely (i) bentonite-alginate composite beads; (ii) water dispersible granule composite using guar gum-nanobentonite; and (iii) composites of carboxymethyl cellulose-bentonite and were applied in PAH fortified (100 µg g-1) sandy loam soil. Results suggested that degradation data fitted well to first order kinetics as in most of the cases, the values of correlation coefficient (r) were > 0.95. The half-life (t1/2) values for PAHs in the uninoculated control soil were: naphthalene (10.43 d), fluorene (22.43 d), phenanthrene (24.64 d), anthracene (38.47 d), and pyrene (34.34 d). Inoculation of soil with free culture microbial consortium (without or with nutrient) and bio-formulation of degrading cultures enhanced degradation of all PAHs and half-life values were significantly reduced for each PAH: naphthalene (1.76-2.00 d), fluorene (2.52-6.65 d), phenanthrene (4.61-6.37 d), anthracene (9.01-12.22 d), and pyrene (10.98-15.55 d). Among different bio-formulations, guar gum-nanobentonite-based composite exhibited better efficacy for degradation of naphthalene, fluorene, phenanthrene, anthracene, and pyrene. The addition of microbial consortium in PAH fortified soil increased 16S rRNA gene copies of Alphaproteobacteria and Bacteroidetes, compared to the uninoculated, PAH-fortified control. The microbial functional gene assays showed that the gene copies of amoA, nirK, nirS, and anammox increased, suggesting nitrogen regulation in the PAH-fortified soil.
Collapse
Affiliation(s)
- Ashish Khandelwal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
- Division of Environment Science, ICAR- Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ramya Sugavanam
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | | | - Anirban Dutta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Eldho Varghese
- Fishery Resources Assessment Division, ICAR-Central Marine Fisheries Research Institute, Kochi, 682 018, Kerala, India
| | - Tirthankar Banerjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Shashi Bala Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
15
|
Bao J, Li J, Jiang L, Mei W, Song M, Huang D, Luo C, Zhang G. New insight into the mechanism underlying the effect of biochar on phenanthrene degradation in contaminated soil revealed through DNA-SIP. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129466. [PMID: 35803194 DOI: 10.1016/j.jhazmat.2022.129466] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Biochar has been widely used for the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil, but its mechanism of influencing PAH biodegradation remains unclear. Here, DNA-stable isotope probing coupled with high-throughput sequencing was employed to assess its influence on phenanthrene (PHE) degradation, the active PHE-degrading microbial community and PAH-degradation genes (PAH-RHDα). Our results show that both Low-BC and High-BC (soils amended with 1 % and 4 % w/w biochar, respectively) treatments significantly decreased PHE biodegradation and bioavailable concentrations with a dose-dependent effect compared to Non-BC treatment (soils without biochar). This result could be attributed to the immobilisation of PHE and alteration of the composition and abundance of the PHE-degrading microbial consortium by biochar. Active PHE degraders were identified, and those in the Non-BC, Low-BC and High-BC microcosms differed taxonomically. Sphaerobacter, unclassified Diplorickettsiaceae, Pseudonocardia, and Planctomyces were firstly linked with PHE biodegradation. Most importantly, the abundances of PHE degraders and PAH-RHDα genes in the 13C-enriched DNA fractions of biochar-amended soils were greatly attenuated, and were significantly positively correlated with PHE biodegradation. Our findings provide a novel perspective on PAH biodegradation mechanisms in biochar-treated soils, and expand the understanding of the biodiversity of microbes involved in PAH biodegradation in the natural environment.
Collapse
Affiliation(s)
- Jiangqiao Bao
- Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Weiping Mei
- Institute of Eco-Environmental Research, Institute of Beibu Gulf Marine Industry, Guangxi Academy of Sciences, Nanning 530007, China
| | - Mengke Song
- Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Deyin Huang
- Guangdong Institute of Eco-environmental and Soil sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Chunling Luo
- Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
16
|
Zhang L, Yi M, Lu P. Effects of pyrene on the structure and metabolic function of soil microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119301. [PMID: 35429592 DOI: 10.1016/j.envpol.2022.119301] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The widely detected pyrene (PYR) is prone to accumulate and pose risks to the soil ecosystem. In this study, an aerobic closed microcosm was constructed to assess the effects of PYR at the environmental concentration (12.09 mg kg-1) on the structure, interactions, and metabolism of carbon sources of soil microbial communities. The results found that half-life of PYR was 37 d and its aerobic biodegradation was mainly implemented by both Gram-negative and Gram-positive bacteria as revealed by the quantitative results. High-throughput sequencing based on 16 S rRNA and ITS genes showed that PYR exposure interfered more significantly with the diversity and abundance of the bacterial community than that of the fungal community. For bacteria, rare species were sensitive to PYR, while Gemmatimonadota, Gaiellales, and Planococcaceae involved in organic pollutants detoxification and degradation were tolerant of PYR stress. Co-occurrence network analysis demonstrated that PYR enhanced the intraspecific cooperation within the bacterial community and altered the patterns of trophic interaction in the fungal community. Furthermore, the keystone taxa and their topological roles were altered, potentially inducing functionality changes. Function annotation suggested PYR inhibited the nitrogen fixation and ammonia oxidation processes but stimulated methylotrophy and methanol oxidation, especially on day 7. For the metabolism, microbial communities accelerated the metabolism of nitrogenous carbon sources (e.g. amine) to meet the physiological needs under PYR stress. This study clarifies the impacts of PYR on the structure, metabolism, and potential N and C cycling functions of soil microbial communities, deepening the knowledge of the environmental risks of PYR.
Collapse
Affiliation(s)
- Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Meiling Yi
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
17
|
Marzuki I, Septiningsih E, Kaseng ES, Herlinah H, Sahrijanna A, Sahabuddin S, Asaf R, Athirah A, Isnawan BH, Samidjo GS, Rumagia F, Hamidah E, Santi IS, Nisaa K. Investigation of Global Trends of Pollutants in Marine Ecosystems around Barrang Caddi Island, Spermonde Archipelago Cluster: An Ecological Approach. TOXICS 2022; 10:301. [PMID: 35736909 PMCID: PMC9229392 DOI: 10.3390/toxics10060301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022]
Abstract
High-quality marine ecosystems are free from global trending pollutants' (GTP) contaminants. Accuracy and caution are needed during the exploitation of marine resources during marine tourism to prevent future ecological hazards that cause chain effects on aquatic ecosystems and humans. This article identifies exposure to GTP: microplastic (MP); polycyclic aromatic hydrocarbons (PAH); pesticide residue (PR); heavy metal (HM); and medical waste (MW), in marine ecosystems in the marine tourism area (MTA) area and Barrang Caddi Island (BCI) waters. A combination of qualitative and quantitative analysis methods were used with analytical instruments and mathematical formulas. The search results show the average total abundance of MPs in seawater (5.47 units/m3) and fish samples (7.03 units/m3), as well as in the sediment and sponge samples (8.18 units/m3) and (8.32 units/m3). Based on an analysis of the polymer structure, it was identified that the dominant light group was MPs: polyethylene (PE); polypropylene (PP); polystyrene (PS); followed by polyamide-nylon (PA); and polycarbonate (PC). Several PAH pollutants were identified in the samples. In particular, naphthalene (NL) types were the most common pollutants in all of the samples, followed by pyrene (PN), and azulene (AZ). Pb+2 and Cu+2 pollutants around BCI were successfully calculated, showing average concentrations in seawater of 0.164 ± 0.0002 mg/L and 0.293 ± 0.0007 mg/L, respectively, while in fish, the concentrations were 1.811 ± 0.0002 µg/g and 4.372 ± 0.0003 µg/g, respectively. Based on these findings, the BCI area is not recommended as a marine tourism destination.
Collapse
Affiliation(s)
- Ismail Marzuki
- Department of Chemical Engineering, Fajar University, Makassar 90231, South Sulawesi, Indonesia
| | - Early Septiningsih
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Ernawati Syahruddin Kaseng
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Herlinah Herlinah
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Andi Sahrijanna
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Sahabuddin Sahabuddin
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Ruzkiah Asaf
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Admi Athirah
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Bambang Heri Isnawan
- Department of Agrotechnology, Universitas Muhammadiyah Yogyakarta, Bantul 55183, DI Yogyakarta, Indonesia; (B.H.I.); (G.S.S.)
| | - Gatot Supangkat Samidjo
- Department of Agrotechnology, Universitas Muhammadiyah Yogyakarta, Bantul 55183, DI Yogyakarta, Indonesia; (B.H.I.); (G.S.S.)
| | - Faizal Rumagia
- Study Program of Fisheries Resource Utilization, Faculty of Fisheries and Marine, Khairun University, Ternate 97719, North Maluku, Indonesia;
| | - Emmy Hamidah
- Department of Agrotechnology, Universitas Islam Darul ‘Ulum, Lamongan 62253, Jawa Timur, Indonesia;
| | - Idum Satia Santi
- Department of Agrotechnology, Institut Pertanian Stiper, Yogyakarta 55283, DI Yogyakarta, Indonesia;
| | - Khairun Nisaa
- National Research and Innovation Agency (BRIN), Jakarta 10340, DKI, Indonesia;
| |
Collapse
|
18
|
Jiao K, Yang B, Wang H, Xu W, Zhang C, Gao Y, Sun W, Li F, Ji D. The individual and combined effects of polystyrene and silver nanoparticles on nitrogen transformation and bacterial communities in an agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153358. [PMID: 35077800 DOI: 10.1016/j.scitotenv.2022.153358] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The effects of emerging contaminants micro/nanoplastics (MPs/NPs) and silver nanoparticles (Ag NPs) on health have attracted universal concern throughout the world. However, it is unclear on the combined effects of MPs/NPs and Ag NPs on the biogeochemistry cycle such as nitrogen transformation and functional microorganism in the soil. In the present study, we conducted a 45-day soil microcosm experiment with polystyrene (PS) MPs/NPs and Ag NPs to investigate their combined impact on nitrogen cycling and the bacterial community. The results showed that MPs or NPs exerted limited effects on nitrogen transformation in the soil. The combined effects of PS MPs/NPs and Ag NPs were mainly caused by the presence of Ag NPs. However, PS NPs alleviated the inhibition of anammox and denitrification induced by Ag NPs via upregulating anammox-related genes and elevating nitrate and nitrite reductase activities. PS MPs + Ag NPs treatment significantly reduced bacterial diversity. PS MPs/NPs + Ag NPs increased the relative abundances of denitrifying Cupriavidus by 0.32% and 0.06% but decreased nitrogen-fixing functional microorganisms of Microvirga (by 2.05% and 2.24%), Bacillus (by 0.16% and 0.22%), and Herbaspirillum (by 0.14% and 0.07%) at the genus level compared with Ag NPs alone. The significant downregulation of nitrogen-fixing genes (K02586, K02588, and K02591) was observed in PS MPs/NPs + Ag NPs treatment compared to Ag NPs in the nitrogen metabolism pathway. Moreover, g-Lysobacter and g-Aquimonas were identified as biomarkers in PS MPs + Ag NPs and PS NPs + Ag NPs by LEfSe analysis. Our study sheds the light that changes of functional microorganism abundances contributed to the alteration of nitrogen transformation. Taking the particle size of plastics into account will be helpful to accurately assess the combined ecological risks of plastics and nanomaterial contaminants.
Collapse
Affiliation(s)
- Keqin Jiao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China.
| | - Wenxue Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Chuanfeng Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Yongchao Gao
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan 250103, China
| | - Wen Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Feng Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Dandan Ji
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| |
Collapse
|