1
|
Qu Y, Li X, Bu K, Zhang J, Chen D, Liang J, Chen H, Li H, Bai L. 3D/3D Bamboo Charcoal/Bi 2WO 6 Bifunctional Photocatalyst for Degradation of Organic Pollutants and Efficient H 2 Evolution Coupling with Furfuryl Alcohols Oxidation. Molecules 2024; 29:2476. [PMID: 38893356 PMCID: PMC11174113 DOI: 10.3390/molecules29112476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Photocatalysis is one of the most promising pathways to relieve the environmental contamination caused by the rapid development of modern technology. In this work, we demonstrate a green manufacturing process for the 3D/3D rod-shaped bamboo charcoal/Bi2WO6 photocatalyst (210BC-BWO) by controlled carbonization temperature. A series of morphology characterization and properties investigations (XRD, SEM, UV-vis DRS, transient photocurrent response, N2 absorption-desorption isotherms) indicate a 210BC-BWO photocatalyst with higher charge separation efficiency, larger surface area, and better adsorption capacity. The excellent photocatalytic performance was evaluated by degrading rhodamine B (RhB) (98.5%), tetracycline hydrochloride (TC-HCl) (77.1%), and H2 evolution (2833 μmol·g-1·h-1) coupled with furfuryl alcohol oxidation (3097 μmol·g-1·h-1) under visible light irradiation. In addition, the possible mechanisms for degradation of organic pollutants, H2 evolution, and furfuryl alcohol oxidation were schematically investigated, which make it possible to exert photocatalysis by increasing the active radical. This study shows that the combination of bamboo charcoal and bismuth tungstate can be a powerful photocatalyst that rationally combines H2 evolution coupled with furfuryl alcohol oxidation and degradation of pollutants.
Collapse
Affiliation(s)
- Yanan Qu
- College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Q.); (X.L.); (K.B.); (J.Z.)
| | - Xiaolin Li
- College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Q.); (X.L.); (K.B.); (J.Z.)
| | - Kang Bu
- College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Q.); (X.L.); (K.B.); (J.Z.)
| | - Jiayi Zhang
- College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Q.); (X.L.); (K.B.); (J.Z.)
| | - Da Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China; (D.C.); (J.L.); (H.C.)
| | - Junhui Liang
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China; (D.C.); (J.L.); (H.C.)
| | - Huayu Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China; (D.C.); (J.L.); (H.C.)
| | - Huafeng Li
- College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Q.); (X.L.); (K.B.); (J.Z.)
| | - Liqun Bai
- College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Q.); (X.L.); (K.B.); (J.Z.)
| |
Collapse
|
2
|
Valadez-Renteria E, Perez-Carrasco C, Medina-Velazquez DY, Rodriguez-Gonzalez V, Oliva J. Efficient removal of the recalcitrant metamizole contaminant from drinking water by using a CaLaCoO 9 perovskite supported on recycled polyethylene. J Environ Sci (China) 2024; 136:56-67. [PMID: 37923465 DOI: 10.1016/j.jes.2022.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2023]
Abstract
Metamizole (MZ) is a widely used anti-inflammatory drug. Due to its common use, this contaminant is found in sewage and rivers. In order to reduce the contamination produced by the MZ, we fabricated in this work a photocatalytic composite using recycled polyethylene (RPE) and the CaLaCoO9 (LCCO) perovskite. Those nanoparticles had a microplate-like morphology and sizes of 1.4-5.5 µm according to the analysis of microscopy. The photocatalytic properties of the LCCO powders were evaluated under ultraviolet-visible (UV-Vis) irradiation and found a removal efficiency of 96%. When the RPE+LCCO composite was employed for the photocatalytic degradation of MZ, a maximum degradation of 92.5% was obtained. The influence of the pH on the photocatalytic activity was also studied and found that an initial pH = 3 produced a total degradation of MZ after 240 min of UV-Vis irradiation. Moreover, three reuse cycles were carried out for the pure LCCO powders and for the RPE+LCCO composites and found that the maximum loss of degradation was 5%. Furthermore, scavenger experiments demonstrated that the super oxide and hydroxyl radicals are formed during the photocatalytic reaction and were responsible for the degradation of MZ. Additionally, the X-ray photoelectron-spectroscopy and Raman analysis demonstrated the formation of defects (oxygen vacancies), those ones delayed the electron-hole recombination, which in turn, enhanced the degradation of the MZ. Thus, the studies performed in this work proved that composites made with recycled plastics and LCCO perovskites are a low-cost and feasible alternative for the cleaning of water sources polluted with pharmaceutical compounds.
Collapse
Affiliation(s)
- Ernesto Valadez-Renteria
- CONACYT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP 78216, México
| | - Christian Perez-Carrasco
- División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Azcapotzalco, Col. Reynosa-Tamaulipas, C.P., México, DF 02200, México
| | - Dulce Yolotzin Medina-Velazquez
- División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Azcapotzalco, Col. Reynosa-Tamaulipas, C.P., México, DF 02200, México.
| | - Vicente Rodriguez-Gonzalez
- CONACYT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP 78216, México
| | - Jorge Oliva
- CONACYT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP 78216, México.
| |
Collapse
|
3
|
Zheng J, Liu J, Feng X, Liu J, Zong S, Liu L, Fang Y. Outstanding photo-thermo synergy in aerobic oxidation of cyclohexane by bismuth tungstate-bismuth oxychloride high-low heterojunction. J Colloid Interface Sci 2023; 651:304-318. [PMID: 37544220 DOI: 10.1016/j.jcis.2023.07.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
The difficulty of achieving both high conversion rate and high selectivity is a huge challenge in the catalytic aerobic oxidation of cyclohexane. In this paper, bismuth tungstate-bismuth oxychloride (Bi2WO6-BiOCl) nanoflower heterojunctions prepared via a one-step solvothermal process were applied in the photo-thermo synergetic catalytic oxidation of cyclohexane in the dried air. With the addition of little water at different reaction temperature, the ratio of bismuth to tungsten and the mass ratio of Bi2WO6 to BiOCl can be precisely tailored in the nanoflower sphere composites with thin nanosheets. Their microscopic morphology, elemental composition, crystal structure, and photoelectrochemical characteristics were explored by different characterization methods. The Bi2WO6-BiOCl composites possessed poor photocatalytic and thermal performances with the low conversion rates of 1.43% and 2.68%, respectively. However, through the photo-thermo catalytic oxidation process, an exceptional conversion rate of 13.32% was achieved with excellent selectivity of 99.22% for cyclohexanone and cyclohexanol (KA oil) using the same Bi2WO6-BiOCl composites. This superior performance outstrips Bi2WO6 flowers, BiOCl nanosheets and Bi2WO6-BiOCl composites with other compounding ratios. The creation of a high-low heterojunction in the Bi2WO6-BiOCl composite was confirmed by band energy analysis. The opto-electronic analysis, band energy analysis, sacrifice experiments, and active radical analysis were employed to elucidate the mechanism for the exceptional photo-thermo catalytic performance in detail. This work offers an exploratory solution to the challenges of high energy consumption and the difficulty in simultaneously achieving high selectivity and high conversion rates in cyclohexane oxidation, thus holding significant value.
Collapse
Affiliation(s)
- Jia Zheng
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Jincheng Liu
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
| | - Xuyang Feng
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Jiarong Liu
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Shuang Zong
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Lingling Liu
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Yanxiong Fang
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| |
Collapse
|
4
|
K A, Natarajan S, S B. Assisted assembling of Bi 2WO 6/rGO composites: A 3D/2D Hierarchical nanostructures for enhanced photocatalytic water remediation and photo-(electro)catalytic water splitting proficiency. CHEMOSPHERE 2023; 345:140488. [PMID: 37898466 DOI: 10.1016/j.chemosphere.2023.140488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
The current study explores the possibility of effectively improving Bi2WO6 (BWO) nanostructures in photocatalytic clean H2 generation and treating water from pharmaceutical wastes. BWO nanoparticles (NPs) hybridized with carbon-derived materials proved to be an efficient candidate in the field of photocatalysis. In this work, BWO nanostructures have been synthesized via the facile co-precipitation technique. The reduced graphene oxide (r-GO) was used as the carbon derivative for the hybridization process. Furthermore, different weight percentages of rGO were loaded with BWO NPs through the wet impregnation technique. The structural, and morphological analysis confirmed the formation of BWO/x% rGO composites. UV-DRS analysis showcased the reduction in bandgap in annexure with increased light absorbance region upon rGO inclusion. Time-resolved photoluminescence (TRPL) proved a prolonged lifetime for BWO/15% rGO composite. In addition, their photocatalytic abilities were put to the test, and BWO/15% rGO nano-hybrid demonstrated a superior degradation of pharmaceutical wastes like tetracycline hydrochloride (TCH) and levofloxacin (LVX) from water in 15 min. Furthermore, photo-electrochemical measurements showed the lowest onset potential and better charge transfer for efficient splitting of water. The photocatalytic water splitting was performed in the presence of sacrificial agents and in the absence of sacrificial agents, where BWO/15% rGO exhibited maximum H2 evolution.
Collapse
Affiliation(s)
- Annamalai K
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Tamilnadu, 600025, India
| | - Sasirekha Natarajan
- Catalysis Laboratory, Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Chennai 600 025, Tamil Nadu, India
| | - Balakumar S
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Tamilnadu, 600025, India.
| |
Collapse
|
5
|
Zhang X, Li Y, Jiang S, Pun EYB, Lin H. Heterojunction Photocatalyst Loaded on Electrospun Nanofibers for Synergistic Enhanced Photocatalysis and Real-Time Temperature Monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14344-14356. [PMID: 37755730 DOI: 10.1021/acs.langmuir.3c01671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Bi2WO6:Ho3+, Yb3+/g-C3N4 (BHY/CN) photocatalysts are successfully loaded on polyacrylonitrile (PAN) nanofibers by electrospinning technology, which combines an upconversion effect and heterojunctions to achieve dual-functional characteristics. Polymer-modified photocatalytic materials offer a large specific surface area of 24.1 m2/g and a pore volume of 0.1 cm3/g, promoting the utility of solar energy. The introduction of rare earth ions and g-C3N4 optimizes the structural band gap, which broadens the light absorption range and promotes electron transfer. Moreover, the heterojunction between Bi2WO6 and g-C3N4 has suppressed the complexation of photoinduced carriers, further improving catalytic performance. The optimized photocatalysts have higher photocatalytic activity with degrading 92.6% tetracycline-hydrochloride (120 min) under simulated sunlight irradiation. The optical thermometry has also been achieved based on the fluorescence intensity ratio technique, where the maximum absolute and relative sensitivity values of BHY/CN-1:6@PAN are 3.322% K-1 and 0.842% K-1, respectively. This dual-functional nanofibers with excellent mechanical properties provide noncontact temperature feedback and efficient catalytic performance for better wastewater treatment and ecological restoration in extreme harsh environments.
Collapse
Affiliation(s)
- Xiaolin Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yue Li
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region 999077, P. R. China
| | - Shuwen Jiang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Edwin Yue Bun Pun
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region 999077, P. R. China
| | - Hai Lin
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region 999077, P. R. China
| |
Collapse
|
6
|
Sharaf Aldeen EM, Jalil AA, Mim RS, Hatta AH, Hazril NIH, Chowdhury A, Hassan NS, Rajendran S. Environmental remediation of hazardous pollutants using MXene-perovskite-based photocatalysts: A review. ENVIRONMENTAL RESEARCH 2023; 234:116576. [PMID: 37423362 DOI: 10.1016/j.envres.2023.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Photocatalysis utilizing semiconductors offer a cost-effective and promising solution for the removal of pollutants. MXene and perovskites, which possess desirable properties such as a suitable bandgap, stability, and affordability, have emerged as a highly promising material for photocatalytic activity. However, the efficiency of MXene and perovskites is limited by their fast recombination rates and inadequate light harvesting abilities. Nonetheless, several additional modifications have been shown to enhance their performance, thereby warranting further exploration. This study delves into the fundamental principles of reactive species for MXene-perovskites. Various methods of modification of MXene-perovskite-based photocatalysts, including Schottky junction, Z-scheme and S-scheme are analyzed with regard to their operation, differences, identification techniques and reusability. The assemblance of heterojunctions is demonstrated to enhance photocatalytic activity while also suppressing charge carrier recombination. Furthermore, the separation of photocatalysts through magnetic-based methods is also investigated. Consequently, MXene-perovskite-based photocatalysts are seen as an exciting emerging technology that necessitates further research and development.
Collapse
Affiliation(s)
- E M Sharaf Aldeen
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia.
| | - R S Mim
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A H Hatta
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - N I H Hazril
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A Chowdhury
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - N S Hassan
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia
| | - S Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775, Arica, Chile
| |
Collapse
|
7
|
Gnanaguru MVL, Naushad M, Tatarchuk T, Ghangrekar MM, Chowdhury S. One-step calcination synthesis of 2D/2D g-C 3N 4/WS 2 van der Waals heterojunction for visible light-induced photocatalytic degradation of pharmaceutical pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27714-7. [PMID: 37271787 DOI: 10.1007/s11356-023-27714-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023]
Abstract
It is well-documented that accumulation of pharmaceutically active compounds (PhACs), such as antibiotics, in aquatic ecosystems is a prominent environmental hazard. Herein, a series of 2D materials-based heterojunctions, conceptualized based on the integration of graphitic carbon nitride (g-C3N4) with tungsten disulfide (WS2), was fabricated through a facile one-step calcination process, and systematically evaluated for eliminating tetracycline (TC) and sulfamethoxazole (SMX) from aqueous matrices. The microstructure, optical properties, and surface chemistry of the as-prepared composites were examined with a range of microscopy and spectroscopy techniques. In comparison with pristine g-C3N4 or bare WS2, the g-C3N4/WS2 material, with optimal WS2 loading, showed significantly improved photocatalytic activity, towards degradation of TC (84%) and SMX (96%), under visible light. Free radical scavenging experiments revealed that superoxide anions and hydroxyl radicals were predominantly responsible for the rapid breakdown of the PhACs. In addition, the dissociation intermediates and residues were identified and the plausible photocatalytic degradation pathways of TC and SMX over the as-constructed 2D/2D heterojunction were discussed. Further, the photocatalysis end products were non-toxic, as inferred via the resazurin cell viability assay, employing Escherichia coli as a model organism. Most importantly, the 2D/2D g-C3N4/WS2 architecture was structurally resilient and exhibited a fairly stable cycling performance for persistent usage in wastewater treatment. The outcomes of this study testify that 2D/2D heterojunction of g-C3N4 fragments and WS2 nanosheets holds great promise for destroying antibiotics or their metabolites, usually present in wastewaters.
Collapse
Affiliation(s)
- Mario Vino Lincy Gnanaguru
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tetiana Tatarchuk
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa, 2, 30-387, Kraków, Poland
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
8
|
Liu X, Ren A, Liu A, Jiang X, Zhang L. Simultaneous photocatalytic tetracycline oxidation and Cr(VI) reduction by a 0D/3D hierarchical Bi 2WO 6@CoO Z-scheme heterostructure: In situ interfacial engineering and charge regulation mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118134. [PMID: 37196619 DOI: 10.1016/j.jenvman.2023.118134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Constructing visible-light driven semiconductor heterojunction with high redox bifunctional characteristics is a promising approach to deal with the increasingly serious environmental pollution problems, especially the coexistence of organic/heavy metal pollutants. Herein, a simple in-situ interfacial engineering strategy for the fabrication of 0D/3D hierarchical Bi2WO6@CoO (BWO) heterojunction with an intimate contact interface was successfully developed. The superior photocatalytic property was reflected not only in individual tetracycline hydrochloride (TCH) oxidation or Cr(VI) reduction, but also in their simultaneous redox reaction, which could be predominantly attributed to the outstanding light-harvesting, high carrier separation efficiency and enough redox potentials. In the simultaneous redox system, TCH acted as a hole-scavenger for Cr(VI) reduction, replacing the additional reagent. Interestingly, superoxide radical (·O2-) played the role as oxidants in TCH oxidation but as electron transfer media in Cr(VI) reduction. On account of the interlaced energy band and tight interfacial contact, a direct Z-scheme charge transfer model was established, which was verified by the active species trapping experiments, spectroscopy, and electrochemical tests. This work provided a promising strategy for the design/fabrication of highly efficient direct Z-scheme photocatalysts in environmental remediation.
Collapse
Affiliation(s)
- Xueyan Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Aina Ren
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Anqi Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Xiaoqing Jiang
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
9
|
Das S, Sanjay M, Singh Gautam AR, Behera R, Tiwary CS, Chowdhury S. Low bandgap high entropy alloy for visible light-assisted photocatalytic degradation of pharmaceutically active compounds: Performance assessment and mechanistic insights. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118081. [PMID: 37182480 DOI: 10.1016/j.jenvman.2023.118081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Abstract
The incessant accumulation of pharmaceutically active compounds (PhACs) in various environmental compartments represents a global menace. Herein, an equimolar high entropy alloy (HEA), i.e., FeCoNiCuZn, is synthesized via a facile and scalable method, and its effectiveness in eliminating four different PhACs from aqueous matrices is rigorously examined. Attributing to its relatively low bandgap and multielement active sites, the as-synthesized quinary HEA demonstrates more pronounced photocatalytic decomposition efficiency, towards tetracycline (86%), sulfamethoxazole (94%), ibuprofen (80%), and diclofenac (99%), than conventional semiconductor-based photocatalysts, under visible light irradiation. Additionally, radical trapping assays are conducted, and the dissociation intermediates are identified, to probe the plausible photocatalytic degradation pathways. Further, the end-products of FeCoNiCuZn-mediated photocatalysis are apparently non-toxic, and the HEA can be successfully recycled repeatedly, with no obvious leaching of heavy metal ions. Overall, the findings of this study testify the applicability of FeCoNiCuZn as a visible light-active photocatalyst, for treating wastewaters contaminated with PhACs.
Collapse
Affiliation(s)
- Shubhasikha Das
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - M Sanjay
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Abhay Raj Singh Gautam
- Department of Materials Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382055, India
| | - Rakesh Behera
- Department of Materials Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382055, India
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
10
|
Zhao Y, Shao Y, Chen H, Luo X, Liu X. The Facile Synthesis of Hollow CuS Microspheres Assembled from Nanosheets for Li-Ion Storage and Photocatalytic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091505. [PMID: 37177049 PMCID: PMC10179783 DOI: 10.3390/nano13091505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Herein, well-defined hollow CuS microspheres assembled from nanosheets were successfully synthesized through a facile solvothermal method. Hollow CuS microspheres have an average diameter of 1.5 μm; moreover, the primary CuS nanosheets have an ultrathin thickness of about 10 nm and are bound by {0001} polar facets. When used as anodes for lithium-ion batteries (LIBs), hollow CuS microspheres exhibit excellent electrochemical properties, including a large discharge capacity (610.1 mAh g-1 at 0.5 C), an excellent rate capability (207.6 and 143.4 mAh g-1 at 1 and 5 C), and a superior cyclic stability (196.3 mAh g-1 at 1 C after 500 cycles). When used as photocatalysts for Rhodamine B (RhB), hollow CuS microspheres can degrade more than 99% of the initial RhB within 21 min. These excellent Li-ion storage properties and photocatalytical performances are attributed to their unique hierarchical hollow structure.
Collapse
Affiliation(s)
- Yiyang Zhao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yonghui Shao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Hao Chen
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xinwen Luo
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xiaodi Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
11
|
Irfan S, Khan SB, Din MAU, Dong F, Chen D. Retrospective on Exploring MXene-Based Nanomaterials: Photocatalytic Applications. Molecules 2023; 28:molecules28062495. [PMID: 36985468 PMCID: PMC10053030 DOI: 10.3390/molecules28062495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Nanostructural two-dimensional compounds are grabbing the attention of researchers all around the world. This research is progressing quickly due to its wide range of applications in numerous industries and enormous promise for future technological breakthroughs. Growing environmental consciousness has made it vital to treat wastewater and avoid releasing hazardous substances into the environment. Rising consumer expectations have led to the emergence of new, frequently nonbiodegradable compounds. Due to their specific chemical and physical properties, MXenes have recently been identified as promising candidates. MXenes are regarded as a prospective route for environmental remediation technologies, such as photocatalysis, adsorption, and membrane separation, and as electrocatalytic sensors for pollution recognition because of their high hydrophilicity, inherent chemical nature, and robust electrochemistry. The development of catalysts based on MXene materials for the photocatalytic breakdown of pharmaceutical wastes in polluted water is critically evaluated in this study. With an emphasis on the degradation mechanism, the photocatalytic degradation of antibiotics using MXenes and MXene-based nanocomposites is explained in depth. We emphasize the significant difficulties in producing MXenes and their composites, as well as in the degradation of drugs. The successful use of MXenes in water filtration and suggestions for future study are also presented.
Collapse
Affiliation(s)
- Syed Irfan
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China;
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Sadaf Bashir Khan
- Dongguan Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, China
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | | | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Deliang Chen
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China;
- Correspondence:
| |
Collapse
|
12
|
Oladipo AA, Mustafa FS. Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:291-321. [PMID: 36895441 PMCID: PMC9989679 DOI: 10.3762/bjnano.14.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A serious threat to human health and the environment worldwide, in addition to the global energy crisis, is the increasing water pollution caused by micropollutants such as antibiotics and persistent organic dyes. Nanostructured semiconductors in advanced oxidation processes using photocatalysis have recently attracted a lot of interest as a promising green and sustainable wastewater treatment method for a cleaner environment. Due to their narrow bandgaps, distinctive layered structures, plasmonic, piezoelectric and ferroelectric properties, and desirable physicochemical features, bismuth-based nanostructure photocatalysts have emerged as one of the most prominent study topics compared to the commonly used semiconductors (TiO2 and ZnO). In this review, the most recent developments in the use of photocatalysts based on bismuth (e.g., BiFeO3, Bi2MoO6, BiVO4, Bi2WO6, Bi2S3) to remove dyes and antibiotics from wastewater are thoroughly covered. The creation of Z-schemes, Schottky junctions, and heterojunctions, as well as morphological modifications, doping, and other processes are highlighted regarding the fabrication of bismuth-based photocatalysts with improved photocatalytic capabilities. A discussion of general photocatalytic mechanisms is included, along with potential antibiotic and dye degradation pathways in wastewater. Finally, areas that require additional study and attention regarding the usage of photocatalysts based on bismuth for removing pharmaceuticals and textile dyes from wastewater, particularly for real-world applications, are addressed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Turkey
| | - Faisal Suleiman Mustafa
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Turkey
| |
Collapse
|
13
|
Yan L, Tang J, Qiao QA, Wang Y, Cai H, Jin J, Gao H, Xu Y. Synthesize, Construction and Enhanced Performance of Bi2WO6/ZnS Heterojunction under Visible Light: Experimental and DFT study. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
14
|
Zhao C, Cai L, Wang K, Li B, Yuan S, Zeng Z, Zhao L, Wu Y, He Y. Novel Bi 2WO 6/ZnSnO 3 heterojunction for the ultrasonic-vibration-driven piezocatalytic degradation of RhB. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120982. [PMID: 36592880 DOI: 10.1016/j.envpol.2022.120982] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
This study designed and prepared a new piezoelectric catalytic nanomaterial, Bi2WO6/ZnSnO3, and applied it in piezocatalytic water purification. Results indicated that the composite had superior piezocatalytic efficiency and stability in rhodamine B (RhB) degradation under ultrasonic vibration. The Bi2WO6/ZnSnO3 sample with 10% Bi2WO6 had the optimum activity with a degradation rate of 2.15 h-1, which was 7.4 and 11.3 times that of ZnSnO3 and Bi2WO6, respectively. Various characterizations were conducted to study the morphology, structure, and piezoelectric properties of the Bi2WO6/ZnSnO3 composites and reveal the reasons for their improved piezocatalytic performance. Results showed that ZnSnO3 cubes were dispersed throughout the surface of Bi2WO6 nanosheets, which enhanced the specific surface area and facilitated the piezocatalytic reaction. Additionally, type-II heterojunction structures formed at the contact interface of Bi2WO6 and ZnSnO3, driving the migration of piezoelectric-induced electrons and holes. Accordingly, the separation efficiency of charge carriers improved, and the piezoelectric catalytic activity was significantly enhanced. This study may provide a potential composite catalyst and a promising idea for the design of highly efficient piezoelectric catalyst.
Collapse
Affiliation(s)
- Chunran Zhao
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Liye Cai
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Kaiqi Wang
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Bingxin Li
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Shude Yuan
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Zihao Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, China
| | - Leihong Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, China
| | - Ying Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, China
| | - Yiming He
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, China.
| |
Collapse
|
15
|
Chen L, Wang C, Liu G, Su G, Ye K, He W, Li H, Wei H, Dang L. Anchoring black phosphorous quantum dots on Bi 2WO 6 porous hollow spheres: A novel 0D/3D S-scheme photocatalyst for efficient degradation of amoxicillin under visible light. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130326. [PMID: 36444054 DOI: 10.1016/j.jhazmat.2022.130326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Reasonable regulation of the micro-morphology of material can significantly enhance the related performance. Herein, bismuth tungstate (Bi2WO6, simplified as BWO) porous hollow spheres with flower-like surface were prepared successfully, and this unique morphology endowed BWO with improved photocatalytic performance by reflecting and absorbing the light multiple times inside the cavity. To inhibit the rapid recombination of photogenerated e--h+ pairs within BWO itself, black phosphorous quantum dots (BPQDs) were anchored onto the nanosheets of BWO sphere closely by a facile self-assembly process, which will not shade the pores of BWO owing to the small size of BPQDs, but the BP nanosheets have the chance to do that. The band gap of BPQDs expanded much after exfoliation due to the quantum confinement effects, which matched the energy band of BWO well to form S-scheme heterojunction, achieving more efficient separation of photogenerated charges. As a result, the BPQDs/BWO exhibited attractive photocatalytic performance in the degradation of amoxicillin (AMX) and other antibiotics. Besides, the operation conditions were optimized, specifically, 94.5 % of AMX (20 mg/L, 200 mL) can be removed in 60 min when 50 mg of 2BPQDs/BWO was used as catalyst with solution pH = 11. Moreover, a possible degradation pathway of AMX was proposed based on the detected intermediates.
Collapse
Affiliation(s)
- Lijun Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Chenguang Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Guozhao Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Guanwen Su
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Kairu Ye
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wanping He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Huiru Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Hongyuan Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Leping Dang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
16
|
Lourdusamy VJK, Thomas MRN, Subramani S. Effluent degradation followed hydrogen production using near-infrared sensitized nanocomposite of reduced nanographene oxide under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18113-18122. [PMID: 36205875 DOI: 10.1007/s11356-022-23427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this research work is to synthesize near-infrared dye-sensitized nanocomposites with core-shell nanostructures of titanium dioxide/reduced nanographene oxide (TiO2/r-NGO) to be an effective photocatalyst for effluent degradation followed hydrogen generation under visible light irradiation. The generation of hydrogen using photocatalysts has been intensely researched for the effective utilization of hydrogen in a controlled way. The mechanistic pathway for both hydrogen generation and effluent degradation utilizes the electrons generated through photoexcitation during dye sensitization. For this reason, the squaraine dyes were synthesized by the C-H-direct arylation method and made the nanocomposites with self-assembled core/shell nanocomposites (r-NGOT), where TiO2 serves as the core and r-NGO as the shell. Due to the lack of anchoring groups, VJ-Q was only adsorbed on the surface of r-NGOT through π-π stacking, which is confirmed by Fourier transformed-infrared spectroscopy, X-ray photoelectron spectroscopy, high resolution-transmission electron microscopy, and electron energy loss spectroscopy. The optical absorption spectra of VJ-Q/r-NGOT nanocomposites measured with diffuse reflectance UV/visible absorption spectroscopy covers the whole range of visible light wavelengths up to 800 nm. During the photocatalytic activity, VJ-Q/r-NGOT/Pt followed a ligand-to-metal-charge transfer (LMCT) type mechanism for the electron transfer to the core-shell nanostructure. This mechanistic pathway is utilized for the effluent dye degradation followed hydrogen generation through water splitting. The photocatalytic efficiency of the nanocomposite with adsorbed dye is superior to that of dye-TiO2 due to the large surface area provided by r-NGO and the prevention of dye aggregation. The work is significant due to the limited research works that are carried under dye-sensitized nanocomposites that have been utilized for both dye degradation and hydrogen generation.
Collapse
Affiliation(s)
| | - Mary Rosana Nalzala Thomas
- Department of Chemical Engineering, Rajalakshmi Engineering College (Autonomous), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Sekar Subramani
- Department of Mechanical Engineering, Rajalakshmi Engineering College (Autonomous), Thandalam, Chennai, 602 105, Tamil Nadu, India
| |
Collapse
|
17
|
Bismuth-Based Multi-Component Heterostructured Nanocatalysts for Hydrogen Generation. Catalysts 2023. [DOI: 10.3390/catal13020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Developing a unique catalytic system with enhanced activity is the topmost priority in the science of H2 energy to reduce costs in large-scale applications, such as automobiles and domestic sectors. Researchers are striving to design an effective catalytic system capable of significantly accelerating H2 production efficiency through green pathways, such as photochemical, electrochemical, and photoelectrochemical routes. Bi-based nanocatalysts are relatively cost-effective and environmentally benign materials which possess advanced optoelectronic properties. However, these nanocatalysts suffer back recombination reactions during photochemical and photoelectrochemical operations which impede their catalytic efficiency. However, heterojunction formation allows the separation of electron–hole pairs to avoid recombination via interfacial charge transfer. Thus, synergetic effects between the Bi-based heterostructured nanocatalysts largely improves the course of H2 generation. Here, we propose the systematic review of Bi-based heterostructured nanocatalysts, highlighting an in-depth discussion of various exceptional heterostructures, such as TiO2/BiWO6, BiWO6/Bi2S3, Bi2WO6/BiVO4, Bi2O3/Bi2WO6, ZnIn2S4/BiVO4, Bi2O3/Bi2MoO6, etc. The reviewed heterostructures exhibit excellent H2 evolution efficiency, ascribed to their higher stability, more exposed active sites, controlled morphology, and remarkable band-gap tunability. We adopted a slightly different approach for reviewing Bi-based heterostructures, compiling them according to their applicability in H2 energy and discussing challenges, prospects, and guidance to develop better and more efficient nanocatalytic systems.
Collapse
|
18
|
Edwin Malefane M, John Mafa P, Thokozani Innocent Nkambule T, Elizabeth Managa M, Tawanda Kuvarega A. Modulation of Z-scheme photocatalysts for pharmaceuticals remediation and pathogen inactivation: Design devotion, concept examination, and developments. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 452:138894. [PMID: 36060035 PMCID: PMC9422400 DOI: 10.1016/j.cej.2022.138894] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 06/13/2023]
Abstract
The recent outbreak of Covid-19 guarantees overconsumption of different drugs as a necessity to reduce the symptoms caused by this pandemic. This triggers the proliferation of pharmaceuticals into drinking water systems. Is there any hope for access to safe drinking water? Photocatalytic degradation using artificial Z-scheme photocatalysts that has been employed for over a decade conveys a prospect for sustainable clean water supply. It is compelling to comprehensively summarise the state-of-the-art effects of Z-scheme photocatalytic systems towards the removal of pharmaceuticals in water. The principle of Z-scheme and the techniques used to validate the Z-scheme interfacial charge transfer are explored in detail. The application of the Z-scheme photocatalysts towards the degradation of antibiotics, NSAIDs, and bacterial/viral inactivation is deliberated. Conclusions and stimulating standpoints on the challenges of this emergent research direction are presented. The insights and up-to-date information will prompt the up-scaling of Z- scheme photocatalytic systems for commercialization.
Collapse
Affiliation(s)
- Mope Edwin Malefane
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Potlako John Mafa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Thabo Thokozani Innocent Nkambule
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Muthumuni Elizabeth Managa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Alex Tawanda Kuvarega
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| |
Collapse
|
19
|
Zheng J, Fan C, Li X, Yang Q, Wang D, Duan A, Pan S, Zhang B, Ding J, Rong S, Yin H. Effective mineralization and detoxification of tetracycline hydrochloride enabled by oxygen vacancies in g-C3N4/ LDH composites. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Li Z, Li Z, Liang J, Fan W, Li Y, Shen Y, Huang D, Yu Z, Wang S, Hou Y. Bi-functional S-scheme S-Bi2WO6/NiO heterojunction for photocatalytic ciprofloxacin degradation and CO2 reduction: mechanisms and pathways. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Advances in Bi 2WO 6-Based Photocatalysts for Degradation of Organic Pollutants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248698. [PMID: 36557830 PMCID: PMC9785842 DOI: 10.3390/molecules27248698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
With the rapid development of modern industries, water pollution has become an urgent problem that endangers the health of human and wild animals. The photocatalysis technique is considered an environmentally friendly strategy for removing organic pollutants in wastewater. As an important member of Bi-series semiconductors, Bi2WO6 is widely used for fabricating high-performance photocatalysts. In this review, the recent advances of Bi2WO6-based photocatalysts are summarized. First, the controllable synthesis, surface modification and heteroatom doping of Bi2WO6 are introduced. In the respect of Bi2WO6-based composites, existing Bi2WO6-containing binary composites are classified into six types, including Bi2WO6/carbon or MOF composite, Bi2WO6/g-C3N4 composite, Bi2WO6/metal oxides composite, Bi2WO6/metal sulfides composite, Bi2WO6/Bi-series composite, and Bi2WO6/metal tungstates composite. Bi2WO6-based ternary composites are classified into four types, including Bi2WO6/g-C3N4/X, Bi2WO6/carbon/X, Bi2WO6/Au or Ag-based materials/X, and Bi2WO6/Bi-series semiconductors/X. The design, microstructure, and photocatalytic performance of Bi2WO6-based binary and ternary composites are highlighted. Finally, aimed at the existing problems in Bi2WO6-based photocatalysts, some solutions and promising research trends are proposed that would provide theoretical and practical guidelines for developing high-performance Bi2WO6-based photocatalysts.
Collapse
|
22
|
Masekela D, Hintsho-Mbita NC, Sam S, Yusuf TL, Mabuba N. Application of BaTiO3-based catalysts for piezocatalytic, photocatalytic and piezo-photocatalytic degradation of organic pollutants and bacterial disinfection in wastewater: A comprehensive review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
Feizpoor S, Habibi-Yangjeh A, Luque R. Design of TiO 2/Ag 3BiO 3 n-n heterojunction for enhanced degradation of tetracycline hydrochloride under visible-light irradiation. ENVIRONMENTAL RESEARCH 2022; 215:114315. [PMID: 36116489 DOI: 10.1016/j.envres.2022.114315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical residual contaminants in aquatic ecosystems have caused severe risks to human health. Affordable, eco-friendly and effective photocatalysts to deal with these pollutants has become a hot topic in the scientific community. In this research, Ag3BiO3 nanoparticles were embedded on TiO2 to form n-n heterojunction through a facile hydrothermal method. According to scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), brunauer emmett teller (BET), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), photoluminescence (PL), X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS) tests, the successful construction of TiO2/Ag3BiO3 heterojunction is proved. TiO2/Ag3BiO3 heterojunctions were employed as photocatalysts to remove tetracycline hydrochloride (TCH) under visible light irradiation in aqueous solution. Optimum TCH photodegradation efficiency was observed for TiO2/Ag3BiO3 (10%), 15.4 times superior to that of TiO2. The enhanced TCH photodegradation efficiency of TiO2/Ag3BiO3 results from improved light absorption capacity and the reduction of recombination of photogenerated charge carriers via generation of n-n heterojunctions. The mechanism of increasing the photodegradation efficiency of TCH was determined by employing reactive species quenching experiments. TiO2/Ag3BiO3 (10%) also exhibited an acceptable stability.
Collapse
Affiliation(s)
- Solmaz Feizpoor
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran; Departamento de Química Organica, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra. N-IV Km. 396, E14014, Córdoba, Spain
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Rafael Luque
- Departamento de Química Organica, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra. N-IV Km. 396, E14014, Córdoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation.
| |
Collapse
|
24
|
Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Chijioke-Okere M, Halim Abdullah A, Adlan Mohd Hir Z, Alinnor JI, Oguzie EE. Efficient photodegradation of paracetamol by integrated PES-ZnO photocatalyst sheets. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Yin X, Sun X, Li D, Xie W, Mao Y, Liu Z, Liu Z. 2D/2D Phosphorus-Doped g-C 3N 4/Bi 2WO 6 Direct Z-Scheme Heterojunction Photocatalytic System for Tetracycline Hydrochloride (TC-HCl) Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214935. [PMID: 36429655 PMCID: PMC9691143 DOI: 10.3390/ijerph192214935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 05/31/2023]
Abstract
Bi2WO6-based heterojunction photocatalyst for antibiotic degradation has been a research hotspot, but its photocatalytic performance needs to be further improved. Therefore, 2D/2D P-doped g-C3N4/Bi2WO6 direct Z-scheme heterojunction photocatalysts with different composition ratios were prepared through three strategies of phosphorus (P) element doping, morphology regulation, and heterojunction, and the efficiency of its degradation of tetracycline hydrochloride (TC-HCl) under visible light was studied. Their structural, optical, and electronic properties were evaluated, and their photocatalytic efficiency for TC-HCl degradation was explored with a detailed assessment of the active species, degradation pathways, and effects of humic acid, different anions and cations, and water sources. The 30% P-doped g-C3N4/Bi2WO6 had the best photocatalytic performance for TC-HCl degradation. Its photocatalytic rate was 4.5-, 2.2-, and 1.9-times greater than that of g-C3N4, P-doped g-C3N4, and Bi2WO6, respectively. The improved photocatalytic efficiency was attributed to the synergistic effect of P doping and 2D/2D direct Z-scheme heterojunction construction. The stability and reusability of the 30% P-doped C3N4/Bi2WO6 were confirmed by cyclic degradation experiments. Radical scavenging experiments and electron spin resonance spectroscopy showed that the main active species were •O2- and h+. This work provides a new strategy for the preparation of direct Z-scheme heterojunction catalysts with high catalytic performance.
Collapse
Affiliation(s)
- Xudong Yin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Dehao Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Wenyu Xie
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yufeng Mao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhenghui Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhisen Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
27
|
Kumar S, Sharma R, Gupta A, Dubey KK, Khan AM, Singhal R, Kumar R, Bharti A, Singh P, Kant R, Kumar V. TiO 2 based Photocatalysis membranes: An efficient strategy for pharmaceutical mineralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157221. [PMID: 35809739 DOI: 10.1016/j.scitotenv.2022.157221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Among the various emerging contaminants, pharmaceuticals (PhACs) seem to have adverse effects on the quality of water. Even the smallest concentration of PhACs in ground water and drinking water is harmful to humans and aquatic species. Among all the deaths reported due to COVID-19, the mortality rate was higher for those patients who consumed antibiotics. Consequently, PhAC in water is a serious concern and their removal needs immediate attention. This study has focused on the PhACs' degradation by collaborating photocatalysis with membrane filtration. TiO2-based photocatalytic membrane is an innovative strategy which demonstrates mineralization of PhACs as a safer option. To highlight the same, an emphasis on the preparation and reinforcing properties of TiO2-based nanomembranes has been elaborated in this review. Further, mineralization of antibiotics or cytostatic compounds and their degradation mechanisms is also highlighted using TiO2 assisted membrane photocatalysis. Experimental reactor configurations have been discussed for commercial implementation of photoreactors for PhAC degradation anchored photocatalytic nanomembranes. Challenges and future perspectives are emphasized in order to design a nanomembrane based prototype in future for wastewater management.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemistry, University of Delhi, Delhi, India; Department of Chemistry, Kirori Mal College, University of Delhi, India
| | - Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, India.
| | | | - A M Khan
- Department of Chemistry, Motilal Nehru College, India
| | - Rahul Singhal
- Department of Chemistry, Shivaji College, Delhi, India
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Akhilesh Bharti
- Department of Chemistry, Kirori Mal College, University of Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, Delhi, India
| | - Ravi Kant
- Department of Chemistry, Zakir Hussain Delhi College, Delhi, India
| | - Vinod Kumar
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi, India.
| |
Collapse
|
28
|
Photo-Induced Holes Initiating Peroxymonosulfate Oxidation for Carbamazepine Degradation via Singlet Oxygen. Catalysts 2022. [DOI: 10.3390/catal12111327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Peroxymonosulfate (PMS) has been intensively used to enhance the photocatalytic activity of catalysts, which is adopted as an electron acceptor to inhibit the recombination of electrons and holes. However, the effect of holes generated by visible light (VL) on PMS activation is always overlooked. Herein, the VL/Bi2WO6/PMS process was constructed for the efficient removal of organics, in which the degradation rate of carbamazepine (CBZ) increased by over 33.0 times by the introduction of PMS into Bi2WO6 under visible light. The radical quenching and determination experiments confirmed that the photogenerated holes could firstly oxidize PMS to form SO5•− and react with HSO5− to produce 1O2, then inducing the formation of other reactive species to greatly enhance the performance of pollutant removal by the VL/Bi2WO6/PMS process. Density functional theory (DFT) predicted that sites with high Fukui index (f0) on CBZ were more susceptible to being attacked, resulting in hydroxylation, ring closure, and C=C bond cleavage of CBZ. Toxicity estimation indicated that photocatalysis degradation products from CBZ were less toxic compared to the parent compound. This study provides a potential avenue for improving photocatalytic efficiency and widening the application of photocatalytic technology in wastewater purification.
Collapse
|
29
|
Electrostatic self-assembly of 2D/2D Bi2WO6/ZnIn2S4 heterojunction with enhanced photocatalytic degradation of tetracycline hydrochloride. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Yusuf TL, Orimolade BO, Masekela D, Mamba B, Mabuba N. The application of photoelectrocatalysis in the degradation of rhodamine B in aqueous solutions: a review. RSC Adv 2022; 12:26176-26191. [PMID: 36275103 PMCID: PMC9490539 DOI: 10.1039/d2ra04236c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
The pollution of the water environment by industrial effluents is an ongoing challenge due to the rate of industrialisation and globalisation. Photoelectrocatalysis (PEC), an electrochemical advanced oxidation process, has proven to be an effective method for removing organics from wastewater. Photoelectrocatalysis is environmentally benign, cost-effective and easy to operate. In this present review, we examine the recent progress in the removal of rhodamine B dye, a common constituent of textile effluent released into the environment, through photoelectrocatalytic degradation. We present a detailed discussion on the use of different kinds of unmodified and modified photoanodes that have been explored for the photoelectrocatalytic removal of this dye. More importantly, discussions are presented on the mechanisms and kinetics of the degradation of rhodamine B dye using these photoanodes. Hence, this review will be beneficial for researchers in developing future projects in the area of wastewater treatments through photoelectrocatalysis.
Collapse
Affiliation(s)
- Tunde Lewis Yusuf
- Department of Chemical Sciences, University of Johannesburg Doornfontein, P.O. BOX 17011 2028 Johannesburg South Africa
| | - Benjamin O Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Private Bag X6, Florida Science Campus 1709 Johannesburg South Africa
| | - Daniel Masekela
- Department of Chemical Sciences, University of Johannesburg Doornfontein, P.O. BOX 17011 2028 Johannesburg South Africa
| | - Bhekie Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Private Bag X6, Florida Science Campus 1709 Johannesburg South Africa
| | - Nonhlangabezo Mabuba
- Department of Chemical Sciences, University of Johannesburg Doornfontein, P.O. BOX 17011 2028 Johannesburg South Africa
| |
Collapse
|
31
|
Li Z, Chen S, Li Z, Sun J, Yang J, Wei J, Wang S, Song H, Hou Y. Visible light driven antibiotics degradation using S-scheme Bi 2WO 6/CoIn 2S 4 heterojunction: Mechanism, degradation pathways and toxicity assessment. CHEMOSPHERE 2022; 303:135113. [PMID: 35623437 DOI: 10.1016/j.chemosphere.2022.135113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
S-scheme heterojunction photocatalysts with strong redox ability and excellent photocatalytic activity are highly desired for photocatalytic degradation of pollutants. Herein, S-scheme Bi2WO6/CoIn2S4 heterojunctions were synthesized using hydrothermal method. The photo-induced carriers transfer mechanism of the S-scheme Bi2WO6/CoIn2S4 heterojunction was clarified by band structure analysis, ultraviolet photoelectron spectrometer (UPS), electron spin resonance (ESR) and radical trapping experiments. Significant enhance of light absortion, and more efficient carriers separation were observed from the Bi2WO6/CoIn2S4 with CoIn2S4 nanoclusters growing on the surface of petal-like Bi2WO6 nanosheets. TC degradation efficiency of 90% was achieved by Bi2WO6/CoIn2S4 (15:1) within 3 h of irradiation, and ·O2-and ·OH radicals were dominated contributors. Possible decomposition pathways of TC were proposed, and ECOSAR analysis showed that most of the intermediates exhibited lower ecotoxicity than TC. This work provides reference on the constructing ternary-metal-sulfides-based S-scheme heterojunctions for improving photocatalytic performance.
Collapse
Affiliation(s)
- Zuji Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shuo Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhihong Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jiangli Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jinhang Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jingwen Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning, 530007, China
| | - Hainong Song
- Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning, 530007, China
| | - Yanping Hou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Nanning, 530004, China.
| |
Collapse
|
32
|
Nabgan W, Saeed M, Jalil AA, Nabgan B, Gambo Y, Ali MW, Ikram M, Fauzi AA, Owgi AHK, Hussain I, Thahe AA, Hu X, Hassan NS, Sherryna A, Kadier A, Mohamud MY. A state of the art review on electrochemical technique for the remediation of pharmaceuticals containing wastewater. ENVIRONMENTAL RESEARCH 2022; 210:112975. [PMID: 35196501 DOI: 10.1016/j.envres.2022.112975] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical wastewater is a frequent kind of wastewater with high quantities of organic pollutants, although little research has been done in the area. Pharmaceutical wastewaters containing antibiotics and high salinity may impair traditional biological treatment, resulting in the propagation of antibiotic resistance genes. The potential for advanced oxidation processes (AOPs) to break down hazardous substances instead of present techniques that essentially transfer contaminants from wastewater to sludge, a membrane filter, or an adsorbent has attracted interest. Among a variety of AOPs, electrochemical systems are a feasible choice for treating pharmaceutical wastewater. Many electrochemical approaches exist now to remediate rivers polluted by refractory organic contaminants, like pharmaceutical micro-pollutants, which have become a severe environmental problem. The first part of this investigation provides the bibliometric analysis of the title search from 1970 to 2021 for keywords such as wastewater and electrochemical. We have provided information on relations between keywords, countries, and journals based on three fields plot, inter-country co-authorship network analysis, and co-occurrence network visualization. The second part introduces electrochemical water treatment approaches customized to these very distinct discarded flows, containing how processes, electrode materials, and operating conditions influence the results (with selective highlighting cathode reduction and anodic oxidation). This section looks at how electrochemistry may be utilized with typical treatment approaches to improve the integrated system's overall efficiency. We discuss how electrochemical cells might be beneficial and what compromises to consider when putting them into practice. We wrap up our analysis with a discussion of known technical obstacles and suggestions for further research.
Collapse
Affiliation(s)
- Walid Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - M Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - B Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Y Gambo
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - M W Ali
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - M Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Punjab, Pakistan.
| | - A A Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - A H K Owgi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - I Hussain
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Asad A Thahe
- Department of X- Ray and Sonar, Faculty Of Medical Technology, AL-Kitab University, Iraq
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - A Sherryna
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences (CAS), Urumqi, 830011, China.
| | - M Y Mohamud
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
33
|
Ren G, Liu S, Meng X. Photocatalytic Reduction of CO 2 on a Bi 2Mo xW 1-xO 6 Solid Solution with Enhanced Activity. Inorg Chem 2022; 61:9405-9412. [PMID: 35687853 DOI: 10.1021/acs.inorgchem.1c04025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper reports on a Bi2MoxW1-xO6 solid solution with excellent photocatalytic activity in CO2 reduction. Under simulated sunlight, the Bi2Mo0.25W0.75O6 solid solution achieved a CO generation yield of ≤298.2 μmol g-1 over 3 h, which was 2.1 and 1.5 times larger than those of pristine Bi2WO6 and Bi2MoO6, respectively. Via an in-depth study of the mechanism, this excellent photocatalytic activity was determinied to be probably due to two major contributions: (1) the formation of oxygen vacancies on the Bi2Mo0.25W0.75O6 solid solution, which provided more reactive sites for adsorption and activation of CO2, and (2) modulation of the electronic band structure, which facilitated charge separation. Mechanistic and reaction pathways have been deeply explored and proposed.
Collapse
Affiliation(s)
- Guangmin Ren
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Sitong Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiangchao Meng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
34
|
Synthesis and Characterization of Bi2WxMo1−xO6 Solid Solutions and Their Application in Photocatalytic Desulfurization under Visible Light. Processes (Basel) 2022. [DOI: 10.3390/pr10040789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Photocatalytic oxidative desulfurization has attracted much attention in recent years due to the continuous tightening of the sulfur content requirements in motor fuels and the disadvantages of the industrial hydrodesulfurization process. This work is devoted to the investigation of the photocatalytic activity of Bi2WxMo1−xO6 solid solutions (x = 1, 0.75, 0.5, 0.25, 0) in the oxidative desulfurization of hydrocarbons under visible light irradiation using hydrogen peroxide as an oxidant. The synthesized photocatalysts were characterized in detail using XRD, SEM, EDS, low-temperature nitrogen adsorption–desorption, and DRS. It was shown that the use of solid solutions Bi2WxMo1−xO6 with x = 0.5–0.75 leads to the complete oxidation of organosulfur compounds to CO2 and H2O within 120 min. The high photocatalytic activity of solid solutions (x = 0.5–0.75) is attributed to their ability to absorb more visible light, the presence of the corner-shared [Mo/WO6] octahedral layers, which may promote the generation and separation of photogenerated charges, and the hierarchical 3D flower-like structure. The reaction mechanism of the desulfurization was also analyzed in this work.
Collapse
|
35
|
Steering oxygen vacancies for the enhanced photocatalytic degradations of dyes and tetracycline over Cu, Yb co-doped SnO2 with efficient charge separation and transfer. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
36
|
Abstract
Two-dimensional compounds with nanostructural features are attracting attention from researchers worldwide. Their multitude of applications in various fields and vast potential for future technology advancements are successively increasing the research progress. Wastewater treatment and preventing dangerous substances from entering the environment have become important aspects due to the increasing environmental awareness, and increasing consumer demands have resulted in the appearance of new, often nonbiodegradable compounds. In this review, we focus on using the most promising 2D materials, such as MXenes, Bi2WO6, and MOFs, as catalysts in the modification of the Fenton process to degrade nonbiodegradable compounds. We analyze the efficiency of the process, its toxicity, previous environmental applications, and the stability and reusability of the catalyst. We also discuss the catalyst’s mechanisms of action. Collectively, this work provides insight into the possibility of implementing 2D material-based catalysts for industrial and urban wastewater treatment.
Collapse
|
37
|
Wu Y, Zeng B, Guan M, Han L, Zhang X, Ge W. Enhancement of double heterojunction Bi12SiO20-Bi2O2SiO3-BiOXmYn with high Adsorption-Visible catalytic Performance: Synergistic effect of morphology regulation and controllable energy band. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Gwenzi W, Selvasembian R, Offiong NAO, Mahmoud AED, Sanganyado E, Mal J. COVID-19 drugs in aquatic systems: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:1275-1294. [PMID: 35069060 PMCID: PMC8760103 DOI: 10.1007/s10311-021-01356-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/02/2021] [Indexed: 05/14/2023]
Abstract
The outbreak of the human coronavirus disease 2019 (COVID-19) has induced an unprecedented increase in the use of several old and repurposed therapeutic drugs such as veterinary medicines, e.g. ivermectin, nonsteroidal anti-inflammatory drugs, protein and peptide therapeutics, disease-modifying anti-rheumatic drugs and antimalarial drugs, antiretrovirals, analgesics, and supporting agents, e.g. azithromycin and corticosteroids. Excretion of drugs and their metabolites in stools and urine release these drugs into wastewater, and ultimately into surface waters and groundwater systems. Here, we review the sources, behaviour, environmental fate, risks, and remediation of those drugs. We discuss drug transformation in aquatic environments and in wastewater treatment systems. Degradation mechanisms and metabolite toxicity are poorly known. Potential risks include endocrine disruption, acute and chronic toxicity, disruption of ecosystem functions and trophic interactions in aquatic organisms, and the emergence of antimicrobial resistance.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Environment and Food Systems, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401 India
| | - Nnanake-Abasi O. Offiong
- International Centre for Energy and Environmental Sustainability Research (ICEESR), University of Uyo, Uyo, Nigeria
- Department of Chemical Sciences, Faculty of Computing and Applied Sciences, Topfaith University, Mkpatak, Nigeria
| | - Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, 515063 China
| | - Joyabrata Mal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh India
| |
Collapse
|
39
|
Xie Y, Sun Y, Ge J, Chen W, Zheng Y, Rao P. The photocatalytic performance and mechanism of magnetically retrievable Z-scheme Cr 2O 3–Fe 3O 4/C hetero-nanostructure polyhedra. NEW J CHEM 2022. [DOI: 10.1039/d2nj01359b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnetically retrievable Cr2O3–Fe3O4/C hetero-nanostructure polyhedra have been fabricated. The formation of Z-scheme Cr2O3–Fe3O4/C obviously improves the visible light absorption and promotes the separation of photogenerated charge carriers.
Collapse
Affiliation(s)
- Yu Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yangang Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Jianhua Ge
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Weiwei Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yuanyuan Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Pinhua Rao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|