1
|
Li Y, Zhang S, Fu H, Sun Y, Tang S, Xu J, Li J, Gong X, Shi L. Immobilization or mobilization of heavy metal(loid)s in lake sediment-water interface: Roles of coupled transformation between iron (oxyhydr)oxides and natural organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178302. [PMID: 39740622 DOI: 10.1016/j.scitotenv.2024.178302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Iron (Fe) (oxyhydr)oxides and natural organic matter (NOM) are active substances ubiquitously found in sediments. Their coupled transformation plays a crucial role in the fate and release risk of heavy metal(loid)s (HMs) in lake sediments. Therefore, it is essential to systematically obtain relevant knowledge to elucidate their potential mechanism, and whether HMs provide immobilization or mobilization effect in this ternary system. In this review, we summarized (1) the bidirectional effect between Fe (oxyhydr)oxides and NOM, including preservation, decomposition, electron transfer, adsorption, reactive oxygen species production, and crystal transformation; (2) the potential roles of coupled transformation between Fe and NOM in the environmental behavior of HMs from kinetic and thermodynamic processes; (3) the primary factors affecting the remediation of sediments HMs; (4) the challenges and future development of sediment HM control based on the coupled effect between Fe and NOM from theoretical and practical perspectives. Overall, this review focused on the biogeochemical coupling cycle of Fe, NOM, and HMs, with the goal of providing guidance for HMs contamination and risk control in lake sediment.
Collapse
Affiliation(s)
- Yuanhang Li
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China; School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Shaokang Zhang
- School of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, China
| | - Hang Fu
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Yuheng Sun
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Shoujuan Tang
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Jinwen Xu
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Jun Li
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Xiaofeng Gong
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Lei Shi
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
2
|
Lei M, Jing M, Wei D, Li Z, Zhou Y, Tie B, Cui H, Li B. Synergistic release of Cd(II) and As(V) from ternary sorption systems containing ferrihydrite nanoparticles: The role of binary and ternary surface complexes. CHEMOSPHERE 2024; 366:143515. [PMID: 39389370 DOI: 10.1016/j.chemosphere.2024.143515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Cadmium (Cd) and arsenic (As) generally exhibit mutually beneficial co-sorption behavior on iron oxyhydroxides through multiple mechanisms, including surface precipitation, ternary surface complexes, and electrostatic interactions. However, the numerous factors that control the immobilization of Cd and As in turn complicated the processes and mechanisms involved in their co-desorption from iron minerals, which hindered the full understanding of their geochemical behaviors. Here, the simultaneous release of Cd(II) and As(V) from newly precipitated ferrihydrite nanoparticles by either Ca or P was investigated through kinetics and isothermal desorption experiments. We showed that the Cd(II) and As(V) present two-phase desorption processes (rapid desorption and slow desorption) in both binary (Fe-Cd or Fe-As alone) and ternary systems (Fe-Cd-As co-presence). Compared to their binary counterparts, Cd(II) and As(V) in the ternary systems are more prone to detachment from ferrihydrite. Further desorption of Cd(II) and As(V) at different co-presence scenarios (different initial concentrations) demonstrated mutual promotion behaviour towards their counterparts; the co-presence of Cd(II) facilitates the desorption of As(V), while the co-presence of As(V) also promotes the desorption of Cd(II). XPS and FTIR results demonstrated that either Ca or P showed minor effects on the binding environment of Cd and As. Further results from the in-situ ATR-FTIR experiment and second derivative peak fitting analysis indicate that the enhanced detachment of Cd(II) and As(V) from the ternary system may be due to the synergistic desorption of the ternary surface complexes and other surface complex species. Our results provide new insights into the prediction of the environmental behaviour of the coexistence of Cd(II) and As(V) in iron-rich geological settings. The potential environmental risks of iron-based remediation methods should be considered due to the enhanced bioavailability of Cd(II) and As(V) in co-presence circumstances.
Collapse
Affiliation(s)
- Ming Lei
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, People's Republic of China; Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha, 410128, People's Republic of China
| | - Miaomiao Jing
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, People's Republic of China; Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha, 410128, People's Republic of China
| | - Dongning Wei
- Institute of Nuclear Agriculture and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha, 410125, People's Republic of China.
| | - Zhuoqing Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, People's Republic of China; Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha, 410128, People's Republic of China
| | - Yimin Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, People's Republic of China; Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha, 410128, People's Republic of China
| | - Boqing Tie
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, People's Republic of China; Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha, 410128, People's Republic of China
| | - Haojie Cui
- College of Resources, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Bingyu Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, People's Republic of China; Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha, 410128, People's Republic of China; College of Resources, Hunan Agricultural University, Changsha, 410128, People's Republic of China; Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410128, People's Republic of China.
| |
Collapse
|
3
|
Yin H, Zhou C, Wang J, Yin M, Wu Z, Song N, Song X, Shangguan Y, Sun Z, Zong Q, Hou H. Fe-CGS Effectively Inhibits the Dynamic Migration and Transformation of Cadmium and Arsenic in Soil. TOXICS 2024; 12:273. [PMID: 38668496 PMCID: PMC11054586 DOI: 10.3390/toxics12040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
The iron-modified coal gasification slag (Fe-CGS) material has excellent performance in purifying heavy-metal-contaminated water due to its good surface properties and adsorption capacities. However, it is unclear whether it can provide long-term simultaneous stabilization of Cd and As in composite-contaminated soils in extreme environments. This study investigated the long-term stabilization of Cd and As in acidic (JLG) and alkaline (QD) soils by simulating prolonged heavy rainfall with the addition of Fe-CGS. Multiple extraction methods were used to analyze the immobilization mechanisms of Cd and As in soil and their effects on bioavailability. The results indicate that the stabilization efficiency was related to the dosage of Fe-CGS. The concentrations of Cd and As in the JLG soil leachate were reduced by 77.6% (2.0 wt%) and 87.8% (1.0 wt%), respectively. Additionally, the availability of Cd and As decreased by 46.7% (2.0 wt%) and 53.0% (1.0 wt%), respectively. In the QD soil leachate, the concentration of Cd did not significantly change, while the concentration of As decreased by 92.3% (2.0 wt%). Furthermore, the availability of Cd and As decreased by 22.1% (2.0 wt%) and 40.2% (1.0 wt%), respectively. Continuous extraction revealed that Fe-CGS facilitated the conversion of unstable, acid-soluble Cd into oxidizable Cd and acid-soluble Cd. Additionally, it promoted the transformation of both non-specifically and specifically adsorbed As into amorphous iron oxide-bound and residual As. Fe-CGS effectively improved the soil pH, reduced the bioavailability of Cd and As, and blocked the migration of Cd and As under extreme rainfall leaching conditions. It also promoted the transformation of Cd and As into more stable forms, exhibiting satisfactory long-term stabilization performance for Cd and As.
Collapse
Affiliation(s)
- Hongliang Yin
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Changzhi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Junhuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Mengxue Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Zhihao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Ningning Song
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
| | - Xin Song
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
| | - Yuxian Shangguan
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Zaijin Sun
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China;
| | - Quanli Zong
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| |
Collapse
|
4
|
Liang W, Zhang W, Shao X, Gong K, Su C, Zhang W, Peng C. Organic matters adsorbed on goethite inhibited the heterogeneous aggregation and adsorption of CdSe quantum dots: Experiments and extended DLVO theory. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133769. [PMID: 38359758 DOI: 10.1016/j.jhazmat.2024.133769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The widespread use of Cd-based quantum dots (Cd-QDs) has led to their inevitable release into the environment, and the prevalent iron oxides and natural organic matter (NOM) are the key factors affecting the environmental behavior and fate of Cd-QDs. However, the impact of NOM adsorbed on iron oxides on the behavior of Cd-QDs with iron oxides and the mechanism of its interaction are not clear. In this study, two kinds of water-soluble QDs (CdSe QDs and core-shell CdSe/ZnS QDs) were selected to study the aggregation and adsorption behavior on goethite (Goe) and goethite-humic acid/fulvic acid composites (Goe-HA/FA). Aggregation kinetics and adsorption experiments between QDs and Goe(-HA/FA), characterization, and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory calculations indicated that electrostatic interaction was the dominant force for QDs adsorption on Goe(-HA/FA). HA/FA changed the surface charge of Goe and increased the electrostatic repulsion and steric hindrance between the particles, which in turn inhibited the adsorption of QDs on Goe. Besides, unsubstituted aromatic carbons, carboxy carbons, and carbonyl carbons played an important role in the adsorption process, and chemisorption occurred between QDs and Goe(-HA/FA). Our findings are important for better assessing the transport, fate, and potential environmental impacts and risks of Cd-QDs in iron-rich environments.
Collapse
Affiliation(s)
- Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengpeng Su
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Bai B, Kong S, Root RA, Liu R, Wei X, Cai D, Chen Y, Chen J, Yi Z, Chorover J. Release mechanism and interactions of cadmium and arsenic co-contaminated ferrihydrite by simulated in-vitro digestion assays. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133633. [PMID: 38335617 PMCID: PMC10913812 DOI: 10.1016/j.jhazmat.2024.133633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cadmium (Cd) and arsenic (As) co-contamination is widespread and threatens human health, therefore it is important to investigate the bioavailability of Cd and As co-exposure. Currently, the interactions of Cd and As by in vitro assays are unknown. In this work, we studied the concurrent Cd-As release behaviors and interactions with in vitro simulated gastric bio-fluid assays. The studies demonstrated that As bioaccessibility (2.04 to 0.18 ± 0.03%) decreased with Cd addition compared to the As(V) single system, while Cd bioaccessibility (11.02 to 39.08 ± 1.91%) increased with As addition compared to the Cd single system. Release of Cd and As is coupled to proton-promoted and reductive dissolution of ferrihydrite. The As(V) is released and reduced to As(Ⅲ) by pepsin. Pepsin formed soluble complexes with Cd and As. X-ray photoelectron spectroscopy showed that Cd and As formed Fe-As-Cd ternary complexes on ferrihydrite surfaces. The coordination intensity of As-O-Cd is lower than that of As-O-Fe, resulting in more Cd release from Fe-As-Cd ternary complexes. Our study deepens the understanding of health risks from Cd and As interactions during environmental co-exposure of multiple metal(loid)s.
Collapse
Affiliation(s)
- Bing Bai
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Shuqiong Kong
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Robert A. Root
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, United States
| | - Ruiqi Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Xiaguo Wei
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Dawei Cai
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yiyi Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Jie Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Zhihao Yi
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
6
|
Xu ZL, Xu DM, Li HX, Li HK, Fu RB. The longevity evaluation of multi-metal stabilization by MgO in Pb/Zn smelter-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28153-28165. [PMID: 38528219 DOI: 10.1007/s11356-024-32790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
The re-mobilization risks of potentially toxic elements (PTEs) during stabilization deserve to be considered. In this study, artificial simulation evaluation methods based on the environmental stress of freeze-thaw (F-T), acidification and variable pH were conducted to assess the long-term effectiveness of PTEs stabilized by MgO in Pb/Zn smelter contaminated soils. Among common stabilizing materials, MgO was considered as the best remediation material, since PTEs bioavailability reduced by 55.48% for As, 19.58% for Cd, 10.57% for Cu, and 26.33% for Mn, respectively. The stabilization effects of PTEs by MgO were best at the dosage of 5 wt%, but these studied PTEs would re-mobilize after 30 times F-T cycles. Acid and base buffering capacity results indicated that the basicity of contaminated soils with MgO treatment reduced under F-T action, and the leached PTEs concentrations would exceed the safety limits of surface water quality standard in China (GB3838-2002) after acidification of 2325 years. No significant changes were found in the pH-dependent patterns of PTEs before and after F-T cycles. However, after F-T cycles, the leaching concentrations of PTEs increased due to the destruction of soil microstructure and the functionality of hydration products formed by MgO, as indicated by scanning electron microscopy (SEM) coupled with energydispersive Xray spectroscopy (EDS) results. Hence, these findings would provide beneficial references for soil remediation assessments of contaminated soils under multi-environmental stress.
Collapse
Affiliation(s)
- Ze-Lin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Da-Mao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Hai-Xuan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Hao-Kai Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Rong-Bing Fu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
7
|
Yin Y, Wang Y, Ding C, Zhou Z, Tang X, He L, Li Z, Zhang T, Wang X. Impact of iron and sulfur cycling on the bioavailability of cadmium and arsenic in co-contaminated paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133408. [PMID: 38183938 DOI: 10.1016/j.jhazmat.2023.133408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
The biogeochemical cycling of iron (Fe) or sulfur (S) in paddy soil influences the cadmium (Cd) and arsenic (As) migration. However, the influence of coupled reduction effects and reaction precedence of Fe and S on the bioavailability of Cd and As is still not fully understood. This study aimed to reveal the influence of Fe and S reduction on soil Cd and As mobility under various pe + pH conditions and to elucidate the related mechanism in subtropical China. According to the findings, higher adsorption from Fe reduction caused high-crystalline goethite (pe + pH > 2.80) to become amorphous ferrihydrite, which in turn caused water-soluble Cd (62.0%) to first decrease. Cd was further decreased by 72.7% as a result of the transformation of SO42- to HS-/S2- via sulfate reduction and the formation of CdS and FeS. As release (an increase of 8.1 times) was consequently caused by the initial reduction and dissolution of iron oxide (pe + pH > 2.80). FeS had a lesser impact on the immobilization of As than sulfate-mediated As (V) reduction in the latter stages of the reduction process (pe + pH < 2.80). pe + pH values between 3 and 3.5 should be maintained to minimize the bioavailability of As and Cd in moderate to mildly polluted soil without adding iron oxides and sulfate amendments. The practical remediation of severely co-contaminated paddy soil can be effectively achieved by using Fe and S additions at different pe + pH conditions. This technique shows promise in reducing the bioavailability of Cd and As.
Collapse
Affiliation(s)
- Yuepeng Yin
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurong Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Changfeng Ding
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigao Zhou
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Tang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqin He
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyao Li
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taolin Zhang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxiang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Hu S, Fu J, Zhou S. Exploring the interference mechanisms of surface and aqueous complexes with groundwater arsenate and arsenite adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8499-8509. [PMID: 38180665 DOI: 10.1007/s11356-023-31676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Ca2+, Mg2+, and HCO3- are extremely common coexisting ions with arsenic (As) in geogenic As-polluted groundwaters. Although extensive research has improved our knowledge of groundwater As removal techniques and mechanisms, there is still a lack of a definite explanation of the distinct influences of Ca2+ and Mg2+ on As immobilization. Furthermore, the question of whether the occurrence of metal-As aqueous complexes has positive or detrimental effects on As adsorption is still open, which hinders our ability to predict the effectiveness of groundwater As removal. The goal of our present work was to investigate the molecular-level interference mechanisms of Ca2+, Mg2+, and HCO3- on arsenic adsorption with batch/column filtration experiments and spectroscopic techniques. The results showed that the co-presence of Ca2+ and As significantly increased As(V) and As(III) adsorption by 22.1 and 12.2% in batch studies and by 20.1 and 16.7% in column adsorptive filtrations, which could be explained by forming a ternary Ca-As-TiO2 complex. Without the surface complex, Mg2+ only had a slightly positive effect on As removal. Co-existence of Ca2+ and HCO3- prevented the generation this surface complex, which significantly decreased the elimination of As(III). Inversely, the As(V) ternary complex and adsorption were not interfered by HCO3-. Moreover, an aqueous Ca-As(V) complex was detected without surface, which facilitated generation of the surface complex and As(V) adsorption. The results of this work clarified the distinct effects of Ca2+ and Mg2+ and As(V) and As(III) adsorption, which was critical in predicting the As adsorption efficiency in column filtration processes.
Collapse
Affiliation(s)
- Shan Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
- College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Jingyi Fu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Shenmin Zhou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
| |
Collapse
|
9
|
Jin C, Li Z, Huang M, Ding X, Zhou M, Chen J, Li B. Binding of Cd(II) to birnessite and fulvic acid organo-mineral composites and controls on Cd(II) availability. CHEMOSPHERE 2023; 329:138624. [PMID: 37030351 DOI: 10.1016/j.chemosphere.2023.138624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Manganese oxide minerals (MnOs) are major controls on cadmium (Cd) mobility and fate in the environment. However, MnOs are commonly coated with natural organic matter (OM), and the role of this coating in the retention and availability of harmful metals remains unclear. Herein, organo-mineral composites were synthesized using birnessite (BS) and fulvic acid (FA), during coprecipitation with BS and adsorption to preformed BS with two organic carbon (OC) loadings. The performance and underlying mechanism of Cd(II) adsorption by resulting BS-FA composites were explored. Consequently, FA interactions with BS at environmentally representative (5 wt% OC) increase Cd(II) adsorption capacity by 15.05-37.39% (qm = 156.5-186.9 mg g-1), attributing to the enhanced dispersion of BS particles by coexisting FA led to significant increases in specific surface area (219.1-254.8 m2 g-1). Nevertheless, Cd(II) adsorption was notably inhibited at a high OC level (15 wt%). This might have derived from the supplementation of FA decreased pore diffusion rate and generated Mn(II/III) competition for vacancy sites. The dominant Cd(II) adsorption mechanism was precipitation with minerals (Cd(OH)2), and complexation with Mn-O groups and acid oxygen-containing functional groups of FA. In organic ligand extractions, the exchange Cd content decreased by 5.63-7.93% with low OC coating (5 wt%), but increased to 33.13-38.97% at a high OC level (15 wt%). These findings help better understand the environmental behavior of Cd under the interactions of OM and Mn minerals, and provide a theoretical basis for organo-mineral composite remediation of Cd-contaminated water and soil.
Collapse
Affiliation(s)
- Changsheng Jin
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; College of Geography Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Mei Huang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Xiang Ding
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Mi Zhou
- College of Geography Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Jia Chen
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Bolin Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
10
|
Xu Z, Nie N, Liu K, Li Q, Cui H, Du H. Analog soil organo-ferrihydrite composites as suitable amendments for cadmium and arsenic stabilization in co-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162929. [PMID: 36934932 DOI: 10.1016/j.scitotenv.2023.162929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Remediation of CdAs co-contaminated soils has long been considered a difficult problem to solve, as Cd and As have distinctly different metallic characters. Amending contaminated soils with traditional single passivation materials may not always work well in the stabilization of both Cd and As. Here, we reported that analog soil organo-ferrihydrite composites made with either living or non-living organics (bacterial cells or humic acid) could achieve stabilization of both Cd and As in contaminated soils. BCR and Wenzel sequential extractions showed that organo-ferrihydrite, particularly at 1 wt% loading, shifted liable Cd and As to more stable phases. Organo-ferrihydrite amendments significantly (p < 0.05) increased soil urease, alkaline phosphatase and catalase enzyme activities. With organo-ferrihydrite amendments, the bioavailable fraction of Cd decreased to 35.3 % compared with the control (65.1 %), while the bioavailable As declined from 29.4 % to 12.4%. Soil pH, microbial community abundance and diversity were almost unaffected by organo-ferrihydrite. Ferrihydrite and organo fractions both contributed to direct Cd-binding, while the organo fraction probably maintained the Fe-bound As via lowering ferrihydrite phase transformation. Compared to pure ferrihydrite, organo-ferrihydrite composites performed better not only in reducing liable Cd and As, but also in maintaining soil quality and ecosystem functions. This study demonstrates the applications of organo-ferrihydrite composites in eco-friendly remediation of CdAs contaminated soils, and provides a new direction in selecting appropriate soil amendments.
Collapse
Affiliation(s)
- Zelin Xu
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China; College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Ning Nie
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Kaiyan Liu
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haojie Cui
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China.
| |
Collapse
|
11
|
Chen J, Qu C, Lu M, Zhang M, Wu Y, Gao C, Huang Q, Cai P. Extracellular polymeric substances and mineral interfacial reactions control the simultaneous immobilization and reduction of arsenic (As(V)). JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131651. [PMID: 37245361 DOI: 10.1016/j.jhazmat.2023.131651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Extracellular polymeric substances (EPS) play a crucial role in controlling the mobility and bioavailability of heavy metal(loid)s in water, soils, and sediments. The formation of EPS-mineral complex changes the reactivity of the end-member materials. However, little is known about the adsorption and redox mechanisms of arsenate (As(V)) in EPS and EPS-mineral complexes. Here we examined the reaction sites, valence state, thermodynamic parameters and distribution of As in the complexes using potentiometric titration, isothermal titration calorimetry (ITC), FTIR, XPS, and SEM-EDS. The results showed that ∼54% of As(V) was reduced to As(III) by EPS, potentially driven by an enthalpy change (ΔH) of - 24.95 kJ/mol. The EPS coating on minerals clearly affected the reactivity to As(V). The strong masking of functional sites between EPS and goethite inhibited both the adsorption and reduction of As. In contrast, the weak binding of EPS onto montmorillonite retained more reactive sites for the reaction with As. Meanwhile, montmorillonite facilitated the immobilization of As to EPS through the formation of As-organic bounds. Our findings deepen the understanding of EPS-mineral interfacial reactions in controlling the redox and mobility of As, and the knowledge is important for predicting the behavior of As in natural environments.
Collapse
Affiliation(s)
- Jinzhao Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| | - Man Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yichao Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunhui Gao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Li B, Wei D, Jing M, Zhou Y, Huang Y, Mensah CO, Long J, Tie B, Lei M. Nano-ferrihydrite colloidal particles mediated interfacial interactions of arsenate and cadmium: Implications for their fate under iron-rich geological settings. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130755. [PMID: 36640511 DOI: 10.1016/j.jhazmat.2023.130755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Arsenic (As) and cadmium (Cd) often coexist in paddy soils. Nano-ferrihydrite colloidal particles (NFPs) are ubiquitous at redox active interfaces of the paddy system and are well-known to play a critical role in controlling the solubility and bio-availability of As and Cd. However, the mutual interaction between As and Cd on NFPs remains elusive. Herein, batch experiments and in-situ spectroscopic techniques were used to investigate the effects of the interaction pattern (sequential reaction) of Cd(II) and As(V) on their respective adsorption on the surfaces of NFPs. Two scenarios were designed: Cd(II) pre-saturated NFPs and As(V) pre-saturated NFPs. Adsorption of Cd(II) was increased by 1.67, 4.08, and 5.21 times in As(V)-saturated NFPs, but only by 1.05, 1.11, and 1.15 times for As(V) in Cd(II)-saturated NFPs. Further, we determined the pH-dependent mutually beneficial cooperation pathways as mediated by the surface of NFPs. At lower pH (5), As(V) tended to promote Cd(II) adsorption, whereas Cd(II) tended to enhance As(V) adsorption at higher pH (> 5.5). X-ray photoelectron spectroscopy (XPS) indicated that both pre-saturated Cd(II) and As(V) altered the local coordination environment of their counterpart ions. Furthermore, results from in-situ attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR) and second derivative peak shape fitting revealed two types of ternary surface complexes, namely Cd(II)-bridged and As(V)-bridged complexes, which were responsible for the distinct Cd(II) and As(V) co-adsorption behavior on the surface of NFPs under different conditions. These findings help us understand how co-presence Cd and As behave in an iron-rich geological setting and will aid in the development of related restoration technologies.
Collapse
Affiliation(s)
- Bingyu Li
- College of Resource and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha 410128, PR China
| | - Dongning Wei
- College of Resource and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Miaomiao Jing
- College of Resource and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha 410128, PR China
| | - Yimin Zhou
- College of Resource and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha 410128, PR China
| | - Yayuan Huang
- College of Resource and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha 410128, PR China
| | - Caleb Oppong Mensah
- College of Resource and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha 410128, PR China
| | - Jiumei Long
- College of Life Sciences and Environment, Hengyang Normal University, Hengyang 421008, PR China
| | - Boqing Tie
- College of Resource and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha 410128, PR China
| | - Ming Lei
- College of Resource and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha 410128, PR China.
| |
Collapse
|
13
|
Liu H, Hong Z, Lin J, Huang D, Ma LQ, Xu J, Dai Z. Bacterial coculture enhanced Cd sorption and As bioreduction in co-contaminated systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130376. [PMID: 36423454 DOI: 10.1016/j.jhazmat.2022.130376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The bacterial interactions that regulate Cd sorption and As bioreduction in co-contaminated systems are poorly understood. We isolated two bacterial strains, i.e., Pseudomonas aeruginosa and Bacillus licheniformis from a Cd and As co-contaminated soil and compared the effects of monoculture and coculture on microbial Cd sorption and As bioreduction efficiency in the media with different Cd (0, 0.5, 5, 10, 50, 100 mg/L) and As(Ⅴ) (0, 90 mg/L) concentrations. Compared with monoculture, the bacterial coculture increased the Cd sorption efficiency by up to 32% and the As bioreduction (As(Ⅴ) to As(Ⅲ)) efficiency by up to 28%, associated with the increased abundance of As reduction gene arsB. Based on SEM-TEM and metabolomics, the enhanced efficiency was attributed to bacterial interactions, supported by the differential secretion of extracellular polymeric substances. Notably, the differential lipids and lipid-like molecules, and organoheterocyclic compounds resulted from bacterial interactions compared to monoculture exhibited the highest Cd sorption and As bioreduction. The increased efficiencies by bacterial coculture were verified by soil incubation experiments. These results provide insight on applying specific bacterial coculture and their metabolites to enhance Cd sorption and As bioreduction in effective and sustainable remediation of co-contaminated environments.
Collapse
Affiliation(s)
- Huaiting Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhiqi Hong
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Dan Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Li Q, Hu W, Li L, Li Y. Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification, associations, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158710. [PMID: 36099954 DOI: 10.1016/j.scitotenv.2022.158710] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) oxides are widely recognized to prevent the degradation of organic matter (OM) in environments, thereby promoting the persistence of organic carbon (OC) in soils. Thus, discerning the association mechanisms of Fe oxides and OC interactions is key to effectively influencing the dynamics and extent of organic C cycling in soils. Previous studies have focused on i) quantifying Fe oxide-bound organic carbon (Fe-OC) in individual environments, ii) investigating the distribution and adsorption capacity of Fe-OC, and iii) assessing the redox cycling and transformation of Fe-OC. Furthermore, the widespread application of high-tech instrumentation and methods has greatly contributed to a better understanding of the mechanism of organic mineral assemblages in the past few decades. However, few literature reviews have comprehensively summarized Fe-OC distributions, associations, and characteristics in soil-plant systems. Here, studies investigating the Fe-OC contents among different environments are reviewed. In addition, the mechanisms and processes related to OM transformation dynamics occurring at mineral-organic interfaces are also described. Recent studies have highlighted that diverse interactions occur between Fe oxides and OC, with organic compounds adhering to Fe oxides due to their huge specific surfaces area and active reaction sites. Moreover, we also review methods for understanding Fe-OC interactions at micro-interfaces. Lastly, developmental prospects for understanding coupled Fe-OC geochemical processes in soil environments at molecular- and nano-scales are outlined. The summary suggests that combined advanced techniques and methods should be used in future research to explore micro-interfaces and in situ descriptions of organic mineral assemblages. This review also suggests that future studies need to consider the functional and spatial complexity that is typical of soil/sediment environments where Fe-OC interactions occur.
Collapse
Affiliation(s)
- Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Linfeng Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Yichun Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China.
| |
Collapse
|
15
|
Zhao X, Yuan Z, Wang S, Pan Y, Chen N, Tunc A, Cheung K, Alparov A, Chen W, Deevsalar R, Lin J, Jia Y. Iron(II)-activated phase transformation of Cd-bearing ferrihydrite: Implications for cadmium mobility and fate under anaerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157719. [PMID: 35914597 DOI: 10.1016/j.scitotenv.2022.157719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The factors and mechanisms affecting the fate of the associated Cd during the Fe(II)-activated Cd-bearing ferrihydrite transformation remain poorly understood. Herein we have conducted a series of batch reactions containing ferrihydrite with diverse pH values and initial Fe(II) and Cd concentrations coupled with chemical analyses and spectroscopic examination on the transformation products to probe the mechanisms of the Cd partitioning and the processes of Fe(II)-activated Cd-bearing ferrihydrite transformation under anaerobic conditions. Chemical analyses, Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (PXRD) results show that the initial Fe(II) and Cd concentrations as well as pH values all have significant effects on the rates and pathways of ferrihydrite transformation. Increasing Cd loading enhances the inhibition of the Fe(II)-activated ferrihydrite transformation rates. High Cd loading alters the Fe(II)-activated ferrihydrite transformation pathways by hindering the recrystallization of both ferrihydrite to more stable iron minerals and the newly formed lepidocrocite to goethite. Chemical analyses show that the release of Cd to solutions during ferrihydrite transformation is accompanied by a reduction in the 0.4 M HCl extractable Cd fraction and that a significant amount of the released Cd is transformed to a 0.4 M HCl unextractable form. Moreover, enhanced Cd release during the Fe(II)-activated ferrihydrite transformation is observed by reducing the pH value or increasing the initial Cd concentration. Results from synchrotron X-ray absorption spectroscopy (XAS) confirm that the majority of the 0.4 M HCl unextractable Cd form is associated with structural incorporation into the recrystallized iron (hydr)oxides via isomorphous substitution for Fe(III). These findings not only provide molecular-level understanding on the behavior of Cd under natural anoxic environments, but also are useful in predicting the geochemical cycling of Cd and developing long-term Cd contaminant management strategies.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zidan Yuan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Yuanming Pan
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Ning Chen
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N 0X4, Canada
| | - Ayetullah Tunc
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Kalong Cheung
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Aslan Alparov
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Weifeng Chen
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N 0X4, Canada
| | - Reza Deevsalar
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Jinru Lin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| |
Collapse
|
16
|
Di Iorio E, Circelli L, Angelico R, Torrent J, Tan W, Colombo C. Environmental implications of interaction between humic substances and iron oxide nanoparticles: A review. CHEMOSPHERE 2022; 303:135172. [PMID: 35649442 DOI: 10.1016/j.chemosphere.2022.135172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Goethite, hematite, ferrihydrite, and other iron oxides bind through various sorption reactions with humic substances (HS) in soils creating nano-, micro-, and macro-aggregates with a specific nature and stability. Long residence times of soil organic matter (SOM) have been attributed to iron-humic substance (Fe-HS) complexes due to physical protection and chemical stabilization at the organic-mineral interface. Humic acids (HA) and fulvic acids (FA) contain many acidic functional groups that interact with Fe oxides through different mechanisms. Due to the numerous interactions between mineral Fe and natural SOM, much research has led into a better identification and definition of HS. In this review, we first focus on the surface colloidal properties of Fe oxides and their reactivity toward HS. These minerals can be efficiently identified by usual techniques, such as XRD, FTIR spectroscopy, XAS, Mössbauer, diffuse reflectance spectroscopies (DRS), HRTEM, ATM, NanoSIMS. Second, we present the recent state of art regarding the adsorption/precipitation of HS onto iron mineral surfaces and their effects on binding metalloid and trace elements. Finally, we consider future research directions based on recent scientific literature, with particular focus on the ability of Fe nano-particles to increase Fe bioavailability, improve carbon sequestration, reduce greenhouse gas emissions, and decrease the impact of persistent organic and inorganic pollutants. The methodology in this field has rapidly developed over the last decade. However, new procedures to estimate the nature of Fe-HA bonds will be important contributions in clarifying the role of natural iron oxides in soil for carbon stabilization.
Collapse
Affiliation(s)
- Erika Di Iorio
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, V. De Sanctis, I-86100, Campobasso (CB), Italy.
| | - Luana Circelli
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, V. De Sanctis, I-86100, Campobasso (CB), Italy
| | - Ruggero Angelico
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, V. De Sanctis, I-86100, Campobasso (CB), Italy
| | - José Torrent
- Departamento de Agronomía, Universidad de Córdoba. Edificio C4, Campus de Rabanales, 14071, Córdoba, Spain
| | - Wenfeng Tan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Claudio Colombo
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, V. De Sanctis, I-86100, Campobasso (CB), Italy
| |
Collapse
|
17
|
Li Q, Wang Y, Li Y, Li L, Tang M, Hu W, Chen L, Ai S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153862. [PMID: 35176361 DOI: 10.1016/j.scitotenv.2022.153862] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal (HM) pollution of soils is a globally important ecological and environmental problem. Previous studies have focused on i) tracking pollution sources in HM-contaminated soils, ii) exploring the adsorption capacity and distribution of HMs, and iii) assessing phyto-uptake of HMs and their ecotoxicity. However, few reviews have systematically summarized HM pollution in soil-plant systems over the past decade. Understanding the mechanisms of interaction between HMs and solid soil components is consequently key to effectively controlling and remediating HM pollution. However, the compositions of solid soil phases are diverse, their structures are complex, and their spatial arrangements are heterogeneous, all leading to the formation of soil micro-domains that exhibit different particle sizes and surface properties. The various soil components and their interactions ultimately control the speciation, transformation, and bioavailability of HMs in soils. Over the past few decades, the extensive application of advanced instrumental techniques and methods has greatly expanded our understanding of the behavior of HMs in organic mineral assemblages. In this review, studies investigating the immobilization of HMs by minerals, organic compounds, microorganisms, and their associated complexes are summarized, with a particular emphasis on the interfacial adsorption and immobilization of HMs. In addition, methods for analyzing the speciation and distribution of HMs in aggregates of natural soils with different particle sizes are also discussed. Moreover, we also review the methods for speciating HMs at mineral-organic micro-scale interfaces. Lastly, developmental prospects for HM research at inorganic-organic interfaces are outlined. In future research, the most advanced methods should be used to characterize the interfaces and in situ characteristics of metals and metal complexes. In particular, the roles and contributions of microorganisms in the immobilization of HMs at complex mineral-organic interfaces require significant further investigation.
Collapse
Affiliation(s)
- Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Yanhong Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Yichun Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Linfeng Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Mingdeng Tang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shaoying Ai
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China.
| |
Collapse
|
18
|
Mechanisms of Stress Alleviation after Lime and Biochar Applications for Brassica napus L. in Cadmium-Contaminated Soil. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/4195119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lime and biochar amendments are widely used to immobilize cadmium (Cd) in agricultural soils and to ensure food security. However, the effects of these two soil amendments on the mechanisms of Cd stress alleviation in crops are unclear. Therefore, the effects of lime and biochar applications on Cd uptake, transport, subcellular distribution, antioxidant system, N metabolism, and related factors were examined in a soil-Brassica napus L. (B. napus) system. We found that lime application significantly increased the root Cd content by 41.5% but decreased Cd TF and shoot Cd by 81.0% and 74.3%, respectively, whereas biochar amendment decreased root and shoot Cd contents by 67.6% and 34.3%, respectively, but increased Cd TF by 104.1%. Lime treatment immobilized Cd in the cell wall of the root to reduce Cd transport, but biochar treatment increased the soluble fraction of Cd in root cells to improve the migration capacity of Cd. The significant negative relationship between the soil exchangeable Cd and Ca and the positive relationships between Cd and Ca both in shoot and root indicated that the Ca mediated Cd transport from soil to B. napus after lime and biochar applications. Additionally, lime amendment increased Cd proportion in the root cell walls to immobilize Cd, but biochar amendment increased Cd proportion in the soluble fraction to enhance Cd migration. Furthermore, biochar application significantly increased SOD, CAT, and POD by 17.5%, 95.4%, and 26.6%, whereas lime amendment only significantly enhanced CAT by 51.0%. Besides, both of biochar and lime applications increased shoot N content and GDH activity, but only the shoot NO3- content and nitrate reductase under biochar treatment were significantly altered. Overall, these findings suggested that lime is more efficient in reducing the transport of Cd from underground to aboveground and in improving Cd tolerance, whereas biochar tends to improve the antioxidant capacity and facilitate N metabolism. These results will provide significant strategies for selecting appropriate amendments to ensure the crops safety.
Collapse
|
19
|
Qu C, Chen J, Mortimer M, Wu Y, Cai P, Huang Q. Humic acids restrict the transformation and the stabilization of Cd by iron (hydr)oxides. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128365. [PMID: 35150996 DOI: 10.1016/j.jhazmat.2022.128365] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Iron (hydr)oxides and their association with organic matter significantly affect the mobility of heavy metals in natural soils and sediments. However, the behavior of cadmium (Cd) during crystalline iron (hydr)oxide formation in the presence of humic acid (HA) is still unknown. In this study, the speciation of Cd in iron (hydr)oxide-HA coprecipitates were studied by extraction, surface complexation model (SCM) calculation and characterization of the composites during the aging. The results showed that aging promoted the stabilization of ~30-50% of the added Cd ions with minerals in the binary iron (hydr)oxide systems. The reduction of Cd occurred earlier than hematite formation, indicating that the aggregation of amorphous iron (hydr)oxide led to the initial immobilization of Cd. The presence of HA restricted the crystallization of iron (hydr)oxide by the formation of tight mineral nanoparticle-HA aggregates, while there were negligible changes in the speciation of Cd and Fe during aging at high HA concentrations. Therefore, HA promoted the adsorption of Cd onto amorphous iron (hydr)oxide but limited the partition of Cd to mineral aggregates. The knowledge about the role of HA in iron (hydr)oxide transformation and Cd speciation is of great significance for the prediction of heavy metal behavior in soils and sediments.
Collapse
Affiliation(s)
- Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinzhao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yichao Wu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Duan C, Wang Y, Wang Q, Ju W, Zhang Z, Cui Y, Beiyuan J, Fan Q, Wei S, Li S, Fang L. Microbial metabolic limitation of rhizosphere under heavy metal stress: Evidence from soil ecoenzymatic stoichiometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118978. [PMID: 35150803 DOI: 10.1016/j.envpol.2022.118978] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Slow nutrient turnover and destructed soil function were the main factors causing low efficiency in phytoremediation of heavy metal (HM)-contaminated soil. Soil ecoenzymatic stoichiometry can reflect the ability of soil microorganisms to acquire energy and nutrients, and drive nutrient cycling and carbon (C) decomposition in HM-contaminated soil. Therefore, for the first time, we used the enzymatic stoichiometry modeling to examine the microbial nutrient limitation in rhizospheric and bulk soil of different plants (Medicago sativa, Halogeton arachnoideus and Agropyron cristatum) near the Baiyin Copper Mine. Results showed that the main pollutants in this area were Cu, Zn, Cd, and Pb, while Cd and Zn have the greatest contribution according to the analysis of pollution load index (PLI). The activities of soil C-, nitrogen (N)-, and phosphorus (P)-acquiring enzymes in the rhizosphere of plants were significantly greater than that in bulk soil. Moreover, microbial C and P limitations were observed in all plant treatments, while the lower limitation was generally in the rhizosphere compared to bulk soil. The HM stress significantly increased microbial C limitation and decreased microbial P limitation, especially in the rhizospheric soil. The partial least squares path modeling (PLS-PM) further indicated that HM concentration has the greatest effects on microbial P limitation (-0.64). In addition, the highest enzyme activities and the lowest P limitation were observed in the rhizospheric and bulk soil of M. sativa, thereby implying that soil microbial communities under the remediation of M. sativa were steadier and more efficient in terms of their metabolism. These findings are important for the elucidation of the nutrient cycling and microbial metabolism of rhizosphere under phytoremediation, and provide guidance for the restoration of HM-contaminated soil.
Collapse
Affiliation(s)
- Chengjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Qiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wenliang Ju
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhiqin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Yongxing Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shiyong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| |
Collapse
|
21
|
Lu L, Rao W, Song Y, Lei M, Tie B, Du H. Natural dissolved organic matter (DOM) affects W(VI) adsorption onto Al (hydr)oxide: Mechanisms and influencing factors. ENVIRONMENTAL RESEARCH 2022; 205:112571. [PMID: 34919961 DOI: 10.1016/j.envres.2021.112571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/23/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Tungsten (W) is a contaminant with health implications whose environmental behaviors are not understood well. Sorption to mineral surfaces is one of the primary processes controlling the mobility and fate of W in soils, sediments, and aquifers. However, few papers published hitherto have not yet figured out the influences of dissolved organic matter (DOM) on this process. Here, we examine W(VI) adsorption behaviors onto Al (hydr)oxide (AAH) in the presence or absence of DOM derived from plant rhizosphere, using batch experiments coupled with X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The morphology and functional group analyses results show that DOM can facilitate the aggregation of AAH and block surface Al-OH groups. Coexisting DOM inhibits W(VI) adsorption onto AAH at acidic to neutral pH (4-7), and the presence of either Na + or PO43- can exert a completely different impact on W(VI) adsorption. XPS and FTIR characterizations further demonstrate surface W complexes with the Al-OH groups of AAH and carboxyl groups of DOM. There is no reduction of W(VI) during the adsorption processes, and poly-tungstate species are formed on the surface of both AAH and AAH-DOM coprecipitates. This study provides the first evidence of the roles of natural DOM on W sequestration at the mineral-water surface, which has an important implication for the prediction of the migration and bioavailability of W in natural environments.
Collapse
Affiliation(s)
- Lei Lu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Wenkai Rao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Yuyan Song
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Boqing Tie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| |
Collapse
|
22
|
A Universal Synergistic Rule of Cd(II)-Sb(V) Coadsorption to Typical Soil Mineral and Organic Components. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/9131597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heavy metals and metalloids are common cooccurrence in contaminated soils, making their behaviors more complex than their individual presences. Adsorption to soil minerals and organic components determines the solubility and mobility of heavy metals. However, little information is available regarding coadsorbing metals (e.g., Cd) and metalloids (e.g., Sb) to soil components, and whether there is a universal coadsorption rule needs to be illuminated. This study investigated the coadsorption behaviors of Cd(II) and Sb(V) to goethite, kaolinite, and bacteria (Bacillus cereus) at both acidic (pH 4.5) and alkaline pH (pH 8.5). Equilibrium adsorption experiments, coupled with scanning electron microscopy- (SEM-) energy-dispersive X-ray spectrum (EDS) and X-ray photoelectron spectroscopy (XPS), were applied to determine the batch adsorption phenomena and possible mechanisms. Batch results showed that Cd(II) adsorption was greater at pH 8.5 whereas Sb(V) adsorption was greater at pH 4.5. The presence of Cd or Sb promoted each other’s adsorption to goethite, kaolinite, and bacteria, but slight differences were that Sb(V) preferred to enhance Cd(II) adsorption at acidic pH, whereas Cd(II) was more able to increase Sb(V) adsorption at alkaline pH. SEM-EDS analyses further showed that the distribution of Cd and Sb was colocalized. The surface FeOH, AlOH, and COOH groups participated in the binding of Cd(II) and Sb(V), probably through the formation of inner-sphere complexes. Two possible ternary complexes, i.e., sorbent-Cd2+-Sb(OH)6– and sorbent-Sb(OH)6–-Cd2+, were possibly formed. Both the charge effect and the formation of ternary complexes were responsible for the collaborative coadsorbing of Cd-Sb. The universal synergistic rule obtained suggests that current models for predicting Cd(II) or Sb(V) sequestration based on single systems may underestimate their solid-to-liquid distribution ratio in a coexistence situation. The results obtained have important implications for understanding the chemical behavior of Sb and Cd in contaminated soils.
Collapse
|