1
|
Tripathi S, Chakraborty A, Mandal D. Stark seasonal contrast of fine aerosol levels, composition, formation mechanism, and characteristics in a polluted megacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60668-60681. [PMID: 39390306 DOI: 10.1007/s11356-024-35196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
In this study, we investigated the temporal variation of organic and inorganic aerosol with its optical properties in Mumbai (India), an urban coastal region. Mean PM2.5 concentrations during the sampling period were 175 μg/m3 (winter) and 90 μg/m3 (summer). During winter, the average concentrations of organic (OC), elemental (EC), and water-soluble organic carbon (WSOC) were three times higher than in summer. Secondary organic carbon (SOC) contribution in OC was higher in summer (78%) than in winter (53%), and strong solar radiation in summer likely caused this outcome. Aerosols were slightly acidic in both seasons, with an average pH of 5.7 (winter) and 6.0 (summer). A correlation was observed between SOC and the acidity of particles in summer (R2 = 0.6), indicating some amount of acid-catalysed SOC formation. In both seasons, the sulphate oxidation ratio (SOR) was higher than the nitrate oxidation ratio (NOR), which may reflect a preference for SO2 oxidation over NO2 or the difference in partitioning ammonium nitrate into ammonium sulphate under high RH. The dominant mechanism of SOC formation (gas vs aqueous phase oxidation) also showed seasonal variation. In winter, a relatively steep reduced major axis (RMA) slope of O3/CO suggests gas phase oxidation was the dominant mechanism of SOC production. Winter has more BrC fraction than summer, indicating higher absorbing aerosols, though the efficiency of absorbing the light was higher in summer. To assess the radiative forcing of PM2.5 on a local scale, an effective carbon ratio (ECR) was computed. The findings pointed to a local radiative heating impact caused by PM2.5. The spectral slope ratio and MAE at 250 to 300 nm ratio (E2/E3) revealed a higher abundance of high molecular weight species in WSOC during summer than in winter.
Collapse
Affiliation(s)
- Shruti Tripathi
- Department of Environmental Science and Engineering (ESED), Indian Institute of Technology Bombay, Mumbai, India
| | - Abhishek Chakraborty
- Department of Environmental Science and Engineering (ESED), Indian Institute of Technology Bombay, Mumbai, India.
| | - Debayan Mandal
- Department of Environmental Science and Engineering (ESED), Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Fu X, Wang X, Liu T, He Q, Zhang Z, Zhang Y, Song W, Dai Q, Chen S, Dong F. Secondary inorganic aerosols and aerosol acidity at different PM 2.5 pollution levels during winter haze episodes in the Sichuan Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170512. [PMID: 38286278 DOI: 10.1016/j.scitotenv.2024.170512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Wintertime fine particle (PM2.5) pollution remains to be perplexing air quality problems in many parts of China. In this study, PM2.5 compositions and aerosol acidity at different pollution levels at an urban cite in the southwest China's Sichuan Basin were investigated during a sustained winter haze episode. Organic matter was the most abundant component of PM2.5, followed by nitrate, sulfate and ammonium. Shares of organic aerosol in PM2.5 mass decreased with the elevated PM2.5 levels, while the enhancements of sulfate and secondary organic aerosol were much less than that of nitrate and ammonium during heavy pollution with increased ratios of nitrate to sulfate, implying a significant role of nitrate in the haze formation. Results also suggest the nighttime chemistry might contribute substantially to the formation of nitrate under severe pollutions. The daily average aerosol pH showed a decreasing trend with the elevated levels of PM2.5, and this increased aerosl acidity was mainly due to the fast rising secondary inorganic aerosol (SIA) concentration, with the increase in hydronium ion concentration in air (Hair+) surpassing the dilution effect of elevated aerosol liquid water content (LWC). Thermodynamic model calculations revealed that the air environment was NH3-rich with total NHx (NH3 + NH4+) greater than required NHx, and the aerosol pH exponentially declined with the decreasing excess NHx (p < 0.01). This study demonstrated that under air stagnation and NH3-rich environment during winter, the raised relative humidity (RH) would lead to an increase in LWC and thereby facilitate the aqueous chemistry processes with the neutralization capacity of NH3 to form sulfate and nitrate, which would further increase the LWC and lower the pH. This self-amplifying SIA formation might be crucial to the severe PM2.5 pollution and haze events during winter, and therefore cutting both NOx and NH3 emissions would benefit stopping the self-amplification.
Collapse
Affiliation(s)
- Xiaoxin Fu
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Quanfu He
- Institute for Energy and Climate Research, IEK-8, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Zhou Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qunwei Dai
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shu Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
3
|
Yang L, Huang RJ, Yuan W, Huang DD, Huang C. pH-Dependent Aqueous-Phase Brown Carbon Formation: Rate Constants and Implications for Solar Absorption and Atmospheric Photochemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1236-1243. [PMID: 38169373 DOI: 10.1021/acs.est.3c07631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Aqueous-phase reactions of α-dicarbonyls with amines or ammonium have been identified as important sources of secondary brown carbon (BrC). However, the kinetics of BrC formation and the effects of pH are still not very clear. In this study, the kinetics of BrC formation by aqueous reactions of α-dicarbonyls (glyoxal and methylglyoxal) with ammonium, amino acids, or alkylamines in bulk solution at different pH values are investigated. Our results reveal pH-parameterized BrC production rate constants, kBrCII (m-1 [M]-2 s-1), based on the light absorption between 300 and 500 nm: log10(kBrCII) = (1.0 ± 0.1) × pH - (7.4 ± 1.0) for reactions with glyoxal and log10(kBrCII) = (1.0 ± 0.1) × pH - (6.3 ± 0.9) for reactions with methylglyoxal. The linear slopes closing to 1.0 indicate that BrC formation is governed by the nitrogen nucleophilic addition pathway. Consequently, the absorptivities of the produced BrC increase exponentially with the increase of pH. BrC from reactions with methylglyoxal at higher pH (≥6.5) exhibits optical properties comparable to BrC from biomass burning or coal combustion, categorized as the "weakly" absorbing BrC, while BrC from reactions with methylglyoxal at lower pH (<6.0) or reactions with glyoxal (pH 5.0-7.0) falls into the "very weakly" absorbing BrC. The pH-dependent BrC feature significantly affects the solar absorption ability of the produced BrC and thus the atmospheric photochemical processes, e.g., BrC produced at pH 7.0 absorbs 14-16 times more solar power compared to that at pH 5.0, which in turn could lead to a decrease of 1 order of magnitude in the photolysis rate constants of O3 and NO2.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yuan
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Dan Dan Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
4
|
Chiang TY, Chen WN, Chou CCK, Chang SY, Wu TS. Effects of boundary layer variations on physicochemical characteristics of aerosols in mid-low-altitude regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166849. [PMID: 37673250 DOI: 10.1016/j.scitotenv.2023.166849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Variations in the height of the boundary layer have a critical impact on the vertical transport of near-surface aerosols. Variations can affect the interactions between aerosols and clouds/fog by altering the scattering and absorption of solar radiation, significantly changing radiative forcing, convective precipitation, and regional climate. In this study, we simultaneously monitored air pollution and meteorological factors in a flat urban area (YunTech site, 50 m asl) and its peripheral mountainous region (MeiShan site, 980 m asl), analyzed the characteristics of pollutants under different atmospheric conditions, and explored the differences in the chemical reaction mechanisms of aerosols at various altitudes, aiming to clarify the evolution of the boundary layer in urban and suburban areas and its impact on the transport of pollutants. The results show that even without anthropogenic emissions, urban ground-level pollutants could be transported to peripheral mountainous areas through boundary layer height variations and local circulations, such as mountain-valley breezes. The PM2.5 concentration was higher at the urban site (average 31.14 ± 14.82μgm-3) and could be transported aloft by valley winds, leading to the gradual accumulation of daytime PM2.5 with an afternoon peak at the mountain site. Moreover, the nitrogen oxidation rate (NOR = [NO3-]/[NO3-] + [NO2]) exhibited clear site variations, the mountain site (average 0.41 ± 0.20) was higher than the urban site (average 0.19 ± 0.07), likely due to the atmospheric environment with thick clouds/fog and strong oxidation capacity in the mountain area. Our study has verified that aerosol characteristics, origins, formation pathways and transport mechanisms at the two measurement sites are significantly different under different conditions, which provides a theoretical basis for future air pollution prevention and regional climate research.
Collapse
Affiliation(s)
- Ting-Yu Chiang
- Department of Public Health, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wei-Nai Chen
- Research Center for Environmental Changes, Academia Sinica, Taipei 115, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Yu Chang
- Department of Public Health, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Tzu-Shuan Wu
- Department of Public Health, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
5
|
Duan X, Yan Y, Xie K, Niu Y, Xu Y, Peng L. Impact of primary emission variations on secondary inorganic aerosol formation: Prospective from COVID-19 lockdown in a typical northern China city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121355. [PMID: 36842622 DOI: 10.1016/j.envpol.2023.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Hourly observations in northern China city of Taiyuan were performed to compare secondary inorganic aerosol (SIA) reaction mechanisms, and emission effects on SIA during the pre-lock and COVID-19 lock days. Emission control implemented and meteorological conditions during lock days both caused beneficial impact on air quality. NO2 showed the highest decrease ratio of -49.5%, while the relative fraction of NO3- in PM2.5 increased the most (2.7%). Source apportionment revealed the top three contributors to PM2.5 were secondary formation (SF), coal combustion (CC), and vehicle exhaust (VE) during both pre-lock and lock days. EC lock/pre were all lower than 1, suggesting the overall reduction of primary emissions during lock days, while the higher ratio of (SIA/EC) lock/pre (1.01-1.36) indicated the enhanced secondary formation in lock days. The ratio of SIA of pollution to clean days during lock periods considerably higher by 23.7% compared with that in pre-lock periods, which was indicated SIA secondary formation was more pronounced and contributed great to pollution days in lock periods though secondary formation existed in pre-lock and lock periods. Enhanced secondary formation of NO3- and SO42- during lock days might be mainly due to the increased in aqueous and gas-phase reactions, respectively. Except for SF, high contribution of VE and CC were also important for high SIA concentration in pre-lock and lock days, respectively. The decreased contribution of VE weakens its contribution to SIA formation, indicating the effectiveness of VE emission control, as confirmed during the COVID-19 pandemic. This study highlights the aqueous and gas-phase reactions for nitrate and sulfate, respectively, which contributed to heavy pollution, as well as indicated the important role of VE on SIA formation, suggesting the urgent need to further strengthen controls on vehicle emissions.
Collapse
Affiliation(s)
- Xiaolin Duan
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yulong Yan
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing, 100044, China.
| | - Kai Xie
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yueyuan Niu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yang Xu
- School for Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
| | - Lin Peng
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
6
|
Liu P, Chen H, Song Y, Xue C, Ye C, Zhao X, Zhang C, Liu J, Mu Y. Atmospheric ammonia in the rural North China Plain during wintertime: Variations, sources, and implications for HONO heterogeneous formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160768. [PMID: 36493819 DOI: 10.1016/j.scitotenv.2022.160768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Atmospheric ammonia (NH3) plays an important role in secondary inorganic aerosol formation. Understanding the temporal variations, sources, and environmental influences of NH3 is conducive to better formulate PM2.5 pollution control strategies for policy-makers. Here, we performed a comprehensive field campaign with the measurements of NH3 and related parameters at a rural site of the North China Plain (NCP) in winter of 2017. The results showed that residential coal combustion contributed dominantly to NH3 during the entire observation period, resulting in the obviously high average concentration of NH3 (31.2 ± 24.6 ppbv). The sensitivity tests of pH-NHx during the three different pollution periods suggested that the rural site was always in the NHx-rich atmosphere where high levels of NHx increased the particle pH inefficiently. Nevertheless, the particle pH still elevated by 1.5-2.2 units at the excessive NHx levels during the three pollution periods. In addition, the HONO/NO2 ratios were found to correlate linearly with NH3 concentrations, implying the acceleration effect of NH3 on HONO production from NO2 heterogeneous reactions. After considering the NH3-enhanced uptake coefficient of NO2 in the nocturnal HONO budget, the unknown source of HONO could be fully explained. Therefore, more attentions should be given for effective emission control of NH3 to improve air quality throughout the NCP, especially in the rural areas.
Collapse
Affiliation(s)
- Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Chen
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Yifei Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyang Xue
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS-Université Orléans-CNES, Orléans 45071, France
| | - Can Ye
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaoxi Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Young LH, Hsiao TC, Griffith SM, Huang YH, Hsieh HG, Lin TH, Tsay SC, Lin YJ, Lai KL, Lin NH, Lin WY. Secondary inorganic aerosol chemistry and its impact on atmospheric visibility over an ammonia-rich urban area in Central Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119951. [PMID: 36002097 DOI: 10.1016/j.envpol.2022.119951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the hourly inorganic aerosol chemistry and its impact on atmospheric visibility over an urban area in Central Taiwan, by relying on measurements of aerosol light extinction, inorganic gases, and PM2.5 water-soluble ions (WSIs), and simulations from a thermodynamic equilibrium model. On average, the sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) components (SNA) contributed ∼90% of WSI concentrations, which in turn made up about 50% of the PM2.5 mass. During the entire observation period, PM2.5 and SNA concentrations, aerosol pH, aerosol liquid water content (ALWC), and sulfur and nitrogen conversion ratios all increased with decreasing visibility. In particular, the NO3- contribution to PM2.5 increased, whereas the SO42- contribution decreased, with decreasing visibility. The diurnal variations of the above parameters indicate that the interaction and likely mutual promotion between NO3- and ALWC enhanced the hygroscopicity and aqueous-phase reactions conducive for NO3- formation, thus led to severely impaired visibility. The high relative humidity (RH) at the study area (average 70.7%) was a necessary but not sole factor leading to enhanced NO3- formation, which was more directly associated with elevated ALWC and aerosol pH. Simulations from the thermodynamic model depict that the inorganic aerosol system in the study area was characterized by fully neutralized SO42- (i.e. a saturated factor in visibility reduction) and excess NH4+ amidst a NH3-rich environment. As a result, PM2.5 composition was most sensitive to gas-phase HNO3, and hence NOx, and relatively insensitive to NH3. Consequently, a reduction of NOx would result in instantaneous cuts of NO3-, PM2.5, and ALWC, and hence improved visibility. On the other hand, a substantial amount of NH3 reduction (>70%) would be required to lower the aerosol pH, driving more than 50% of the particulate phase NO3- to the gas phase, thereby making NH3 a limiting factor in shifting PM2.5 composition.
Collapse
Affiliation(s)
- Li-Hao Young
- Department of Occupational Safety and Health, China Medical University, 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan.
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Stephen M Griffith
- Department of Atmospheric Sciences, National Central University, 300, Zhongda Rd., Zhongli Dist., Taoyuan, 320317, Taiwan
| | - Ya-Hsin Huang
- Department of Occupational Safety and Health, China Medical University, 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
| | - Hao-Gang Hsieh
- Department of Occupational Safety and Health, China Medical University, 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
| | - Tang-Huang Lin
- Center for Space and Remote Sensing Research, National Central University, 300, Zhongda Rd., Zhongli Dist., Taoyuan, 320317, Taiwan
| | - Si-Chee Tsay
- NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Yu-Jung Lin
- Department of Occupational Safety and Health, China Medical University, 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
| | - Kuan-Lin Lai
- Department of Occupational Safety and Health, China Medical University, 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
| | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, 300, Zhongda Rd., Zhongli Dist., Taoyuan, 320317, Taiwan
| | - Wen-Yinn Lin
- Institute of Environmental Engineering and Management, National Taipei University of Technology, 1, Sec. 3, Chung-Hsiao E. Rd., Taipei, 106344, Taiwan
| |
Collapse
|
8
|
Evaluation of Extinction Effect of PM2.5 and Its Chemical Components during Heating Period in an Urban Area in Beijing–Tianjin–Hebei Region. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PM2.5 pollution and visibility impairment has attracted wild public attention in urban China during the past decade. Field observation was carried out in Tianjin, China, during heating (HP) and non-heating periods (NHP). The IMPROVE (Interagency Monitoring of Protected Visual Environments) method was localized to better understand the quantitative impact of PM2.5 composition on extinction coefficient (Bext). Bext of organic mass (OM) was classified into that of primary organic aerosol (POA) and secondary organic aerosol (SOA). Bext of Rayleigh scattering was calculated based on observation data directly, instead of a fixed value in the original IMPROVE method. The mass extinction efficiency (MEE) of EC was also updated based on literature research. The estimation bias of reconstructed Bext was reduced from 4.8 Mm−1 to 0.8 Mm−1 with the localized algorithm. It was found that the secondary components contribute more than 40% of Bext, and ammonium sulfate (AS) and ammonium nitrate (AN) are the dominant components. The different formation pathway leads to significant difference in secondary inorganic components during HP and NHP. Based on the positive matrix factorization (PMF) model and localized IMPROVE method, secondary aerosols were identified as the main source contributing to both PM2.5 concentration (48.2%) and Bext (44.3%) during HP, followed by vehicular emission and coal combustion, biomass burning with municipal incinerators, fugitive dust, and steel processing.
Collapse
|