1
|
Mohammadzadeh M, Bello A, Lassen SB, Brandt KK, Risteelä S, Leiviskä T. Pilot-scale adsorption of pharmaceuticals from municipal wastewater effluent using low-cost magnetite-pine bark: Regeneration/enumeration of viable bacteria with a study on their biotoxicity. ENVIRONMENTAL RESEARCH 2025; 268:120774. [PMID: 39761781 DOI: 10.1016/j.envres.2025.120774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
A low-cost and renewable magnetite-pine bark (MPB) sorbent was evaluated in continuous-flow systems for the removal of various pharmaceuticals from municipal wastewater effluent following membrane bioreactor (MBR) treatment. A 33-day small-scale column test (bed volume: 791 cm3) was conducted using duplicate columns of biochar (BC, Novocarbo) and activated carbon (AC, ColorSorb) as reference for two columns of BC and MPB in order to compare the efficiency of AC and MPB. After the small-scale column test, the pharmaceutical concentrations were generally below the detection limit. In the next stage, a four-month pilot-scale adsorption test was performed using a large column (bed volume: 21 L) filled with BC and MPB. A variety of compounds were removed after the pilot-scale column, including trimethoprim (99.7%), hydrochlorothiazide (81.8%), candesartan (26.0%), carbamazepine (86.1%), ketoprofen (89.4%), clindamycin (86.6%), oxazepam (91.3%), sulfadiazine (38.6%), sulfamethoxazole (58.3%), tramadol (88.9%), zopiclone (73.5%), venlafaxine (93.7%), furosemide (93.5%), fexofenadine (91.6%) and losartan (81.2%). The enumeration of viable bacteria in the pilot-scale column samples revealed that regenerating the BC-MPB bed with NaOH increased bacterial counts in the treated water due to the desorption of adsorbed bacteria from the bed. A biotoxicity study using the Nitrosomonas europaea bioreporter strain indicated that the wastewater was generally non-toxic to this nitrifying bacterium and regeneration of pilot-scale column samples caused short-time toxicity immediately after regeneration. The study confirms that MPB is efficient for the adsorption of pharmaceuticals and can be applied in column mode with a support material such as BC. Therefore, MPB is a viable alternative for AC for the remediation of pharmaceutical-contaminated wastewaters.
Collapse
Affiliation(s)
- Mahdiyeh Mohammadzadeh
- Chemical Process Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Oulu, Finland.
| | - Adedayo Bello
- Chemical Process Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Oulu, Finland
| | - Simon Bo Lassen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Sofia Risteelä
- Oulu Waterworks, P.O. BOX 35, FI-90015, City of Oulu, Finland
| | - Tiina Leiviskä
- Chemical Process Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Oulu, Finland
| |
Collapse
|
2
|
Wu M, Ailijiang N, Li N, Zaimire A, Chen H, He C, Zhang Y. Performance of pharmaceutical products removal in a bioelectrochemical system at low temperatures and changes in microbial communities and antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64493-64508. [PMID: 39102148 DOI: 10.1007/s11356-024-34577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Biological methods do not effectively remove pharmaceutical products (PPs) and antibiotic resistance genes (ARGs) from wastewater at low temperatures, leading to environmental pollution. Therefore, anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) were designed to improve the removal of PPs at low temperatures (10 ± 2 °C). The result shows that diclofenac (DIC) and ibuprofen (IBU) removals in the system with aerobic anodic and anaerobic cathodic chambers were 91.7% and 94.7%, higher than that in the control system (12.2 ± 1.5%, 36.5 ± 5.9%), and aerobic zone favors DIC and IBU removal; fluoroquinolone antibiotics (FQs) removals in the system with aerobic cathodic and anaerobic anodic chambers were 17.5-22.4% higher than that in the control system (9.1-22.4%), and anaerobic zone favors FQs removal. Analysis of microbial community structure and ARGs showed that different electrotrophic microbes (Flavobacterium, Acinetobacter, and Delftia) with cold-resistant ability to degrade PPs were enriched in different electrode combinations, and the aerobic cathodic chambers could remove certain ARGs. These results showed that AO-UBERs under intermittent electrical stimulation mode are an alternative method for the effective removal of PPs and ARGs at low temperatures.
Collapse
Affiliation(s)
- Mei Wu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China.
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China.
| | - Na Li
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Abudoushalamu Zaimire
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Hailiang Chen
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Yiming Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| |
Collapse
|
3
|
Sayed K, Wan-Mohtar WHM, Mohd Hanafiah Z, Bithi AS, Md Isa N, Abd Manan TSB. Occurrence of pharmaceuticals in rice (Oryza sativa L.) plant through wastewater irrigation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104475. [PMID: 38777114 DOI: 10.1016/j.etap.2024.104475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/21/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The present investigation focuses on the identification of popular PhACs in roots, leaves and rice grains, which are cultivated in soil irrigated with waters and wastewater. The present study reveals the presence of PhACs in rice grains from different brands which are available in the current market, which has thus motivated these experiments. The rice plants were cultivated in garden containers and irrigated with three different water sources. All PhAC compounds were recovered within an 89-111 % range using the extraction technique, reproducibility, and sensitivity (LOQ <25 µg/g). Further, PhAC compounds were identified using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS). Interestingly, several PhAC compounds were detected in rice grains, aligning with hypotheses and findings from published literature. A total of ten (10) PhACs were found in the root, leaf, and rice grain of the 20 popular PhACs that were targeted. The annual exposure and medical dose equivalent for individual PhACs was negligible. According to our knowledge, this study is the first to show the accumulation of several categories (cocktail) of PhACs in rice grains and show the approximate human health risk assessment by its consumption. The study's results provide valuable insights for researchers, policymakers, and agricultural practitioners working on sustainable agriculture and public health.
Collapse
Affiliation(s)
- Khalid Sayed
- Civil Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (Universiti Kebangsaan Malaysia), Bangi, Selangor Darul Ehsan 43600, Malaysia.
| | - Wan Hanna Melini Wan-Mohtar
- Civil Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (Universiti Kebangsaan Malaysia), Bangi, Selangor Darul Ehsan 43600, Malaysia; Environmental Management Centre, Institute of Climate Change, National University of Malaysia (Universiti Kebangsaan Malaysia), Selangor Darul Ehsan, Malaysia.
| | - Zarimah Mohd Hanafiah
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Aziza Sultana Bithi
- Civil Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (Universiti Kebangsaan Malaysia), Bangi, Selangor Darul Ehsan 43600, Malaysia
| | - Nurulhikma Md Isa
- Faculty of Science & Technology, National University of Malaysia (Universiti Kebangsaan Malaysia), Bangi, Selangor Darul Ehsan 43600, Malaysia
| | - Teh Sabariah Binti Abd Manan
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu Darul Iman 21030, Malaysia
| |
Collapse
|
4
|
Hazra M, Watts JEM, Williams JB, Joshi H. An evaluation of conventional and nature-based technologies for controlling antibiotic-resistant bacteria and antibiotic-resistant genes in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170433. [PMID: 38286289 DOI: 10.1016/j.scitotenv.2024.170433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Antibiotic resistance is a globally recognized health concern which leads to longer hospital stays, increased morbidity, increased mortality, and higher medical costs. Understanding how antibiotic resistance persists and exchanges in environmental systems like soil, water, and wastewater are critically important for understanding the emergence of pathogens with new resistance profiles and the subsequent exposure of people who indirectly/directly come in contact with these pathogens. There are concerns about the widespread application of prophylactic antibiotics in the clinical and agriculture sectors, as well as chemicals/detergents used in food and manufacturing industries, especially the quaternary ammonium compounds which have been found responsible for the generation of resistant genes in water and soil. The rates of horizontal gene transfer increase where there is a lack of proper water/wastewater infrastructure, high antibiotic manufacturing industries, or endpoint users - such as hospitals and intensive agriculture. Conventional wastewater treatment technologies are often inefficient in the reduction of ARB/ARGs and provide the perfect combination of conditions for the development of antibiotic resistance. The wastewater discharged from municipal facilities may therefore be enriched with bacterial communities/pathogens and provide a suitable environment (due to the presence of nutrients and other pollutants) to enhance the transfer of antibiotic resistance. However, facilities with tertiary treatment (either traditional/emerging technologies) provide higher rates of reduction. This review provides a synthesis of the current understanding of wastewater treatment and antibiotic resistance, examining the drivers that may accelerate their possible transmission to a different environment, and highlighting the need for tertiary technologies used in treatment plants for the reduction of resistant bacteria/genes.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India; International Water Management Institute, New Delhi, India; Civil and Environmental Engineering, University of Nebraska Lincoln, United States.
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, United Kingdom
| | - John B Williams
- School of Civil Engineering and Surveying, University of Portsmouth, United Kingdom
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| |
Collapse
|
5
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|
6
|
Bangia S, Bangia R, Daverey A. Pharmaceutically active compounds in aqueous environment: recent developments in their fate, occurrence and elimination for efficient water purification. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1344. [PMID: 37857877 DOI: 10.1007/s10661-023-11858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023]
Abstract
The existence of pharmaceutically active compounds (PhACs) in the water is a major concern for environmentalists due to their deleterious effects on living organisms even at minuscule concentrations. This review focuses on PhACs such as analgesics and anti-inflammatory compounds, which are massively excreted in urine and account for the majority of pharmaceutical pollution. Furthermore, other PhACs such as anti-epileptics, beta-blockers and antibiotics are discussed because they also contribute significantly to pharmaceutical pollution in the aquatic environment. This review is divided into two parts. In the first part, different classes of PhACs and their fate in the wastewater environment are presented. In the second part, recent advances in the removal of PhACs by conventional wastewater treatment plants, including membrane bioreactors (MBRs), activated carbon adsorption and bench-scale studies concerning a broad range of advanced oxidation processes (AOPs) that render practical and appropriate strategies for the complete mineralization and degradation of pharmaceutical drugs, are reviewed. This review indicates that drugs like diclofenac, naproxen, paracetamol and aspirin are removed efficiently by conventional systems. Activated carbon adsorption is suitable for the removal of diclofenac and carbamazepine, whereas AOPs are leading water treatment strategies for the effective removal of reviewed PhACs.
Collapse
Affiliation(s)
- Saulab Bangia
- Hamburg University of Technology, 21073, Hamburg, Germany
| | - Riya Bangia
- Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, 248012, Uttarakhand, India.
- School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
7
|
Ahmadi N, Abbasi M, Torabian A, van Loosdrecht MCM, Ducoste J. Biotransformation of micropollutants in moving bed biofilm reactors under heterotrophic and autotrophic conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132232. [PMID: 37690201 DOI: 10.1016/j.jhazmat.2023.132232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/06/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023]
Abstract
We investigated the transformation of four pharmaceuticals (Diclofenac, Naproxen, Ibuprofen and Carbamazepine) in a moving bed biofilm reactor subjected to different COD/N ratios in four experimental phases. The shift from medium to high range COD/N ratio (i.e., 5:1 to 100:1) intensified the competition between heterotrophs and nitrifying communities, leading to a transition from co-existence of heterotrophic and autotrophic conditions with high COD removal and nitrification rate in phase I to dominant heterotrophic conditions in phase II. At lower range COD/N ratios (i.e., 1:2 and 1:8) in phase III and IV, autotrophic conditions prevailed, resulting in increased nitrification rates and high abundance of amoA gene in the biofilm. Such shifts in the operating condition were accompanied by notable changes in the biofilm concentrations, composition and abundance of microbial populations as well as biodiversity in the biofilms, which collectively affected the degradation rates of the pharmaceuticals. We observed higher kinetic rates per unit of biofilm concentration under autotrophic conditions compared to heterotrophic conditions for all compounds except Naproxen, indicating the importance of nitrification in the transformation of such compounds. The results also revealed a positive relationship between biodiversity and biomass-normalized kinetic rates of most compounds.
Collapse
Affiliation(s)
- Navid Ahmadi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Mona Abbasi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Ali Torabian
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629Hz Delft, the Netherlands
| | - Joel Ducoste
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I. Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Front Microbiol 2023; 14:1200108. [PMID: 37608946 PMCID: PMC10441242 DOI: 10.3389/fmicb.2023.1200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Ketoprofen, a bicyclic non-steroidal anti-inflammatory drug commonly used in human and veterinary medicine, has recently been cited as an environmental contaminant that raises concerns for ecological well-being. It poses a growing threat due to its racemic mixture, enantiomers, and transformation products, which have ecotoxicological effects on various organisms, including invertebrates, vertebrates, plants, and microorganisms. Furthermore, ketoprofen is bioaccumulated and biomagnified throughout the food chain, threatening the ecosystem function. Surprisingly, despite these concerns, ketoprofen is not currently considered a priority substance. While targeted eco-pharmacovigilance for ketoprofen has been proposed, data on ketoprofen as a pharmaceutical contaminant are limited and incomplete. This review aims to provide a comprehensive summary of the most recent findings (from 2017 to March 2023) regarding the global distribution of ketoprofen in the environment, its ecotoxicity towards aquatic animals and plants, and available removal methods. Special emphasis is placed on understanding how ketoprofen affects microorganisms that play a pivotal role in Earth's ecosystems. The review broadly covers various approaches to ketoprofen biodegradation, including whole-cell fungal and bacterial systems as well as enzyme biocatalysts. Additionally, it explores the potential of adsorption by algae and phytoremediation for removing ketoprofen. This review will be of interest to a wide range of readers, including ecologists, microbiologists, policymakers, and those concerned about pharmaceutical pollution.
Collapse
Affiliation(s)
- Elena Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maria Subbotina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maxim Polygalov
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Semyon Tyan
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Irina Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| |
Collapse
|
9
|
Vidal B, Kinnunen J, Hedström A, Heiderscheidt E, Rossi P, Herrmann I. Treatment efficiency of package plants for on-site wastewater treatment in cold climates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118214. [PMID: 37311345 DOI: 10.1016/j.jenvman.2023.118214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023]
Abstract
Package plants (PP) are implemented around the world to provide on-site sanitation in areas not connected to a sewage network. The efficiency of PP has not been comprehensively studied at full scale, and the limited number of available studies have shown that their performance varies greatly. Their performance under cold climate conditions and the occurrence of micropollutants in PP effluents have not been sufficiently explored. PP are exposed to environmental factors such as low temperature, especially in cold regions with low winter temperatures and deep frost penetration, that can adversely influence the biochemical processes. The aim of this study was to investigate the treatment efficiency and possible effects of cold temperatures on PP performance, with focus on traditional contaminants (organics, solids, nutrients and indicator bacteria) and an additional assessment of micropollutants on two PP. Eleven PP hosting different treatment processes were monitored. Removal of biological oxygen demand (BOD) was high in all plants (>91%). Six out of the 11 PP provided good phosphorus removal (>71%). Small degrees of nitrification were observed in almost all the facilities, despite the low temperatures, while denitrification was only observed in two plants which achieved the highest nitrification rates (>51%) and had sludge recirculation. No strong correlation between wastewater temperature and BOD, nutrients and indicator bacteria concentration in the effluents was found. The high data variability and the effects of other process parameters as well as snow-melt water infiltration are suggested as possible reasons for the lack of correlation. However, weak negative relations between effluent concentrations and wastewater temperatures were detected in specific plants, indicating that temperature does have effects. When managed adequately, package plants can provide high BOD and phosphorus removal, but nitrogen and bacteria removal remain challenging, especially at low temperatures. Pharmaceutical compounds were detected in the effluents at concentrations within or above ranges reported for large treatment plants while phthalate ester concentrations were below commonly reported effluent concentrations.
Collapse
Affiliation(s)
- Brenda Vidal
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE 971 87, Sweden.
| | - Juho Kinnunen
- Water, Energy and Environmental Engineering Research Facility, Faculty of Technology, 90014, University of Oulu, Finland
| | - Annelie Hedström
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE 971 87, Sweden
| | - Elisangela Heiderscheidt
- Water, Energy and Environmental Engineering Research Facility, Faculty of Technology, 90014, University of Oulu, Finland
| | - Pekka Rossi
- Water, Energy and Environmental Engineering Research Facility, Faculty of Technology, 90014, University of Oulu, Finland
| | - Inga Herrmann
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE 971 87, Sweden
| |
Collapse
|
10
|
khalidi-idrissi A, Madinzi A, Anouzla A, Pala A, Mouhir L, Kadmi Y, Souabi S. Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-22. [PMID: 37360558 PMCID: PMC10019435 DOI: 10.1007/s13762-023-04867-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
Pharmaceuticals and personal care products present potential risks to human health and the environment. In particular, wastewater treatment plants often detect emerging pollutants that disrupt biological treatment. The activated sludge process is a traditional biological method with a lower capital cost and limited operating requirements than more advanced treatment methods. In addition, the membrane bioreactor combines a membrane module and a bioreactor, widely used as an advanced method for treating pharmaceutical wastewater with good pollution performance. Indeed, the fouling of the membrane remains a major problem in this process. In addition, anaerobic membrane bioreactors can treat complex pharmaceutical waste while recovering energy and producing nutrient-rich wastewater for irrigation. Wastewater characterizations have shown that wastewater's high organic matter content facilitates the selection of low-cost, low-nutrient, low-surface-area, and effective anaerobic methods for drug degradation and reduces pollution. However, to improve the biological treatment, researchers have turned to hybrid processes in which all physical, chemical, and biological treatment methods are integrated to remove various emerging contaminants effectively. Hybrid systems can generate bioenergy, which helps reduce the operating costs of the pharmaceutical waste treatment system. To find the most effective treatment technique for our research, this work lists the different biological treatment techniques cited in the literature, such as activated sludge, membrane bioreactor, anaerobic treatment, and hybrid treatment, combining physicochemical and biological techniques.
Collapse
Affiliation(s)
- A. khalidi-idrissi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Madinzi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Anouzla
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Pala
- Environmental Research and Development Center (CEVMER), Dokuz Eylul University, Izmir, Turkey
| | - L. Mouhir
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - Y. Kadmi
- CNRS, UMR 8516 - LASIR, University Lille, 59000 Lille, France
| | - S. Souabi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| |
Collapse
|
11
|
Fatimazahra S, Latifa M, Laila S, Monsif K. Review of hospital effluents: special emphasis on characterization, impact, and treatment of pollutants and antibiotic resistance. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:393. [PMID: 36780024 PMCID: PMC9923651 DOI: 10.1007/s10661-023-11002-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Health care institutions generate large volumes of liquid effluents from specific activities related to healthcare, analysis, and research. Their direct discharge into the environment has various negative effects on aquatic environments and human health, due to their high organic matter charges and the presence of various emerging contaminants such as disinfectants, drugs, bacteria, viruses, and parasites. Moreover, hospital effluents, by carrying antibiotics, contribute to the development of antibiotic-resistant microorganisms in the environment. This resistance has become a global issue that manifests itself variously in different countries, causing the transmission of different infections. In this respect, an effort is provided to protect water resources by current treatment methods that imply physical-chemical processes such as adsorption and advanced oxidation processes, biological processes such as activated sludge and membrane bioreactors and other hybrid techniques. The purpose of this review is to improve the knowledge on the composition and impact of hospital wastewater on man and the environment, highlighting the different treatment techniques appropriate to this type of disposal before discharge into the environment.
Collapse
Affiliation(s)
- Sayerh Fatimazahra
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Mouhir Latifa
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Saafadi Laila
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Khazraji Monsif
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
12
|
Qv M, Dai D, Liu D, Wu Q, Tang C, Li S, Zhu L. Towards advanced nutrient removal by microalgae-bacteria symbiosis system for wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 370:128574. [PMID: 36603749 DOI: 10.1016/j.biortech.2022.128574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In this study, the microalgae-bacteria symbiosis (ABS) system by co-culturing Chlorella sorokiniana with activated sludge was constructed for pollutants removal, and the according interaction mechanism was investigated. The results showed that the ABS system could almost completely remove ammonia nitrogen, and the removal efficiency of total nitrogen and total phosphorus could accordingly reach up to 65.3 % and 42.6 %. Brevundimonas greatly promoted microalgal biomass growth (maximum chlorophyll-a concentration of 9.4 mg/L), and microalgae contributed to the increase in the abundance of Dokdonella and Thermomonas in ABS system, thus facilitating nitrogen removal. The extended Derjaguin-Landau-Verwey-Overbeek theory indicated a repulsive potential barrier of 561.7 KT, while tryptophan-like proteins and tyrosine-like proteins were key extracellular polymeric substances for the formation of flocs by microalgae and activated sludge. These findings provide an in-depth understanding of interaction mechanism between microalgae and activated sludge for the removal of contaminants from wastewater.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dongyang Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Chunming Tang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
13
|
Jiao X, Guo W, Li X, Yao F, Zeng M, Yuan Y, Guo X, Wang M, Xie QD, Cai L, Yu F, Yu P, Xia Y. New insight into the microbiome, resistome, and mobilome on the dental waste water in the context of heavy metal environment. Front Microbiol 2023; 14:1106157. [PMID: 37152760 PMCID: PMC10157219 DOI: 10.3389/fmicb.2023.1106157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Object Hospital sewage have been associated with incorporation of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) into microbes, which is considered as a key indicator for the spread of antimicrobial resistance (AMR). The compositions of dental waste water (DWW) contain heavy metals, the evolution of AMR and its effects on the water environment in the context of heavy metal environment have not been seriously investigated. Thus, our major aims were to elucidate the evolution of AMR in DWW. Methods DWW samples were collected from a major dental department. The presence of microbial communities, ARGs, and MGEs in untreated and treated (by filter membrane and ozone) samples were analyzed using metagenomics and bioinformatic methods. Results DWW-associated resistomes included 1,208 types of ARGs, belonging to 29 antibiotic types/subtypes. The most abundant types/subtypes were ARGs of multidrug resistance and of antibiotics that were frequently used in the clinical practice. Pseudomonas putida, Pseudomonas aeruginosa, Chryseobacterium indologenes, Sphingomonas laterariae were the main bacteria which hosted these ARGs. Mobilomes in DWW consisted of 93 MGE subtypes which belonged to 8 MGE types. Transposases were the most frequently detected MGEs which formed networks of communications. For example, ISCrsp1 and tnpA.5/4/11 were the main transposases located in the central hubs of a network. These significant associations between ARGs and MGEs revealed the strong potential of ARGs transmission towards development of antimicrobial-resistant (AMR) bacteria. On the other hand, treatment of DWW using membranes and ozone was only effective in removing minor species of bacteria and types of ARGs and MGEs. Conclusion DWW contained abundant ARGs, and MGEs, which contributed to the occurrence and spread of AMR bacteria. Consequently, DWW would seriously increase environmental health concerns which may be different but have been well-documented from hospital waste waters.
Collapse
Affiliation(s)
- Xiaoyang Jiao
- College of Medicine, Shantou University, Shantou, China
| | - Wenyan Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xin Li
- College of Medicine, Shantou University, Shantou, China
| | - Fen Yao
- Department of Pharmacology, College of Medicine, Shantou University, Shantou, China
| | - Mi Zeng
- College of Medicine, Shantou University, Shantou, China
| | - Yumeng Yuan
- College of Medicine, Shantou University, Shantou, China
| | - Xiaoling Guo
- College of Medicine, Shantou University, Shantou, China
| | - Meimei Wang
- College of Medicine, Shantou University, Shantou, China
| | - Qing Dong Xie
- College of Medicine, Shantou University, Shantou, China
| | - Leshan Cai
- Department of Clinical Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Feiyuan Yu
- College of Medicine, Shantou University, Shantou, China
| | - Pen Yu
- Department of Clinical Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yong Xia
- Department of Clinical Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Yong Xia,
| |
Collapse
|
14
|
Eryildiz B, Ozgun H, Ersahin ME, Koyuncu I. Antiviral drugs against influenza: Treatment methods, environmental risk assessment and analytical determination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115523. [PMID: 35779301 DOI: 10.1016/j.jenvman.2022.115523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Over the past few years, antiviral drugs against influenza are considered emerging contaminants since they cause environmental toxicity even at low concentrations. They have been found in environmental matrices all around the world, showing that conventional treatment methods fail to remove them from water and wastewater. In addition, the metabolites and transformation products of these drugs can be more persistent than original in the environment. Several techniques to degrade/remove antiviral drugs against influenza have been investigated to prevent this contamination. In this study, the characteristics of antiviral drugs against influenza, their measurement by analytical methods, and their removal in both water and wastewater treatment plants (WWTPs) were presented. Different treatment methods, such as traditional procedures (biological processes, filtration, coagulation, flocculation, and sedimentation), advanced oxidation processes (AOPs), adsorption and combined methods, were assessed. Ecotoxicological effects of both the antiviral drug and its metabolites as well as the transformation products formed as a result of treatment were evaluated. In addition, future perspectives for improving the removal of antiviral drugs against influenza, their metabolites and transformation products were further discussed. The research indicated that the main tested techniques in this study were ozonation, photolysis and photocatalysis. Combined methods, particularly those that use renewable energy and waste materials, appear to be the optimum approach for the treatment of effluents containing antiviral drugs against influenza. In light of high concentrations or probable antiviral resistance, this comprehensive assessment suggests that antiviral drug monitoring is required, and some of those substances may cause toxicological effects.
Collapse
Affiliation(s)
- Bahriye Eryildiz
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Hale Ozgun
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mustafa Evren Ersahin
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
15
|
Bandura L, Białoszewska M, Leiviskä T, Franus M. The Role of Zeolite Structure in Its β-cyclodextrin Modification and Tetracycline Adsorption from Aqueous Solution: Characteristics and Sorption Mechanism. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15186317. [PMID: 36143629 PMCID: PMC9500702 DOI: 10.3390/ma15186317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 05/19/2023]
Abstract
Modification of zeolites with organic compounds is of increasing interest due to their significant potential in removing emerging pollutants from water. In this work, zeolites from fly ash with three different structure types, NaX (faujasite), NaA (Linde A) and NaP1 (gismondine), were modified with β-cyclodextrin (β-CD), and their adsorption efficacy towards tetracycline (TC) antibiotic in aqueous solutions have been studied. To assess the effect of modification on the zeolites, they were subjected to chemical, mineralogical and surface analyses using X-ray diffraction (XRD), thermogravimetry (TG), scanning electron microscope (SEM), N2 adsorption/desorption isotherm, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The maximum adsorption capacity for NaX-CD, NaA-CD and NaP1-CD was around 48, 60, and 38 mg/g, respectively. The fastest adsorption rate was observed for NaP1-CD, which achieved adsorption equilibria after 200 min, while for NaX-CD and NaA-CD it was established after around 24 h. The kinetic data were best described by the Elovich model, followed by pseudo-second order, while the Sips and Redlich-Peterson models were the most suitable to describe the adsorption isotherms. Based on the adsorption data as well as FTIR and XPS results, TC adsorption efficacy is strongly related to the amount of CD attached to the mineral, and hydrogen bonding formation probably plays the major role between CDs and adsorbate.
Collapse
Affiliation(s)
- Lidia Bandura
- Department of Construction Materials Engineering and Geoengineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
- Correspondence:
| | - Monika Białoszewska
- Department of Construction Materials Engineering and Geoengineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Tiina Leiviskä
- Chemical Process Engineering, University of Oulu, P.O. Box 4300, FIN-90014 Oulu, Finland
| | - Małgorzata Franus
- Department of Construction, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| |
Collapse
|
16
|
Azuma T, Nakano T, Koizumi R, Matsunaga N, Ohmagari N, Hayashi T. Evaluation of the Correspondence between the Concentration of Antimicrobials Entering Sewage Treatment Plant Influent and the Predicted Concentration of Antimicrobials Using Annual Sales, Shipping, and Prescriptions Data. Antibiotics (Basel) 2022; 11:472. [PMID: 35453223 PMCID: PMC9027251 DOI: 10.3390/antibiotics11040472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
The accuracy and correspondence between the measured concentrations from the survey and predicted concentrations on the basis of the three types of statistical antimicrobial use in Japan was evaluated. A monitoring survey of ten representative antimicrobials: ampicillin (APL), cefdinir (CDN), cefpodoxime proxetil (CPXP), ciprofloxacin (CFX), clarithromycin (CTM), doxycycline (DCL), levofloxacin (LFX), minocycline (MCL), tetracycline (TCL), and vancomycin (VMC), in the influent of sewage treatment plant (STP) located in urban areas of Japan, was conducted. Then, the measured values were verified in comparison with the predicted values estimated from the shipping volumes, sales volumes, and prescription volumes based on the National Database of Health Insurance Claims and Specific Health Checkups of Japan (NDB). The results indicate that the correspondence ratios between the predicted concentrations calculated on the basis of shipping and NDB volumes and the measured concentrations (predicted concentration/measured concentration) generally agreed for the detected concentration of antimicrobials in the STP influent. The correspondence ratio on the basis of shipping volume was, for CFX, 0.1; CTM, 2.9; LFX, 0.5; MCL, 1.9; and VMC, 1.7, and on the basis of NDB volume the measured concentration was CFX, 0.1; CTM, 3.7; DCL, 0.4; LFX, 0.7; MCL, 1.9; TCL, 0.6; and VMC, 1.6. To our knowledge, this is the first report to evaluate the accuracy of predicted concentrations based on sales, shipping, NDB statistics and measured concentrations for antimicrobials in the STP influent.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Environment and Health Sciences, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan;
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan;
| | - Ryuji Koizumi
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (R.K.); (N.M.); (N.O.)
| | - Nobuaki Matsunaga
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (R.K.); (N.M.); (N.O.)
| | - Norio Ohmagari
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (R.K.); (N.M.); (N.O.)
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tetsuya Hayashi
- Department of Environment and Health Sciences, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan;
- Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, Osaka 559-0033, Japan
| |
Collapse
|