1
|
Zhang C, Shi D, Wang C, Sun G, Li H, Hu Y, Li X, Hou Y, Zheng R. Pristine/magnesium-loaded biochar and ZVI affect rice grain arsenic speciation and cadmium accumulation through different pathways in an alkaline paddy soil. J Environ Sci (China) 2025; 147:630-641. [PMID: 39003078 DOI: 10.1016/j.jes.2023.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/15/2024]
Abstract
Cadmium (Cd) and arsenic (As) co-contamination has threatened rice production and food safety. It is challenging to mitigate Cd and As contamination in rice simultaneously due to their opposite geochemical behaviors. Mg-loaded biochar with outstanding adsorption capacity for As and Cd was used for the first time to remediate Cd/As contaminated paddy soils. In addition, the effect of zero-valent iron (ZVI) on grain As speciation accumulation in alkaline paddy soils was first investigated. The effect of rice straw biochar (SC), magnesium-loaded rice straw biochar (Mg/SC), and ZVI on concentrations of Cd and As speciation in soil porewater and their accumulation in rice tissues was investigated in a pot experiment. Addition of SC, Mg/SC and ZVI to soil reduced Cd concentrations in rice grain by 46.1%, 90.3% and 100%, and inorganic As (iAs) by 35.4%, 33.1% and 29.1%, respectively, and reduced Cd concentrations in porewater by 74.3%, 96.5% and 96.2%, respectively. Reductions of 51.6% and 87.7% in porewater iAs concentrations were observed with Mg/SC and ZVI amendments, but not with SC. Dimethylarsinic acid (DMA) concentrations in porewater and grain increased by a factor of 4.9 and 3.3, respectively, with ZVI amendment. The three amendments affected grain concentrations of iAs, DMA and Cd mainly by modulating their translocation within plant and the levels of As(III), silicon, dissolved organic carbon, iron or Cd in porewater. All three amendments (SC, Mg/SC and ZVI) have the potential to simultaneously mitigate Cd and iAs accumulation in rice grain, although the pathways are different.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Dong Shi
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chao Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guoxin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanxia Hu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaona Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanhui Hou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ruilun Zheng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
2
|
Liu P, Sun L, Zhang Y, Tan Y, Zhu Y, Peng C, Wang J, Yan H, Mao D, Liang G, Liang G, Li X, Liang Y, Wang F, He Z, Tang W, Huang D, Chen C. The metal tolerance protein OsMTP11 facilitates cadmium sequestration in the vacuoles of leaf vascular cells for restricting its translocation into rice grains. MOLECULAR PLANT 2024; 17:1733-1752. [PMID: 39354718 DOI: 10.1016/j.molp.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/22/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024]
Abstract
Rice (Oryza sativa) provides >20% of the consumed calories in the human diet. However, rice is also a leading source of dietary cadmium (Cd) that seriously threatens human health. Deciphering the genetic network that underlies the grain-Cd accumulation will benefit the development of low-Cd rice and mitigate the effects of Cd accumulation in the rice grain. In this study, we identified a QTL gene, OsCS1, which is allelic to OsMTP11 and encodes a protein sequestering Cd in the leaf during vegetative growth and preventing Cd from being translocated to the grain after heading in rice. OsCS1 is predominantly expressed in leaf vascular parenchyma cells, where it binds to a vacuole-sorting receptor protein OsVSR2 and is translocated intracellularly from the trans-Golgi network to pre-vacuolar compartments and then to the vacuole. In this trafficking process, OsCS1 actively transports Cd into the endomembrane system and sequesters it in the vacuoles. There are natural variations in the promoter of OsCS1 between the indica and japonica rice subspecies. Duplication of a G-box-like motif in the promoter region of the superior allele of OsCS1 from indica rice enhances the binding of the transcription factor OsIRO2 to the OsCS1 promoter, thereby promoting OsCS1 expression. Introgression of this allele into commercial rice varieties could significantly lower grain-Cd levels compared to the inferior allele present in japonica rice. Collectively, our findings offer new insights into the genetic control of leaf-to-grain Cd translocation and provide a novel gene and its superior allele for the genetic improvement of low-Cd variety in rice.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Sun
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yu Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yongjun Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yuxing Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Can Peng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jiurong Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Huili Yan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Donghai Mao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaoxiang Li
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yuntao Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy ofAgricultural Sciences, Nanning 530007, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhenyan He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Daoyou Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Caiyan Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
3
|
Tang X, Wang Y, Yin Y, Ding C, Zhou Z, He L, Li L, Guo Z, Li Z, Nie M, Zhang T, Wang X. Deciphering Cadmium Accumulation in Peanut Kernels through Growth Stages and Source Organs: A Multi-Stable Isotope Labeling Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24003-24012. [PMID: 39406201 DOI: 10.1021/acs.jafc.4c04415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The mechanisms of cadmium (Cd) uptake and redistribution throughout the peanut lifecycle remain unclear. This study employed multi-isotope labeling techniques in hydroponic and soil-foliar systems, revealing that Cd uptake during podding (Cdp) constituted 73.7% of kernel Cd content, whereas contributions from the flowering (Cdf) and seedling (Cds) stages were 22.2 and 4.1%, respectively. Stem-stored Cd (Cdstem) contributes 53.2% to kernel Cd accumulation, while leaf-stored Cd (Cdleaf) contributes 46.8%. Prestored Cdf in shoots demonstrated the most efficient transport to pods, approximately twice that of Cds and Cdp. Cds and Cdf were predominantly stored in leaves (51.0%), while Cdp mainly in stems (46.3%), 2.8 times its presence in leaves (16.5%), indicating distinct root-stem-kernel translocation. In the transfer of shoot Cd from stems to pods, 29.3% of Cdleaf and 25.0% of Cdstem were exported. This study provides novel insights into Cd dynamics in peanuts, establishing a foundation for future Cd regulation strategies.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurong Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuepeng Yin
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changfeng Ding
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigao Zhou
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liqin He
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Li
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihong Guo
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyao Li
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Nie
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taolin Zhang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxiang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Xiao C, Yang H, Chen X, Li J, Cai X, Long J. Application of Lanthanum at the Heading Stage Effectively Suppresses Cadmium Accumulation in Wheat Grains by Downregulating the Expression of TaZIP7 to Increase Cadmium Retention in Nodes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2921. [PMID: 39458868 PMCID: PMC11510972 DOI: 10.3390/plants13202921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Reducing cadmium (Cd) accumulation in wheat is an effective way to decrease the potential threats of Cd to human health. The application of lanthanum (La) in agricultural fields is eliciting extensive attention due to its beneficial effects on improving yields and inhibiting Cd accumulation in edible parts of crops. However, the potential mechanism of La-restricted Cd accumulation in crop grains is not entirely understood. Here, we investigated the effects of La and Cd accumulation in wheat grains by implementing application at the shooting and heading stages. Some associated mechanisms were explored. Results showed that La application at the shooting and heading stages considerably promoted the thousand-grain weight. La application at the shooting and heading stages increased Cd accumulation in the first node beneath the panicle (N1) but reduced Cd levels in the other tissues. La application at the heading stage exerted greater effects on Cd storage in N1 while reducing Cd concentrations in the other tissues compared with La application at the shooting stage. La addition substantially decreased the translocation of Cd from the lower nodes to the upper internodes, but increased Cd translocation from the lower internodes to the upper nodes. The expression of TaZIP7 in N1 was downregulated by La treatment. These results suggest that the effective reduction in Cd in wheat grains by La application at the heading stage is probably a consequence of the successful promotion of Cd storage in nodes by downregulating the expression of TaZIP7 during the grain-filling stage, thereby hindering the redirection Cd from nodes to grains.
Collapse
Affiliation(s)
- Caixia Xiao
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China; (C.X.); (X.C.)
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
| | - Hua Yang
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China; (C.X.); (X.C.)
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
| | - Xingwang Chen
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China; (C.X.); (X.C.)
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
| | - Jie Li
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China; (C.X.); (X.C.)
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
| | - Xiongfei Cai
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China; (C.X.); (X.C.)
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
| | - Jian Long
- Guizhou Key Laboratory of Mountain Environment, Guizhou Normal University, Guiyang 550001, China;
| |
Collapse
|
5
|
Huang G, Wu Y, Cheng L, Zhou D, Wang X, Ding M, Wang P, Wang Y. Spatial heterogeneity of soil moisture caused by drainage and its effects on cadmium variation in rice grain within individual fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174500. [PMID: 38971245 DOI: 10.1016/j.scitotenv.2024.174500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Paddy drainage is the critical period for rice grain to accumulate cadmium (Cd), however, its roles on spatial heterogeneity of grain Cd within individual fields are still unknown. Herein, field plot experiments were conducted to study the spatial variations of rice Cd under continuous and intermittent (drainage at the tillering or grain-filling or both stages) flooding conditions. The spatial heterogeneity of soil moisture and key factors involved in Cd mobilization during drainages were further investigated to explain grain Cd variation. Rice grain Cd levels under continuous flooding ranged from 0.16 to 0.22 mg kg-1 among nine sampling sites within an individual field. Tillering drainage slightly increased grain Cd levels (0.19-0.31 mg kg-1) with little change in spatial variation. However, grain-filling drainage greatly increased grain Cd range to 0.33-0.95 mg kg-1, with a huge spatial variation observed among replicated sites. During two drainage periods, soil moisture decreased variously in different monitoring sites; greater variation (mean values ranged from 0.14 to 0.27 m3 m-3) was observed during grain-filling drainage. Accordingly, 2.9-3.3-fold variation in soil Eh and 0.55-0.67-unit variation in soil pH were observed among those sites. In the soil with low moisture, ferrous fractions such as ferrous sulfide (FeS) were prone to be oxidized to ferric fractions; meanwhile, the followed generation of hydroxyl radicals involved in Cd remobilization was enhanced. Consequently, soil dissolved Cd changed from 2.97 to 8.92 μg L-1 among different sampling sites during grain-filling drainage; thus, large variation was observed in grain Cd levels. The findings suggest that grain-filling drainage is the main process controlling spatial variation of grain Cd, which should be paid more attention in paddy Cd evaluation.
Collapse
Affiliation(s)
- Gaoxiang Huang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China; State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yu Wu
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Linxiu Cheng
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Dongmei Zhou
- School of Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Xingxiang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingjun Ding
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Peng Wang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Yurong Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
6
|
Chen S, Jiang K, Xiang N, Hu J, Liu J, Cheng Y. A holistic field experimental inquiry into cadmium's migration and translocation dynamics across the entire growth spectrum of five Japonica rice cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176744. [PMID: 39389135 DOI: 10.1016/j.scitotenv.2024.176744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
The contamination of farmland soils with cadmium (Cd) poses a substantial threat to agricultural productivity, food security and safety, and ultimately human health. However, little research has been done on the Cd transport mechanisms in highly Cd polluted soil via field experiment. This study, from a field-scale perspective, examines the migration and transformation features of Cd throughout the growth cycle of five (C1, C2, C3, C4, H1) Japonica rice cultivars in Jiangsu Province, China. Analysis of pH, SOM, total Cd, DTPA-Cd, and microbial communities were conducted. C1 ~ C3 were classified as High Cd-accumulating rice (HC), while C4 and H1 were considered as low Cd-accumulating rice (LC) based on the Cd levels in their brown rice. Phloem was confirmed as the main pathway for Cd into rice grains in high-Cd soil. For the HC group, the Cd concentration in brown and polished rice was positively correlated with the Cd concentration in the leaves and spikes; while for the LC group, they were significantly positively correlated with the Cd concentration in both stem and spike (p < 0.05). The husks of the LC group were more effective in intercepting and sequestering Cd. It was revealed that 6 % ~ 9.09 % of the Cd content detected in the rice grains could be attributed to the internal translocation processes occurring within the plant itself, and approximately 90.91 % ~ 93.84 % of the Cd was traced back to the roots' absorption during grouting. Rice polishing decreased the Cd content from the level in the brown rice by 18 % ~ 47 %. Distinct microbial profiles separated rice rhizosphere from bulk soil, with the former favouring copiotrophs in nutrient-rich zones and the latter oligotrophs in lean conditions. This study delivers crucial data support from a field perspective for a deeper understanding and control of Cd migration and transformation processes in highly Cd-contaminated soil.
Collapse
Affiliation(s)
- Siyan Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Kunwu Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Nuoyu Xiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Jie Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Jinming Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yuanyuan Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| |
Collapse
|
7
|
Liu Y, Ma J, Chu J, Sun W, Wang Q, Liu Y, Zou P, Ma J. Machine learning and structural equation modeling for revealing the influence factors and pathways of different water management regimes acting on brown rice cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176033. [PMID: 39322080 DOI: 10.1016/j.scitotenv.2024.176033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/01/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024]
Abstract
Excessive cadmium (Cd) in brown rice has detrimental effects on rice growth and human health. Water management is a cost-effective, eco-friendly measure to suppress Cd accumulation in rice. However, there is no acknowledged water management regime that reduces Cd accumulation in brown rice without compromising the yield. Meanwhile, the major factors affecting brown rice Cd and the pathways of water management affecting rice Cd are not clear. This study explored major factors affecting brown rice Cd using machine learning (ML) and examined the pathways of water management affecting rice Cd using a structural equation model (SEM). Three water management systems were set up, namely flooding, water-saving, and wetting irrigation. Results showed that water-saving irrigation increased dry matter and reduced Cd content and translocation. Root uptake during the grain filling stage and Cd remobilization before the grain filling stage contributed 36 % and 64 % of the Cd accumulation in brown rice, respectively. ML explained 97 % of the variance, suggesting that crop covariates were the most important (e.g., the brown rice bioconcentration factor (12 %), stem Cd (9 %), root-to-stem translocation factor (7 %)), followed by soil covariates (e.g., reducing substances 12 %) and water management (3 %). All SEM explanatory variables collectively explained 94 % of the variation, with a predictive power of 76 %. Water treatments indirectly affected soil available Fe and Mn (indirect effect coefficient = 0.909), iron plaques (indirect effect coefficient = 0.866), soil available Cd (indirect effect coefficient = -0.671), and Cd intensity of xylem sap (BICd, indirect effect coefficient = -0.664) via pH and reducing substances. BICd significantly positively affected stem Cd (path coefficient = 0.445). These findings provide insight into the agronomic and environmental effects of water management on brown rice Cd and influence pathways in soil-rice systems, suggesting that water-saving irrigation may alleviate Cd contamination in the paddy soil.
Collapse
Affiliation(s)
- Yingxia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Jinchuan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Junjie Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Wanchun Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yangzhi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Ping Zou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
8
|
Tian K, Liang Q, He Y, Ma J, Zhao T, Wu Q, Hu W, Huang B, Khan KS, Teng Y. Quantitative assessment of Cd sources in rice grains through Cd isotopes and MixSIAR model in a typical e-waste dismantling area of Southeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176217. [PMID: 39276999 DOI: 10.1016/j.scitotenv.2024.176217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Identification of Cd sources and quantification of their contribution to rice grain Cd is crucial for controlling accumulation of this toxic metal in rice grains. However, accurate assessment of the contribution of different Cd sources to grain Cd concentration in rice under actual field conditions is a challenge. In this study, we determined Cd concentration and their isotopic compositions in rice grains with respect to three potential Cd sources around an e-waste dismantling area in Taizhou City, Zhejiang Province, China. Results demonstrated that average Cd concentrations in grains, surface soils, atmospheric deposition and surface water were 0.32, 0.91, 1.99 mg kg-1 and 2.02 μg L-1, respectively. The δ114/110Cd values of grains, surface soils, surface water and atmospheric deposition ranged from 0.00 ‰ to 0.31 ‰, -0.21 ‰ to 0.14 ‰, -0.04 ‰ to 0.47 ‰, and - 0.25 ‰ to -0.18 ‰, respectively. The MixSIAR model indicated that contribution of soils, irrigation water and atmospheric deposition to grain Cd was 56.8 %, 24.8 % and 18.4 %, respectively, demonstrating soils as the major source of grain Cd in the study area. This study also highlighted significant contribution of irrigation water and atmospheric deposition to Cd concentration in rice grains. The Cd isotopic analysis provides a practical approach for source apportionment of grain Cd and data support for controlling Cd accumulation in rice around the e-waste dismantling area.
Collapse
Affiliation(s)
- Kang Tian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qiang Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yue He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Jingxuan Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tiantian Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qiumei Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wenyou Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Biao Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Khalid Saifullah Khan
- Institute of Soil and Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Ying Teng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
9
|
Ge Y, Jia P, Tian S, Lu L. Cadmium distribution in rice: Understanding the role of plant nodes and growth stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124919. [PMID: 39251124 DOI: 10.1016/j.envpol.2024.124919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/18/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cadmium (Cd) contamination in farmland poses a significant threat to food security in staple crops, especially rice. Using a mix of hydroponic and soil culture methods, stable isotope tracers, and advanced analytical techniques, this study elucidated the mechanisms of Cd uptake, translocation, and accumulation in rice throughout different growth stages. Despite a notable linear correlation between soil DTPA (diethylene-triaminepentaacetic acid)-Cd and the total Cd concentration of rice, our findings showed that the influence of soil Cd level on the proportion of Cd in grain was negligible. The study highlighted the dynamic response of Cd distribution within plant nodes to changes in DTPA-extractable Cd. Heading stage (HS) and mature stage (MS) were critical for Cd uptake and upward transport in rice, and the contribution of Cd absorption in brown rice was 28.61% and 40.16%, respectively. Moreover, the distribution of Cd in nodes showed how important nodes are for controlling and redistributing Cd in rice. In the HS, the lower node had a function in re-transporting, whereas in the MS, there was a considerable redistribution of Cd in the upper node. These insights can help us understand rice Cd dynamics and develop agronomic techniques and rice cultivars that minimize Cd accumulation.
Collapse
Affiliation(s)
- Yining Ge
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peihan Jia
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Shan C, Shi C, Liang X, Zu Y, Wang J, Li B, Chen J. Variations in Root Characteristics and Cadmium Accumulation of Different Rice Varieties under Dry Cultivation Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2457. [PMID: 39273941 PMCID: PMC11397469 DOI: 10.3390/plants13172457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Variations in the cadmium (Cd) accumulation and root characteristics of different genotypes of rice during three developmental periods of dry cultivation were investigated in pot experiments in which two levels of Cd were added to the soil (0 and 10 mg kg-1). The results show that the Cd concentration in each organ of the different rice genotypes decreased in both the order of roots > shoots > grains and during the three developmental periods in the order of the maturity stage > booting stage > tillering stage. The lowest bioaccumulation factor (BCF) and translocation factor (TF) were found in Yunjing37 (YJ37) under Cd stress. At maturity, Cd stress inhibited the root length of Dianheyou34 (DHY34) the most and that of Dianheyou 918 (DHY918) the least, also affecting the root volume of DHY34 and Dianheyou615 (DHY615) the most and that of YJ37 and Yiyou 673 (YY673) the least; the inhibition rates were 41.80, 5.09, 40.95, and 10.51%, respectively. The exodermis showed the greatest thickening in YY673 and the lowest thickening in DHY615, while the endodermis showed the opposite result. The rates of change were 16.48, 2.45, 5.10, and 8.49%, respectively. The stele diameter of DHY615 decreased the most, and that of YY673 decreased the least, while the secondary xylem area showed the opposite result; the rates of change were -21.50, -14.29, -5.86, and -26.35%, respectively. Under Cd stress treatment at maturity, iron plaque was extracted using the dithionite-citrate-bicarbonate (DCB) method. The concentration of iron (DCB-Fe) was highest in YJ37, and the concentration of cadmium (DCB-Cd) was lowest in DHY34. YJ37 was screened as a low Cd-accumulating variety. The concentration of available Cd in the rhizosphere soil, iron plaque, root morphology, and anatomy affect Cd accumulation in rice with genotypic differences. Our screening of Cd-accumulating rice varieties provides a basis for the dry cultivation of rice in areas with high background values of Cd in order to avoid the health risks of Cd intake.
Collapse
Affiliation(s)
- Chaoping Shan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Can Shi
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Jixiu Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Jianjun Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
11
|
Huang BY, Lü QX, Tang ZX, Tang Z, Chen HP, Yang XP, Zhao FJ, Wang P. Machine learning methods to predict cadmium (Cd) concentration in rice grain and support soil management at a regional scale. FUNDAMENTAL RESEARCH 2024; 4:1196-1205. [PMID: 39431142 PMCID: PMC11489518 DOI: 10.1016/j.fmre.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Rice is a major dietary source of the toxic metal cadmium (Cd). Concentration of Cd in rice grain varies widely at the regional scale, and it is challenging to predict grain Cd concentration using soil properties. The lack of reliable predictive models hampers management of contaminated soils. Here, we conducted a three-year survey of 601 pairs of soil and rice samples at a regional scale. Approximately 78.3% of the soil samples exceeded the soil screening values for Cd in China, and 53.9% of rice grain samples exceeded the Chinese maximum permissible limit for Cd. Predictive models were developed using multiple linear regression and machine learning methods. The correlations between rice grain Cd and soil total Cd concentrations were poor (R 2 < 0.17). Both linear regression and machine learning methods identified four key factors that significantly affect grain Cd concentrations, including Fe-Mn oxide bound Cd, soil pH, field soil moisture content, and the concentration of soil reducible Mn. The machine learning-based support vector machine model showed the best performance (R 2 = 0.87) in predicting grain Cd concentrations at a regional scale, followed by machine learning-based random forest model (R 2 = 0.67), and back propagation neural network model (R 2 = 0.64). Scenario simulations revealed that liming soil to a target pH of 6.5 could be one of the most cost-effective approaches to reduce the exceedance of Cd in rice grain. Taken together, these results show that machine learning methods can be used to predict Cd concentration in rice grain reliably at a regional scale and to support soil management and safe rice production.
Collapse
Affiliation(s)
- Bo-Yang Huang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi-Xin Lü
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Xian Tang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong Tang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong-Ping Chen
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Ping Yang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Ouyang Q, Liu N, Fan Z, Li F, Ge F. The chelation mechanism of neonicotinoid insecticides influencing cadmium transport and accumulation in rice at different growth stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173257. [PMID: 38761944 DOI: 10.1016/j.scitotenv.2024.173257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/30/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The combined exposure of heavy metals and organic contaminates can influence the transport and accumulation of heavy metals within the soil-rice system. However, the underlying mechanisms of this process remain largely unknown. Herein, this study investigated the influence of three neonicotinoid insecticides (NIs), including imidacloprid (IMI), clothianidin (CLO), and thiamethoxam (THI), on the Cd transport and accumulation in rice (Oryza sativa) at different growth stages. Particular focus lied on their complex interaction and key genes expression involved in Cd transport. Results showed that the interaction between Cd and NIs was the dominant factor affecting Cd transport and accumulation in rice exposed to NIs. All three NIs chelated with Cd with nitrogen (N) on the IMI and THI nitro groups, and the N on the CLO nitro guanidine group. Interestingly, this chelation behavior varied between the tillering stage and the filling/ripening stages, resulting in diverse patterns of Cd accumulation in rice tissues. During the tillering stage, all three NIs considerably inhibited Cd bioavailability and transport to the above-ground part, lowering Cd content in the stem and leaf. The inhibition was increased with stronger chelation ability in the order of IMI (-0.46 eV) > CLO (-0.41 eV) > THI (-0.11 eV), with IMI exhibiting the highest binding energy for Cd and reducing Cd transfers from root to stem by an impressive 94.49 % during the tillering stage. Conversely, during the filling/ripening stages, NIs facilitated Cd accumulation in rice roots, stems, leaves, and grains. This was mainly attributed to the generation of nitrate ions and the release of Cd2+ during the chelation between Cd and NIs under drainage condition. These findings provide theoretical basis for the treatment of combined contamination in field and deep insights into understanding the interaction of organic contaminants with heavy metals in rice culture process.
Collapse
Affiliation(s)
- Qiongfang Ouyang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Science and Technology Innovative Research Team in University of Hunan Province of Environmental Behavior and Collaborative Treatment of New Pollutants, Xiangtan 411105, China; Hunan Provincial University Key Laboratory of Environmental and ecological health, Xiangtan 411105, China
| | - Zhaoxia Fan
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Science and Technology Innovative Research Team in University of Hunan Province of Environmental Behavior and Collaborative Treatment of New Pollutants, Xiangtan 411105, China; Hunan Provincial University Key Laboratory of Environmental and ecological health, Xiangtan 411105, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Science and Technology Innovative Research Team in University of Hunan Province of Environmental Behavior and Collaborative Treatment of New Pollutants, Xiangtan 411105, China; Hunan Provincial University Key Laboratory of Environmental and ecological health, Xiangtan 411105, China.
| |
Collapse
|
13
|
Cui B, Luo H, Yao X, Xing P, Deng S, Zhang Q, Yi W, Gu Q, Peng L, Yu X, Zuo C, Wang J, Wang Y, Tang X. Nanosized-Selenium-Application-Mediated Cadmium Toxicity in Aromatic Rice at Different Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:2253. [PMID: 39204689 PMCID: PMC11359265 DOI: 10.3390/plants13162253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) pollution restricts the rice growth and poses a threat to human health. Nanosized selenium (NanoSe) is a new nano material. However, the effects of NanoSe application on aromatic rice performances under Cd pollution have not been reported. In this study, a pot experiment was conducted with two aromatic rice varieties and a soil Cd concentration of 30 mg/kg. Five NanoSe treatments were applied at distinct growth stages: (T1) at the initial panicle stage, (T2) at the heading stage, (T3) at the grain-filling stage, (T1+2) at both the panicle initial and heading stages, and (T1+3) at both the panicle initial and grain-filling stages. A control group (CK) was maintained without any application of Se. The results showed that, compared with CK, the T1+2 and T1+3 treatments significantly reduced the grain Cd content. All NanoSe treatments increased the grain Se content. The grain number per panicle, 1000-grain weight, and grain yield significantly increased due to NanoSe application under Cd pollution. The highest yield was recorded in T3 and T1+3 treatments. Compared with CK, all NanoSe treatments increased the grain 2-acetyl-1-pyrroline (2-AP) content and impacted the content of pyrroline-5-carboxylic acid and 1-pyrroline which are the precursors in 2-AP biosynthesis. In conclusion, the foliar application of NanoSe significantly reduced the Cd content, increased the Se content, and improved the grain yield and 2-AP content of aromatic rice. The best amendment was applying NanoSe at both the panicle initial and grain-filling stages.
Collapse
Affiliation(s)
- Baoling Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xiangbin Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Pipeng Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Sicheng Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Qianqian Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Wentao Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Qichang Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Ligong Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xianghai Yu
- Green Huinong Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518107, China
| | - Changjian Zuo
- Green Huinong Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518107, China
| | - Jingjing Wang
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen 518000, China
| | - Yangbo Wang
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen 518000, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| |
Collapse
|
14
|
Wang H, Teng L, Mao X, He T, Fu T. Comparing the Effects of Lime Soil and Yellow Soil on Cadmium Accumulation in Rice during Grain-Filling and Maturation Periods. PLANTS (BASEL, SWITZERLAND) 2024; 13:2018. [PMID: 39124137 PMCID: PMC11313791 DOI: 10.3390/plants13152018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
The karst area has become a high-risk area for Cadmium (Cd) exposure. Interestingly, the high levels of Cd in soils do not result in an excessive bioaccumulation of Cd in rice. Carbonate rock dissolution ions (CRIs) could limit the accumulation and translocation of Cd in rice. CRIs can become a major bottleneck in the remediation and management of farmlands in karst areas. However, there is limited research on the effects of CRIs in soils on Cd accumulation in rice. The karst area of lime soil (LS) and the non-karst areas of yellow soil (YS) were collected, and an external Cd was added to conduct rice cultivation experiments. Cd and CRIs (Ca2+, Mg2+, CO32-/HCO3-, and OH-) in the rice-soil system were investigated from the grain-filling to maturity periods. The results showed that CRIs of LS were significantly higher than that of YS in different treatments. CRIs of LS were 2.05 mg·kg-1 for Ca2+, 0.90 mg·kg-1 for Mg2+, and 42.29 mg·kg-1 for CO32- in LS. CRIs could influence DTPA Cd, resulting in DTPA Cd of LS being lower than that of YS. DTPA Cd of YS was one to three times larger than that of YS. Cd content in different parts of rice in YS was higher than that of LS. Cd in rice grains of YS was one to six times larger than that of LS. The uptake of Cd from the soil during Filling III was critical in determining rice Cd accumulation. CRIs in the soil could affect Cd accumulation in rice. Ca2+ and Mg2+ had significant negative effects on Cd accumulation of rice at maturity and filling, respectively. CO32-/HCO3- and OH- had significant negative effects on DTPA Cd in soil.
Collapse
Affiliation(s)
- Hu Wang
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China; (H.W.); (T.H.)
- Guizhou Chuyang Ecological Environmental Protection Technology Co., Ltd., Guiyang 550025, China
| | - Lang Teng
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China; (H.W.); (T.H.)
| | - Xu Mao
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China; (H.W.); (T.H.)
| | - Tengbing He
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China; (H.W.); (T.H.)
| | - Tianling Fu
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China; (H.W.); (T.H.)
- Guizhou Chuyang Ecological Environmental Protection Technology Co., Ltd., Guiyang 550025, China
| |
Collapse
|
15
|
Deng X, Wu W, Ma Q, Zhao Y, Zhang Q, Tang Y, Luo S, Peng L, Zeng Q, Yang Y. The impact on Cd bioavailability and accumulation in rice (Oryza sativa L.) induced by dry direct-seeding cultivation method in field-scale experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172875. [PMID: 38703839 DOI: 10.1016/j.scitotenv.2024.172875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Dry direct-seeded rice cultivation has gained popularity and expanded its cultivated area due to reduced labor requirements and water consumption. However, the impact of this cultivation method on cadmium (Cd) bioavailability in soil and the accumulation levels in grains remains uncertain. Field experiments were conducted in acidic soils at two locations in southern China to compare rice varieties and evaluate the dry direct-seeding method alongside the wet direct-seeding and traditional transplanting methods. Dry direct-seeded rice reached significantly higher Cd concentrations in its tissues starting from the heading stage than transplanted rice. Cd accumulation levels by the maturation stage in the brown rice of dry direct-seeded rice were 18.33 %-150.69 % higher than those of wet direct-seeded and transplanted rice, with a considerable ability to translocate Cd into brown rice. Furthermore, dry direct seeding decreased iron plaque formation, particularly in the amorphous Fe form; it resulted in high soil temperature and low moisture content during tillering, elevating Cd availability in the soil. Additionally, the proportion of ions and more labile forms of Cd in the soil solution was high. Moreover, the soil under dry direct seeding had high urease and acid phosphatase enzyme activities. However, low richness and diversity in the bacterial community were characterized by a significant increase in the relative abundance of Actinobacteria and Gammaproteobacteria at the class level, while exhibiting decreased relative abundances of Alphaproteobacteria, Bacilli, and KD4-96, along with fewer biomarkers. Nonetheless, these differences are gradually reduced during the maturation stage. Overall, although dry direct seeding offers several advantages, it is crucial to implement additional measures to mitigate the increased health risks linked to rice cultivation through this approach in Cd-contaminated areas.
Collapse
Affiliation(s)
- Xiao Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Weijian Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Qiao Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yingyue Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Qiying Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yunpeng Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Si Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Liang Peng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Qingru Zeng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yang Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
16
|
Hussain B, Yin X, Lin Q, Hamid Y, Usman M, Hashmi MLUR, Lu M, Imran Taqi M, He Z, Yang XE. Mitigating cadmium exposure risk in rice with foliar nano-selenium: Investigations through Caco-2 human cell line in-vivo bioavailability assay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124356. [PMID: 38866319 DOI: 10.1016/j.envpol.2024.124356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
The contamination of paddy fields by cadmium and lead is a major issue in China. The consumption of rice grown in heavy metals contaminated areas poses severe health risks to humans, where bioavailability and bioaccessibility remains the critical factor for risk determination. Selenium nanoparticles (Se-NPs) can mitigate the toxicity of heavy metals in plants. However, there exists limited information regarding the role of Se-NPs in dictating cadmium (Cd) toxicity in rice for human consumption. Moreover, the impact of Se-NPs under simultaneous field and laboratory controlled conditions is rarely documented. To address this knowledge gap, a field experiment was conducted followed by laboratory scale bioavailability assays. Foliar application of Se-NPs and selenite (at 5, 10 mg L-1) was performed to assess their efficiency in lowering Cd accumulation, promoting Se biofortification in rice grains, and evaluating Cd exposure risk from contaminated rice. Obtained results indicate that foliar treatments significantly reduced the heavy metal accumulation in rice grains. Specifically, Se-NP 10 mg L-1 demonstrated higher efficiency, reducing Cd and Pb by 56 and 32 % respectively. However, inconsistent trends for bioavailable Cd (0.03 mg kg-1) and bioaccessible (0.04 mg kg-1) were observed while simulated human rice intake. Furthermore, the foliage application of Se-NPs and selenite improved rice quality by elevating Se, Zn, Fe, and protein levels, while lowering phytic acid content in rice grains. In summary, this study suggests the promising potential of foliage spraying of Se-NPs in lowering the health risks associated with consuming Cd-contaminated rice.
Collapse
Affiliation(s)
- Bilal Hussain
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Xianyuan Yin
- Beautiful Rural Construction Center of Quzhou, Quzhou, 324003, Zhejiang, China
| | - Qiang Lin
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Usman
- Université de Rennes, Ecole National e Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Muhammad Laeeq-Ur-Rehman Hashmi
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Min Lu
- State Key Laboratory of Nutrient Use and Management, Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Muhammad Imran Taqi
- Department of Soil & Environmental Sciences, College of Agriculture, University of Sargodha, 40100 Sargodha, Pakistan
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida, 34945, USA
| | - Xiao E Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Wei B, Zhang D, Jeyakumar P, Trakal L, Wang H, Sun K, Wei Y, Zhang X, Ling H, He S, Wu H, Huang Z, Li C, Wang Z. Iron-modified biochar effectively mitigates arsenic-cadmium pollution in paddy fields: A meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133866. [PMID: 38422732 DOI: 10.1016/j.jhazmat.2024.133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The escalating problem of compound arsenic (As) and cadmium (Cd) contamination in agricultural soils necessitates the urgency for effective remediation strategies. This is compounded by the opposing geochemical behaviors of As and Cd in soil, and the efficacy of biochar treatment remains unclear. This pioneering study integrated 3780 observation pairs referred from 92 peer-reviewed articles to investigate the impact of iron-modified biochar on As and Cd responses across diverse soil environments. Regarding the treatments, 1) biochar significantly decreased the exchangeable and acid-soluble fraction of As (AsF1, 20.9%) and Cd (CdF1, 24.0%) in paddy fields; 2) iron-modified biochar significantly decreased AsF1 (32.0%) and CdF1 (27.4%); 3) iron-modified biochar in paddy fields contributed to the morphological changes in As and Cd, mainly characterized by a decrease in AsF1 (36.5%) and CdF1 (36.3%) and an increase in the reducible fraction of As (19.7%) and Cd (39.2%); and 4) iron-modified biochar in paddy fields increased As (43.1%) and Cd (53.7%) concentrations in the iron plaque on root surfaces. We conclude that iron-modified biochar treatment of paddy fields is promising in remediating As and Cd contamination by promoting the formation of iron plaque.
Collapse
Affiliation(s)
- Beilei Wei
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dongliang Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Lukáš Trakal
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Environmental Geosciences, Kamýcká 129, 165 21, Praha 6, Suchdol, Czech Republic
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Keke Sun
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ying Wei
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaoqi Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Huarong Ling
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shijie He
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hanqian Wu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhigang Huang
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Chong Li
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Ziting Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
18
|
Huang H, Tian Z, Guo D, Tang Z, Li R, Ali A, Cao Z, Lu H, Shen Y, Zhu Y, Han J. Rice straw returning enhances cadmium activation by accelerating iron cycling thus hydroxyl radical production in paddy soils during drainage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171543. [PMID: 38453068 DOI: 10.1016/j.scitotenv.2024.171543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Straw returning is widely found elevating the bioavailability of cadmium (Cd) in paddy soils with unclear biogeochemical mechanisms. Here, a series of microcosm incubation experiments were conducted and spectroscopic and microscopic analyses were employed. The results showed that returning rice straw (RS) efficiently increased amorphous Fe and low crystalline Fe (II) to promote the production of hydroxyl radicals (OH) thus Cd availability in paddy soils during drainage. On the whole, RS increased OH and extractable Cd by 0.2-1.4 and 0.1-3.3 times, respectively. While the addition of RS effectively improved the oxidation rate of structural Fe (II) mineral (i.e., FeS) to enhance soil Cd activation (up to 38.5 %) induced by the increased OH (up to 69.2 %). Additionally, the existence of CO32- significantly increased the efficiency level on OH production and Cd activation, which was attributed to the improved reactivity of Fe (II) by CO32- in paddy soils. Conclusively, this study emphasizes risks of activating soil Cd induced by RS returning-derived OH, providing a new insight into evaluating the safety of straw recycling.
Collapse
Affiliation(s)
- Hui Huang
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Zhuoqi Tian
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Di Guo
- School of Petroleumn Engineering and Environmental Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Zhixian Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Zhengxian Cao
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Haiying Lu
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Yu Shen
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yongli Zhu
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiangang Han
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China.
| |
Collapse
|
19
|
Pan SF, Ji XH, Liu XL, Xie YH, Xiao SY, Tian FX, Xue T, Liu SH. Influence of landform, soil properties, soil Cd pollution and rainfall on the spatial variation of Cd in rice: Contribution and pathway models based on big data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168687. [PMID: 37996024 DOI: 10.1016/j.scitotenv.2023.168687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Landform, soil properties, soil cadmium (Cd) pollution and rainfall are the important factors affecting the spatial variation of rice Cd. In this study, we conducted big data mining and model analysis of 150,000 rice-soil sampling sites to examine the effects by the above four factors on the spatial variation of rice Cd in Hunan Province, China. Specifically, the variable coefficient of rice Cd in space was significantly correlated with the partition scale according to the logistic fitting. The improved random forest results suggested that elevation (DEM) and pH were the two most important factors affecting the spatial variation of rice Cd, followed by relief, soil Cd content and rainfall. Typically, variance partitioning analysis (VPA) revealed that both the soil property and the interactive effects between the soil property and Cd pollution were the principal contributors to the rice-Cd variation, with the respective contributing rates of 30.5 % and 29.0 %. Meanwhile, the partial least square-structural equation modelling (PLS-SEM) elucidated 4 main paths of specific indirect effects on rice-Cd variation. They were landform → physicochemical property → soil acidity → rice-Cd variation, landform → soil acidity → rice-Cd variation, physicochemical property → soil acidity → rice-Cd variation, and soil texture → soil acidity → rice-Cd variation. This work can provide a general guidance for scientific zoning, accurate prediction and prevention of Cd pollution in paddy fields.
Collapse
Affiliation(s)
- Shu-Fang Pan
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha 410125, China
| | - Xiong-Hui Ji
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha 410125, China.
| | - Xin-Liang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yun-He Xie
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha 410125, China
| | - Shun-Yong Xiao
- Ecological Environment Rural Station of Hunan Province, Changsha 410014, China
| | - Fa-Xiang Tian
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha 410125, China
| | - Tao Xue
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha 410125, China
| | - Sai-Hua Liu
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha 410125, China.
| |
Collapse
|
20
|
Li XY, Li XY, Jiang YF, Zhang C, Yang Q, Manzoor M, Luo J, Guan DX. High-resolution chemical imaging to understand Cd activation in rice rhizosphere of karstic soils. CHEMOSPHERE 2024; 349:140988. [PMID: 38122945 DOI: 10.1016/j.chemosphere.2023.140988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Cadmium (Cd) activation, especially at a high spatial resolution, in paddy soils with a high geogenic Cd background is yet to be understood. To investigate the temporal and spatial patterns of Cd activation in rice rhizosphere, pot and rhizotron experiments were conducted using four paddy soils with high geogenic Cd (0.11-3.70 mg kg-1) from Guangxi, southwestern China. The pot experiment results showed that porewater Cd concentrations initially decreased and then increased over the complete rice growth period, reaching its lowest value during the late-tillering and early-filling stages. Besides, correlation analysis identified organic matter and root manganese (Mn) content as the main factors affecting rice Cd uptake, with Mn having a negative effect and organic matter having a positive effect. Sub-millimeter two-dimensional chemical imaging revealed that the distribution of labile Cd in the rhizosphere (by diffusive gradients in thin-films, or DGT) was influenced by the root system and soil properties, such as pH (by planar optode) and acid phosphatase activity (by soil zymography). Soil acid phosphatase activity increased under Cd stress. The overall pH at rice rhizosphere decreased. Moreover, a close relationship was found between the spatial distributions of soil labile Mn and Cd at the rhizosphere, with higher Mn being associated with lower Cd lability. This study highlights Mn as a key element in regulating rice Cd uptake and enlightens future Mn-based strategies for addressing Cd pollution in rice paddy soils, especially in karst areas with high geochemical background.
Collapse
Affiliation(s)
- Xing-Yue Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xi-Yuan Li
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yi-Fan Jiang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Maria Manzoor
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Liu M, Wang X, Tang S, Zhou J, Liu L, Ma Q, Wu L, Xu M. Remobilization of Cd caused by iron oxide phase transformation and Mn 2+ competition after stabilization by nano zero valent iron. CHEMOSPHERE 2024; 350:141091. [PMID: 38171399 DOI: 10.1016/j.chemosphere.2023.141091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Stabilization techniques are vital in controlling Cd soil pollution. Nano zero valent iron (nZVI) has been extensively utilized for Cd remediation owing to its robust adsorption and reactivity. However, the environmental stress-induced stability of Cd after nZVI addition remains unclear. A pot experiment was conducted to evaluate the Cd bioavailability in continuously flooded (130 d) soil after stabilization with nZVI. The findings indicated that nZVI application did not result in a decline in Cd concentration in rice, as compared to the no-nZVI control. Additionally, nZVI simultaneously increased the available Cd concentration, iron-manganese oxide-bound (OX) Mn fraction, and relative abundance of Fe(III)-reducing bacteria, but it decreased OX-Cd and Mn availability in soil. Cadmium in rice tissues was positively correlated with the available Cd in soil. The results of subsequent adsorption tests demonstrated that CdO was the product of Cd adsorption by the nZVI aging products. Conversely, Mn2+ decreased the adsorption capacity of Cd-containing solutions. These results underscore the crucial role of both biotic and abiotic factors in undermining the stabilization of nZVI under continuous flooding conditions. This study offers novel insights into the regulation of nZVI-mediated Cd stabilization efficiency in conjunction with biological inhibitors and functional modification techniques.
Collapse
Affiliation(s)
- Mengjiao Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiya Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Sheng Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingjie Zhou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Longfei Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Qingxu Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lianghuan Wu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Meng Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Wan Y, Liu J, Zhuang Z, Wang Q, Li H. Heavy Metals in Agricultural Soils: Sources, Influencing Factors, and Remediation Strategies. TOXICS 2024; 12:63. [PMID: 38251018 PMCID: PMC10819638 DOI: 10.3390/toxics12010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Soil heavy metal pollution is a global environmental challenge, posing significant threats to eco-environment, agricultural development, and human health. In recent years, advanced and effective remediation strategies for heavy metal-contaminated soils have developed rapidly, and a systematical summarization of this progress is important. In this review paper, first, the anthropogenic sources of heavy metals in agricultural soils, including atmospheric deposition, animal manure, mineral fertilizers, and pesticides, are summarized. Second, the accumulation of heavy metals in crops as influenced by the plant characteristics and soil factors is analyzed. Then, the reducing strategies, including low-metal cultivar selection/breeding, physiological blocking, water management, and soil amendment are evaluated. Finally, the phytoremediation in terms of remediation efficiency and applicability is discussed. Therefore, this review provides helpful guidance for better selection and development of the control/remediation technologies for heavy metal-contaminated agricultural soils.
Collapse
Affiliation(s)
| | | | | | | | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.W.); (J.L.); (Z.Z.); (Q.W.)
| |
Collapse
|
23
|
Huang H, Lv Y, Tian K, Shen Y, Zhu Y, Lu H, Li R, Han J. Influence of sulfate reducing bacteria cultured from the paddy soil on the solubility and redox behavior of Cd in a polymetallic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166369. [PMID: 37597556 DOI: 10.1016/j.scitotenv.2023.166369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
As a toxic heavy metal, cadmium (Cd) easily enters into rice while rice grains greatly contribute to the dietary Cd intake in the populations consuming rice as a staple food. The availability of Cd in paddy soil determines the accumulation of grain Cd. Soil drainage leads to the remobilization of Cd, increasing bioavailability of Cd. In contrast, soil flooding results in little contribution of soil Cd to grain Cd, which is generally attributed to sulfate reduction induced by sulfate-reducing bacteria (SRB) in paddy soils. However, effects of SRB cultured from the paddy soil on the solubility and redox behavior of Cd have been seldom investigated before. Here, we used SRB enrichment cultures to investigate the temporal dynamics of Cd2+. The results showed that SRB enrichment cultures efficiently reduced solution redox potential (Eh) to less than -100 mV and gradually increased pH to neutral, demonstrating their ability to create a good anaerobic environment. The solubility of Cd obviously decreased in the anaerobic phase and Cd2+ was transformed into poorly dissolved CdS near the SRB cell wall edge. The addition of Zn2+ and/or Fe2+ further improved the decrease in Cd solubility and facilitated the formation of polymetallic sulfides as a consequence of promoting the production of S0 and dissolved sulfides (S2-/HS-) and the transformation of S0 into S2-/HS-. Little of Cd was detected in the media upon reoxidation, which was probably due to the high pH and the interaction between CdS and ZnS/FeS. Conclusively, these results demonstrate the detailed dynamic processes that explain the essential role of SRB in regulating the redox dynamics of chalcophile heavy metals and their bioavailability in paddy soils.
Collapse
Affiliation(s)
- Hui Huang
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Yuwei Lv
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Kunkun Tian
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu Shen
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yongli Zhu
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Haiying Lu
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Ronghua Li
- College of Natural Resource and Environment, Northwest A & F University, Yangling 712100, China.
| | - Jiangang Han
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
24
|
Zhang Q, Ma T, Chen H, He L, Wen Q, Zhu Q, Huang D, Xu C, Zhu H. Key process for reducing grains arsenic by applying sulfate varies with irrigation mode: Dual effects of microbe-mediated arsenic transformation and iron plaque. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122569. [PMID: 37722477 DOI: 10.1016/j.envpol.2023.122569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Sulfate affects the transformation of arsenic (As) in soil and its absorption by plant roots. However, the influence of sulfate and irrigation interactions on the mobility of As in the soil-rice system remains poorly understood. To address this gap, we conducted a pot experiment with varying sulfate levels and irrigation modes to examine their effects on rice As translocation, soil As forms, iron plaque formation, and microorganisms involved in As transformation. The addition of exogenous sulfate significantly reduced grain As levels by a maximum of 60.1%, 46.7%, and 70.5% under flooding (F), flooding-moist alternate (FM), moist (M) conditions, respectively. However, the changes in soil available As did not fully correspond to grains As content. Soil available As was only reduced by sulfate under the FM treatment, which limited grains As accumulation under this condition. The reduction in grains As content under F and M conditions was mainly attributed to sulfate-induced increases in soil pH, which in turn inhibited As translocation and promoted iron plaque formation. Additionally, both irrigation mode and sulfate fertilization independently or interactively influenced the abundance of Sulfuritalea, Koribacter, Geobacter, and Sulfuriferula, thereby affecting the As forms in soil through the Fe/S redox process. Specifically, under F and FM conditions, SO42--S inhibited Geobacter but stimulated Fe-oxidizing bacteria, possibly resulting in increased As bound to Fe/Mn oxides (As-F3). Under M condition, SO42--S levels regulated As adsorption and release through the participation of Fe/S cycle bacteria, specifically influencing the adsorbed As fraction (As-F2). Therefore, the addition of SO42--S hindered As translocation to grains by promoting As sequestration in the iron plaque and facilitating microbe-mediated As immobilization through the Fe/S cycle, which was dependent on soil moisture. These results can be used as a guide for sulfur fertilizer application under different soil moisture with the goal of minimizing rice grain As.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Tianchi Ma
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Haifei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Lei He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qiren Wen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Qihong Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Daoyou Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Chao Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Hanhua Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
25
|
Huang P, Yang W, Li Q, Liao Q, Si M, Shi M, Yang Z. A novel slow-release selenium approach for cadmium reduction and selenium enrichment in rice (Oryza sativa L.). CHEMOSPHERE 2023; 342:140183. [PMID: 37726061 DOI: 10.1016/j.chemosphere.2023.140183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
In this study, a novel slightly-soluble selenium (Se) fertilizer (SSF) was successfully applied to address the problems of Cd pollution in paddy soil and rice, and Se deficiency in human beings. The pot and field experiments showed that Cd content in the rice grains was reduced by 48.4%-82.89% and Se content was increased nearly by 30-fold comparing the control group. The application of SSF increased the soil pH and significantly reduced the DGT-extracted Cd in the soil. Moreover, DCB-extractable Fe content on the surface of roots was prompt by SSF, which formed a physical barrier, namely iron plaque (IP), to inhibit Cd translocation to the above-ground tissues of the rice plants. The Cd content in the IP was also decreased before the filling period, possibly contributing to the reduction in major Cd accumulation in the rice grains. In addition, the continuous Se increase and Cd reduction in the IP by the SSF gradually exceeded that of water-soluble Se during the three periods of rice plant growth. This suggests that SSF has high potential to be an effective Se fertilizer for inhibiting Cd uptake and enriching Se in rice.
Collapse
Affiliation(s)
- Peicheng Huang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Meiqing Shi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| |
Collapse
|
26
|
Huang R, Wang X, Wei W, Xie Y, Liu S, Chen H, Zhang R, Ji X. Enhanced As extraction from paddy soils with high As contamination risk by rice plant upon Si fertilization. CHEMOSPHERE 2023; 341:140074. [PMID: 37690551 DOI: 10.1016/j.chemosphere.2023.140074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Owing to flooded growing conditions and specific physiological characteristics, rice plant is more efficient in As uptake and accumulation, which provides a cost-effective and time-efficient pathway to deplete bioavailable As from paddy soils. In the present study, the enhancing effect of silicon (Si) fertilization on As extraction from heavily contaminated paddy soils by rice was explored Upon incorporation of one weak acid Si fertilizer (AcSF), soil As solubility was significantly promoted by 1.3-1.4-fold, while a slightly increase in porewater As was observed with alkaline soluble Si fertilizer Na2SiO3 (AlSF). With both Si fertilizers applied before transplanting, a relatively low Si/As molar ratio (<100) in soil porewater was obtained, As a result, soil As uptake by rice plant with Si fertilizers was enhanced by 37.2%-171.7% compared to control (CK). Notably, up to 91.6% of the total As in rice plant retained in root with Si fertilization, suggesting the importance of root removal. By harvesting the whole rice plant including roots, soil bioavailable As measured by diffusive gradients in thin films (DGT) declined by 26.9%-31.3% in AlSF treatments relative to CK. Total soil As depletion by the whole rice plant was significantly enhanced from 2.8% in CK to 7.0%-11.2% in Si fertilizer treatments. In this way, 197.5 mg As m-2-232.5 mg As m-2 could be eliminated from soil following one rice-growth season, which was 2.3-2.7-fold higher compared to CK. These results identified the effectiveness of soluble Si fertilizer in enhancing soil As depletion by rice from paddy soils with high As contamination risk, which could serve as a cost-effective strategy with little technical-restriction.
Collapse
Affiliation(s)
- Rui Huang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xin Wang
- College of Geographical Sciences, Hunan Normal University, Changsha 410081, China
| | - Wei Wei
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yunhe Xie
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Saihua Liu
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haoyu Chen
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Renjie Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xionghui Ji
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
27
|
Kang M, Wang X, Chen J, Fang Q, Liu J, Tang L, Liu L, Cao W, Zhu Y, Liu B. Extreme low-temperature events can alleviate micronutrient deficiencies while increasing potential health risks from heavy metals in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122165. [PMID: 37429493 DOI: 10.1016/j.envpol.2023.122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Despite global warming, extreme low-temperature stress (LTS) events pose a significant threat to rice production (especially in East Asia) that can significantly impact micronutrient and heavy metal elements in rice. With two billion people worldwide facing micronutrient deficiencies (MNDs) and widespread heavy metal pollution in rice, understanding these impacts is crucial. We conducted detailed extreme LTS experiments with two rice (Oryza sativa L.) cultivars (Huaidao 5 and Nanjing 46) grown under four temperature levels (from 21/27 °C to 6/12 °C) and three LTS durations (three, six, and nine days). We observed significant interaction effects for LTS at different growth stages, durations and temperature levels on the contents and accumulation of mineral elements. The contents of most mineral elements (such Fe, Zn, As, Cu, and Cd) increased significantly under severe LTS at flowering, but decreased under LTS at the grain-filling stage. The accumulations of all mineral elements decreased at the three growth stages under LTS due to decreased grain weight. The contents and accumulation of mineral elements were more sensitive to LTS at the peak flowering stage than at the other two stages. Furthermore, the contents of most mineral elements in Nanjing 46 show larger variation under LTS compared to Huaidao 5. Accumulated cold degree days (ACDD, °C·d) were found to be suitable for quantifying the effects of LTS on the relative contents and accumulations of mineral elements. LTS at the flowering stage will help alleviate MNDs, but may also increase potential health risks from heavy metals. These results provide valuable insights for evaluating future climate change impacts on rice grain quality and potential health risks from heavy metals.
Collapse
Affiliation(s)
- Min Kang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Xue Wang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jiankun Chen
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Qizhao Fang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jiaming Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Liang Tang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Leilei Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Weixing Cao
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Yan Zhu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Bing Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
28
|
Zou M, Qin W, Wang Q, Qiu Y, Yin Q, Zhou S. Translocation pattern of heavy metals in soil-rice systems at different growth stages: A case study in the Taihu region, Eastern China. CHEMOSPHERE 2023; 330:138558. [PMID: 37059205 DOI: 10.1016/j.chemosphere.2023.138558] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/14/2023]
Abstract
Rice production is crucial for human nutrition and food safety globally. However, it has been a significant sink for potentially harmful metals because of intensive anthropogenic activities. The study was conducted to characterize heavy metal translocation from soil to rice at the filling, doughing and maturing stages, and influencing factors of their accumulation in rice. The distribution and accumulation patterns varied for metal species and growth stages. Cd and Pb accumulation mainly occurred in roots, Cu and Zn were readily transported to stems. Cd, Cu, and Zn accumulation in grains had a descending order of filling > doughing > maturing. Soil heavy metals, TN, EC, and pH exerted important impacts on heavy metals uptake by roots during the period from filling stage to maturing stage. Concentrations of heavy metals in grains were positively correlated with the translocation factors TFstem-grain (from stem to grain) and TFleaf-grain (from leaf to grain). Grain Cd exhibited significant correlations with total Cd and DTPA-Cd in the soil at each of the three growth stages. Moreover, Cd in maturing grain could be effectively predicted by soil pH and DTPA-Cd at the filling stage.
Collapse
Affiliation(s)
- Mengmeng Zou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Wendong Qin
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Qian Wang
- School of Geography and Environment, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Yifei Qiu
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Qiqi Yin
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China.
| |
Collapse
|
29
|
Yang X, Wang D, Tao Y, Shen M, Ma C, Cai C, Song L, Yin B, Zhu C. Does elevated CO 2 enhance the arsenic uptake by rice? Yes or maybe: Evidences from FACE experiments. CHEMOSPHERE 2023; 327:138543. [PMID: 36996921 DOI: 10.1016/j.chemosphere.2023.138543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Elevated CO2 (eCO2) strongly affects rice yield and quality in arsenic (As) paddy soils. However, understanding of the As accumulation in rice under coupled stress of eCO2 and soil As is still limited while data are scarce. It greatly limits the prediction for future rice safety. This study investigated the As uptake by rice grown in different As paddy soils under two CO2 conditions (ambient and ambient +200 μmol mol-1) in the free-air CO2 enrichment (FACE) system. Results showed that eCO2 lowered soil Eh at the tillering stage and caused higher concentrations of dissolved As and Fe2+ in soil pore water. Compared with the control, the increased As transfer abilities in rice straws under eCO2 contributed to the higher As accumulation in rice grains, and their total As concentrations were increased by 10.3-31.2%. Besides, the increased amounts of iron plaque (IP) under eCO2 failed to effectively inhibit the As uptake by rice due to the difference in critical stage between As immobilized by IP (mainly in maturing stage) and uptake by rice roots (about 50% contribution before filling stage). Risk assessments suggest that eCO2 enhanced the human health risks of As intake from rice grains produced in low-As paddy soils (<30 mg kg-1). In order to alleviate the As threats to rice under eCO2, we consider that proper soil drainage before filling stage to improve soil Eh can serve as an effective way to reduce As uptake by rice. Pursuing appropriate rice varieties to reduce the As transfer ability may be the other positive strategy.
Collapse
Affiliation(s)
- Xiong Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Tao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanqi Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lian Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bin Yin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chunwu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
30
|
Yan BF, Cheng-Feng H, Zhao M, Qiu RL, Tang YT. Characterizing the remobilization flux of cadmium from pre-anthesis vegetative pools in rice during grain filling using an improved stable isotope labeling method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121891. [PMID: 37236585 DOI: 10.1016/j.envpol.2023.121891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
A clear understanding of the allocation of Cd to grains is essential to manage the level of Cd in cereal diets effectively. Yet, debate remains over whether and how the pre-anthesis pools contribute to grain Cd accumulation, resulting in uncertainty regarding the need to control plant Cd uptake during vegetative growth. To this end, rice seedlings were exposed to 111Cd labeled solution until tillering, transplanted to unlabeled soils, and grown under open-air conditions. The remobilization of Cd derived from pre-anthesis vegetative pools was studied through the fluxes of 111Cd-enriched label among organs during grain filling. The 111Cd label was continuously allocated to the grain after anthesis. The lower leaves remobilized the Cd label during the earlier stage of grain development, which was allocated almost equally to the grains and husks + rachis. During the final stage, the Cd label was strongly remobilized from the roots and, less importantly, the internodes, which was strongly allocated to the nodes and, to a less extent, the grains. The results show that the pre-anthesis vegetative pools are an important source of Cd in rice grains. The lower leaves, internodes, and roots are the source organs, whereas the husks + rachis and nodes are the sinks competing with the grain for the remobilized Cd. This study provides insight into understanding the ecophysiological mechanism of Cd remobilization and setting agronomic measures for lowering grain Cd levels.
Collapse
Affiliation(s)
- Bo-Fang Yan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hu Cheng-Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Man Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
31
|
Yu H, Zhong D, Zeng H, Huang B, Wang X, Peng B, Xing B. Can simultaneous immobilization of arsenic and cadmium in paddy soils be achieved by liming? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27536-7. [PMID: 37195611 DOI: 10.1007/s11356-023-27536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/06/2023] [Indexed: 05/18/2023]
Abstract
Liming acidic paddy soils to near-neutral pH is the most cost-effective strategy to minimize cadmium (Cd) accumulation by rice. However, the liming-induced effect on arsenic (As) (im)mobilization remains controversial and is called upon for further investigation, particularly for the safe utilization of paddy soils co-contaminated with As and Cd. Here, we explored As and Cd dissolution along pH gradients in flooded paddy soils and extracted key factors accounting for their release discrepancy with liming. The minimum As and Cd dissolution occurred concurrently at pH 6.5-7.0 in an acidic paddy soil (LY). In contrast, As release was minimized at pH < 6 in the other two acidic soils (CZ and XX), while the minimum Cd release still appeared at pH 6.5-7.0. Such a discrepancy was determined largely by the relative availability of Fe under overwhelming competition from dissolved organic carbon (DOC). A mole ratio of porewater Fe/DOC at pH 6.5-7.0 is suggested as a key indicator of whether co-immobilization of As and Cd can occur in flooded paddy soils with liming. In general, a high mole ratio of porewater Fe/DOC (≥ 0.23 in LY) at pH 6.5-7.0 can endow co-immobilization of As and Cd, regardless of Fe supplement, whereas such a case is not in the other two soils with lower Fe/DOC mole ratios (0.01-0.03 in CZ and XX). Taking the example of LY, the introduction of ferrihydrite promoted the transformation of metastable As and Cd fractions to more stable ones in the soil during 35 days of flooded incubation, thus meeting a class I soil for safe rice production. This study demonstrates that the porewater Fe/DOC mole ratio can indicate a liming-induced effect on co-(im)mobilization of As and Cd in typical acidic paddy soils, providing new insights into the applicability of liming practice for the paddy soils.
Collapse
Affiliation(s)
- Huiling Yu
- School of Geographical Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha, 410081, China
| | - Delai Zhong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hongyuan Zeng
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Bojun Huang
- Center for Foreign Economic & Technical Cooperation in Agriculture Department of Hunan Province, Changsha, 410006, China
| | - Xin Wang
- School of Geographical Sciences, Hunan Normal University, Changsha, 410081, China.
- Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha, 410081, China.
| | - Bo Peng
- School of Geographical Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha, 410081, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
32
|
Zhong S, Li X, Li F, Pan D, Liu T, Huang Y, Wang Q, Yin H, Huang F. Cadmium isotope fractionation and gene expression evidence for tracking sources of Cd in grains during grain filling in a soil-rice system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162325. [PMID: 36813190 DOI: 10.1016/j.scitotenv.2023.162325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Grain filling is the key period that causes excess cadmium (Cd) accumulation in rice grains. Nevertheless, uncertainties remain in distinguishing the multiple sources of Cd enrichment in grains. To better understand the transport and redistribution of Cd to grains upon drainage and flooding during grain filling, Cd isotope ratios and Cd-related gene expression were investigated in pot experiments. The results showed that the Cd isotopes in rice plants were much lighter than those in soil solutions (∆114/110Cdrice-soil solution = -0.36 to -0.63 ‰) but moderately heavier than those in Fe plaques (∆114/110Cdrice-Fe plaque = 0.13 to 0.24 ‰). Calculations revealed that Fe plaque might serve as the source of Cd in rice (69.2 % to 82.6 %), particularly upon flooding at the grain filling stage (82.6 %). Drainage at the grain filling stage yielded a larger extent of negative fractionation from node I to the flag leaves (∆114/110Cdflag leaves-node I = -0.82 ± 0.03 ‰), rachises (∆114/110Cdrachises-node I = -0.41 ± 0.04 ‰) and husks (∆114/110Cdrachises-node I = -0.30 ± 0.02 ‰), and significantly upregulated the OsLCT1 (phloem loading) and CAL1 (Cd-binding and xylem loading) genes in node I relative to that upon flooding. These results suggest that phloem loading of Cd into grains and transport of Cd-CAL1 complexes to flag leaves, rachises and husks were simultaneously facilitated. Upon flooding of grain filling, the positive fractionation from the leaves, rachises and husks to the grains (∆114/110Cdflag leaves/rachises/husks-node I = 0.21 to 0.29 ‰) is less pronounced than those upon drainage (∆114/110Cdflag leaves/rachises/husks-node I = 0.27 to 0.80 ‰). The CAL1 gene in flag leaves is down-regulated relative to that upon drainage. Thus, the supply of Cd from the leaves, rachises and husks to the grains is facilitated during flooding. These findings demonstrate that the excess Cd was purposefully transported to grain via xylem-to-phloem within nodes I upon the drainage during grain filling, and the expression of genes responsible for encoding ligands and transporters together with isotope fractionation could be used to tracking the source of Cd transported to rice grain.
Collapse
Affiliation(s)
- Songxiong Zhong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Dandan Pan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yingmei Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Haoming Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
33
|
Ma C, Lin L, Yang J, Liu F, Berrettoni M, Zhang K, Liu N, Zhang H. Mechanisms of lead uptake and accumulation in wheat grains based on atmospheric deposition-soil sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163845. [PMID: 37146818 DOI: 10.1016/j.scitotenv.2023.163845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Lead (Pb) accumulation in wheat grains depends on two aspects: i) Pb uptake by the roots and shoots, and ii) the translocation of organ Pb into the grain. However, the underlying mechanism of the uptake and transport of Pb in wheat remains unclear. This study explored this mechanism by establishing field leaf-cutting comparison treatments. Interestingly, as the organ with the highest Pb concentration, only 20.40 % of the root's relative contribution to grain Pb. The relative contributions of the spike, flag leaf, second leaf, and third leaf to grain Pb were 33.13 %, 23.57 %, 13.21 %, and 9.69 %, respectively, which was opposite to their Pb concentration distribution trends. According to Pb isotope analysis, it was found leaf-cutting treatments reduced the proportion of atmospheric Pb in grain, and grain Pb predominantly comes from atmospheric deposition (79.60 %). Furthermore, from the bottom to the top, the concentration of Pb in internodes decreased gradually, and the proportions of Pb originating from soil in the nodes also decreased, revealing that wheat nodes hindered the translocation of Pb from roots and leaves to the grain. Therefore, the hindering effect of nodes on the migration of soil Pb in wheat resulted in atmospheric Pb having a more convenient pathway to the grain than soil Pb, and further leading grain Pb accumulation primarily depended on the contribution of the flag leaf and spike.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Lin Lin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Junxing Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China; Department of Chemistry, University of Camerino, 62032 Camerino, Macerata, Italy
| | - Mario Berrettoni
- Department of Chemistry, University of Camerino, 62032 Camerino, Macerata, Italy
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Nan Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| |
Collapse
|
34
|
Du S, Wang X, Zhou Z, Zhang T, Ding C. Kinetic characteristics of and critical stages for mercury accumulation in rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114968. [PMID: 37137260 DOI: 10.1016/j.ecoenv.2023.114968] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
By studying the dynamic characteristics of and key growth stages for mercury (Hg) enrichment in rice, the Hg migration and translocation processes in this species can be better understood. In this study, a pot experiment was conducted, wherein two rice cultivars, Tianyouhuazhan (TYHZ, indica) and Zhendao 18 (ZD18, japonica), were selected and planted for analysing the Hg accumulation kinetic characteristics in rice plants. The plants were sampled at each growth stage, and the biomass and total Hg (THg) and methylmercury (MeHg) concentrations of each tissue were measured. The relative Hg contribution rates (CRs) in whole rice plants and rice grains were calculated, and the growth stage with the highest relative contribution was identified as the key growth stage for Hg accumulation. The results indicated that in rice, the MeHg translocation capability was stronger than the THg translocation capability. Significant differences in the kinetic characteristics of Hg accumulation were found between the two rice cultivars, and the TYHZ rice grains had a stronger Hg accumulation ability than the ZD18 rice grains. The key growth stages for THg accumulation in whole rice plants of both cultivars were the tillering and booting stages, while that for MeHg accumulation was the tillering stage. The key period for Hg accumulation in rice grains was the grain filling stage for both cultivars. The insights from this study could provide scientific guidance for the safe production of rice in Hg-contaminated soil.
Collapse
Affiliation(s)
- Shuyang Du
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China
| | - Zhigao Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Taolin Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changfeng Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Ma C, Liu F, Yang J, Liu N, Zhang K, Berrettoni M, Zhang H. The newly absorbed atmospheric lead by wheat spike during filling stage is the primary reason for grain lead pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161965. [PMID: 36737026 DOI: 10.1016/j.scitotenv.2023.161965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Wheat spikes could directly absorb lead (Pb) from atmospheric depositions. However, the mechanism by which the spikes contribute to Pb accumulation in the grain remains unclear. To investigate this mechanism, a field experiment was conducted using three comparative spikes shading treatments: 1) exposed to atmospheric deposition and light (CK), 2) non-exposed to atmospheric deposition and light (T1), and 3) non-exposed to atmospheric deposition but light-transmitting (T2). Spikes shading treatments reduced the average rate and peak value of the accumulation of Pb in grains, which significantly decreased the grain Pb concentration by 57.44 % and 50.26 % in T1 and T2 treatments, respectively. Moreover, Pb isotopic analysis shows that the Pb in spike and grain was mainly from atmospheric deposition, and the percentage of the grain Pb originated from atmospheric Pb decreased from 85.98 % in CK to 72.87 % and 79.59 % in T1 and T2, respectively. In addition, the spikes, rather than the leaves/roots, were the largest wheat tissue source of Pb in grains, and the relative contribution of spikes to grain Pb accumulation increased to 65.57 % at the maturity stage, of which the stored Pb re-translocation of spikes and the newly absorbed Pb by spikes during the filling stage contributed 13.37 % and 52.20 % to the grain Pb, respectively. Thus, the contribution of the spike to the grain Pb was mainly from the newly absorbed Pb from the atmospheric deposition during the grain filling phase, and grain filling phase is the key stage for the absorption of Pb by the grain. In brief, the newly absorbed atmospheric Pb by wheat spike during filling stage is the primary cause of grain Pb contamination, which provided a new insight for effective control of wheat Pb pollution.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China; Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China; University of Camerino, School of Science and Technology, ChIP, via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Jun Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Nan Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Mario Berrettoni
- University of Camerino, School of Science and Technology, ChIP, via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| |
Collapse
|
36
|
Du Z, Dou W, Lin D, Qin L, An Y, Chen H, Wu L, Mou L. Do tillage systems affect the cadmium threshold in farmland soil for environmental quality standard setting? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160816. [PMID: 36496029 DOI: 10.1016/j.scitotenv.2022.160816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Tillage systems may change the cadmium (Cd) threshold of farmland soil. However, there have been few studies on this topic. Therefore, this study aimed to explore the influence of tillage systems on Cd threshold. The study conducted 2-year field experiments under different tillage systems (early rice-fallow, early rice-late rice and early rice-vegetable) at three typical Cd-polluted sites in China. The species sensitivity distribution (SSD) method was used to construct the SSD curves for the calculation of the Cd threshold by analyzing the experimental data. The sensitivity analysis results based on the SSD curves revealed that the sensitivities to Cd in rice varieties under the same tillage system were substantially different but almost the same under different tillage systems. These results can help select rice varieties with low Cd sensitivity for crop safety. Different tillage systems at the same site varied in their influence on Cd threshold values. Cd threshold values under early rice-late rice (e.g., 0.27, 0.28 mg/kg in Xiangtan City) and early rice-vegetable (e.g., 0.26, 0.31 mg/kg in Xiangtan City) tillage systems were roughly lower than that under the early rice-fallow tillage system (e.g., 0.33, 0.35 mg/kg in Xiangtan City). Notably, the influence of tillage systems resulted in Cd threshold values being generally lower than the Cd risk screening values of the current Chinese soil environmental quality standard. Analysis of the influence of different tillage systems on the Cd threshold is beneficial for the optimization of farmland soil environmental quality standards.
Collapse
Affiliation(s)
- Zhaolin Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Weiqiang Dou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dasong Lin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Li Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Hongan Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lina Wu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liyan Mou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
37
|
Li X, Mu L, Zhang C, Fu T, He T. Effect of amendments on bioavailability of cadmium in soil-rice system: a field experiment study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37659-37668. [PMID: 36574132 DOI: 10.1007/s11356-022-24875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
The field experiment study investigated the effect of lime (L), manure compost (M), combination of lime and manure (LM), and combinations of lime with four kinds of passivators (LP1, LP2, LP3, and LP4) on the bioavailability of cadmium (Cd) in soil and Cd accumulation in rice plants. These four passivating products were composed of organic and inorganic compounds such as silicon-sulfhydryl group, CaO, SiO2, and so on. The results indicated that the application of these amendments improved soil pH, organic matter content, and cation exchange capacity (CEC) by 0.19-0.73 unit, 0.6-8.2%, and 5.7-38.9%, respectively; meanwhile, decreased soil acid-extractable Cd by 4.0-13.9% compared with before remediation. Alleviating Cd stress to rice also resulted in a significant increase in rice grains yield, whereas the LP4 showed an increment of 15.8-27.6%. Among these amendments, LP4 had a relatively high effectiveness, it promoted the decrease of extractable Cd by 13.9% and the increase of residual Cd by 8.1%; meanwhile, the bioconcentration factor of rice grain in LP4 decreased by 71.3%. The high pH, CEC, and rich functional groups in amendments might cause soil Cd transform from mobile fraction to residual fraction, and the cation ions in amendments also competed with Cd ions due to the antagonism. Taken all of these effects, the amendments alleviated Cd pollution in soil-rice system, decreasing Cd migration from soil to grain. In future, the long-term field experiment will need to be done for verify the long-term effect of soil amendments.
Collapse
Affiliation(s)
- Xiangying Li
- Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Li Mu
- Hanshou Branch of Changde Municipal Ecology and Environment Bureau, Changde, 415900, China
| | - Chi Zhang
- Guizhou Meteorological Disaster Prevention Technology Center, Guiyang, 550081, China
| | - Tianling Fu
- Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tengbing He
- Institute of New Rural Development, Guizhou University, Guiyang, 550025, China.
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
38
|
Yan H, Guo H, Li T, Zhang H, Xu W, Xie J, Zhu X, Yu Y, Chen J, Zhao S, Xu J, Hu M, Jiang Y, Zhang H, Ma M, He Z. High-precision early warning system for rice cadmium accumulation risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160135. [PMID: 36375547 DOI: 10.1016/j.scitotenv.2022.160135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/01/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Rapid global industrialization has resulted in widespread cadmium contamination in agricultural soils and products. A considerable proportion of rice consumers are exposed to Cd levels above the provisional safe intake limit, raising widespread environmental concerns on risk management. Therefore, a generalized approach is urgently needed to enable correct evaluation and early warning of cadmium contaminants in rice products. Combining big data and computer science together, this study developed a system named "SMART Cd Early Warning", which integrated 4 modules including genotype-to-phenotype (G2P) modelling, high-throughput sequencing, G2P prediction and rice Cd contamination risk assessment, for rice cadmium accumulation early warning. This system can rapidly assess the risk of rice cadmium accumulation by genotyping leaves at seeding stage. The parameters including statistical methods, population size, training population-testing population ratio, SNP density were assessed to ensure G2P model exhibited superior performance in terms of prediction precision (up to 0.76 ± 0.003) and computing efficiency (within 2 h). In field trials of cadmium-contaminated farmlands in Wenling and Fuyang city, Zhejiang Province, "SMART Cd Early Warning" exhibited superior capability for identification risk rice varieties, suggesting a potential of "SMART Cd Early-Warning system" in OsGCd risk assessment and early warning in the age of smart.
Collapse
Affiliation(s)
- Huili Yan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hanyao Guo
- Hebei Normal University, Shijiazhuang 050024, China
| | - Ting Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hezifan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxiu Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jianyin Xie
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoyang Zhu
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yijun Yu
- Zhejiang Station for Management of Arable Land Quality and Fertilizer, Hangzhou 310020, China
| | - Jian Chen
- Plant Protection, Fertilizer and Rural Energy Agency of Wenling, Wenling 317500, China
| | - Shouqing Zhao
- Plant Protection, Fertilizer and Rural Energy Agency of Wenling, Wenling 317500, China
| | - Jun Xu
- Fuyang Agricultural Technology Extension Center, Fuyang 311400, China
| | - Minjun Hu
- Fuyang Agricultural Technology Extension Center, Fuyang 311400, China
| | - Yugen Jiang
- Fuyang Agricultural Technology Extension Center, Fuyang 311400, China
| | - Hongliang Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572024, China
| | - Mi Ma
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhenyan He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
39
|
Zhang Z, Lu Y, Li H, Gao Y, Yang Z. The role of nickel in cadmium accumulation in rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160421. [PMID: 36423846 DOI: 10.1016/j.scitotenv.2022.160421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Rice is one of the world's staple foods. Cadmium (Cd) levels in paddy soil are still increasing, and "Cd-contaminated rice" is a frequent occurrence, posing a serious threat to human health. Therefore, Cd contamination in rice is a key issue in agricultural production that needs to be addressed urgently. The Cd accumulation in rice is closely related to other elements. In this study, the impact of nickel (Ni) on the uptake and accumulation of Cd in rice was revealed, and the mechanism was discussed. Statistical analysis of field data showed that Cd concentration in rice grains decreased exponentially with increasing Ni concentration in paddy soils, which was verified by the hydroponic experiments. Under 5 μmol/L Cd exposure conditions, the addition of Ni (100 μmol/L) reduced the Cd contents in roots, stems, and leaves by 81.6 %, 60.6 %, and 65.9 %, respectively. With the presence of Ni, the amount of iron plaque decreased, and the Cd content in the iron plaque was reduced due to the competition between Ni and Cd for adsorption sites. In addition, the migration of Cd from stems to leaves was reduced. At the same time, the distribution of Cd in the cell was altered, and the concentration of Cd in the root cell walls increased with increasing Ni addition under 5 μmol/L Cd exposure. These findings highlight the critical role of Ni in inhibiting Cd accumulation in rice, and provide important information for understanding the effects of coexisting elements in Cd-contaminated soils on Cd accumulation in crops.
Collapse
Affiliation(s)
- Zhaoxue Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology, Ganzhou 341000, China; Analysis and Testing Center, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China.
| | - Ya Gao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China.
| |
Collapse
|
40
|
Wang Y, Sun Y, Chen L, Shao H, Zeng Y, Zeng Y, Tang F, Cai J, Huang S. Interactive effects of water management and liming on CH 4 emissions and rice cadmium uptake in an acid paddy soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13551-13559. [PMID: 36136195 DOI: 10.1007/s11356-022-23162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Rice agriculture is both an important source of the potent greenhouse gas methane (CH4) and a bioaccumulator of cadmium (Cd), which is hazardous to human health. Avoiding flooding during rice production is effective for reducing CH4 emissions, but it increases rice Cd uptake. Although lime application decreases Cd concentration in rice grains, it is not clear whether combining appropriate water management with liming can simultaneously reduce CH4 emissions and Cd uptake in rice paddies. Thus, a pot experiment was performed to investigate the interactive effects of water management (F: continuous flooding, FDF: flooding - midseason drainage - flooding, FDI: flooding - midseason drainage - intermittent irrigation) and lime application on CH4 emissions and rice Cd uptake in an acid paddy soil spiked with Cd. Results showed that neither water management nor liming significantly affected grain yield. Overall, liming reduced CH4 emissions by 42.2%. Compared to F, the FDF and FDI treatments reduced CH4 emissions by 43.5% and 54.2%, respectively. Liming reduced CH4 emissions by 32.6% under F, but with a greater decrease of 48.6% and 52.7% under FDF and FDI, respectively. Overall, liming reduced rice Cd uptake by an average of 47.3%. Compared to FDI, F and FDF significantly reduced Cd uptake by 84.0% and 75.1%, respectively, but there was no significant difference between F and FDF. Liming did not significantly affect Cd uptake under F and FDF, whereas liming reduced Cd uptake by 55.9% under FDI. These results suggest that maintaining flooding following midseason drainage can help in reducing rice Cd uptake, though slightly promoting CH4 emissions. Therefore, we recommend FDF combined with liming to mitigate CH4 emissions without increasing rice Cd uptake in acid paddy soils.
Collapse
Affiliation(s)
- Yong Wang
- Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yanni Sun
- Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Le Chen
- Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hua Shao
- Soil and Fertilization Technology Extension Station of Jiangxi Province, Nanchang, 330046, China
| | - Yanhua Zeng
- Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yongjun Zeng
- Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Feiyu Tang
- Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junhuo Cai
- Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shan Huang
- Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
41
|
Chang JD, Gao W, Wang P, Zhao FJ. OsNRAMP5 Is a Major Transporter for Lead Uptake in Rice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17481-17490. [PMID: 36418022 DOI: 10.1021/acs.est.2c06384] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lead (Pb) is one of the most toxic metals affecting human health globally. Food is an important source of chronic Pb exposure in humans. How Pb is taken up by rice, a staple food for over half of the global population, remains unknown. In the present study, we investigated the role of OsNRAMP5, a member of the NRAMP (Natural Resistance-Associated Macrophage Protein) transporter family, in Pb uptake by rice roots. Heterologous expression of OsNRAMP5 in yeast increased Pb uptake and sensitivity toward Pb. Knockout of OsNRAMP5 in rice by CRISPR/Cas9 gene editing resulted in significant decreases in root uptake of Pb and accumulation in rice shoots. The maximum influx velocity (Vmax) for Pb uptake of the knockout mutants was 70% lower than that of wild-type plants. When grown in Pb-contaminated paddy soil, OsNRAMP5 knockout mutants accumulated approximately 50 and 70% lower Pb concentrations in the grain and straw, respectively, than the wild type. OsNRAMP5 expression in rice roots was not affected by Pb exposure. These results indicate that OsNRAMP5 is a major transporter for Pb uptake in rice, in addition to its role in the uptake of manganese and cadmium. This study provides a mechanistic understanding of Pb uptake in rice plants and a potential strategy to limit Pb accumulation in rice grains.
Collapse
Affiliation(s)
- Jia-Dong Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiping Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Li H, Zhang H, Yang Y, Fu G, Tao L, Xiong J. Effects and oxygen-regulated mechanisms of water management on cadmium (Cd) accumulation in rice (Oryza sativa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157484. [PMID: 35868402 DOI: 10.1016/j.scitotenv.2022.157484] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Irrigation has been considered an effective approach for decreasing cadmium (Cd) uptake and accumulation in rice (Oryza sativa), but increasing evidence shows that the effects of different water management strategies on Cd accumulation in rice are contradictory in different studies, and the detailed regulatory mechanisms remain unconfirmed. Most previous studies have shown that irrigation regulates Cd accumulation in rice mainly by affecting Cd bioavailability, pH and redox potential (Eh) in soil, and few reports have focused on the function of oxygen (O2) in regulating the physiological mechanisms of rice on Cd tolerance or accumulation. Here, we concluded that irrigation affects Cd bioavailability, pH and Eh in soil mainly by regulating O2 content. In addition, recent studies have also shown that irrigation-regulated O2 also affects Cd accumulation in rice by affecting iron plaque (IP), the radial oxygen loss (ROL) barrier, the cell wall and mass flow in rice roots. All these results indicate that O2 is the key factor in irrigation-regulated Cd accumulation in rice, and dramatic result variations from different irrigation experiments are due to the different rhizosphere O2 conditions. This review will help clarify the effects and regulatory mechanisms of irrigation on Cd accumulation in rice and reveal the roles of O2 in this process.
Collapse
Affiliation(s)
- Hubo Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, People's Republic of China
| | - Huiquan Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, People's Republic of China
| | - Yongjie Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, People's Republic of China
| | - Guanfu Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, People's Republic of China
| | - Longxing Tao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, People's Republic of China
| | - Jie Xiong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
43
|
Chen X, Wang J, Wang R, Zhang D, Chu S, Yang X, Hayat K, Fan Z, Cao X, Ok YS, Zhou P. Insights into growth-promoting effect of nanomaterials: Using transcriptomics and metabolomics to reveal the molecular mechanisms of MWCNTs in enhancing hyperaccumulator under heavy metal(loid)s stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129640. [PMID: 35882170 DOI: 10.1016/j.jhazmat.2022.129640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes present potential applications in soil remediation, particularly in phytoremediation. Yet, how multi-walled carbon nanotubes (MWCNTs) induced hyperaccumulator growth at molecular level remains unclear. Here, physio-biochemical, transcriptomic, and metabolomic analyses were performed to determine the effect of MWCNTs on Solanum nigrum L. (S. nigrum) growth under cadmium and arsenic stresses. 500 mg/kg MWCNTs application significantly promoted S. nigrum growth, especially for root tissues. Specially, MWCNTs application yields 1.38-fold, 1.56-fold, and 1.37-fold enhancement in the shoot length, root length, and fresh biomass, respectively. Furthermore, MWCNTs significantly strengthened P and Fe absorption in roots, as well as the activities of antioxidative enzymes. Importantly, the transcriptomic analysis indicated that S. nigrum gene expression was sensitive to MWCNTs, and MWCNTs upregulated advantageous biological processes under heavy metal(loid)s stress. Besides, MWCNTs reprogramed metabolism that related to defense system, leading to accumulation of 4-hydroxyphenylpyruvic acid (amino acid), 4-hydroxycinnamic acid (xenobiotic), and (S)-abscisic acid (lipid). In addition, key common pathways of differentially expressed metabolites and genes, including "tyrosine metabolism" and "isoquinoline alkaloid biosynthesis" were selected via integrating transcriptome and metabolome analyses. Combined omics technologies, our findings provide molecular mechanisms of MWCNTs in promoting S. nigrum growth, and highlight potential application of MWCNTs in soil remediation.
Collapse
Affiliation(s)
- Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| |
Collapse
|
44
|
Exploring Key Soil Parameters Relevant to Arsenic and Cadmium Accumulation in Rice Grain in Southern China. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6020036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Paddy soils in some areas of southern China are contaminated by arsenic (As) and cadmium (Cd), threatening human health via the consumption of As- and/or Cd-tainted rice. To date, a quantitative understanding of how soil characteristics control As and Cd accumulation in rice grains under field conditions is still deficient. Based on 31 paired soil-grain samples collected in southern China, we statistically explored which soil parameter or parameter combination from various soil analyses best estimates As and Cd in rice. We found that CaCl2 extraction of field-moist soil collected at rice harvest provided the best estimation (R2adj = 0.47–0.60) for grain Cd followed by dry soil CaCl2 extraction (R2adj = 0.38–0.49), where CaCl2 extractable Cd from moist or dry soil was the dominant soil parameter. Compared to soil totals, parameters from neither dry soil ascorbate-citrate extraction nor anoxic soil incubation improved model performance for grain As (R2adj ≤ 0.44), despite their closer relevance to soil redox conditions during plant As uptake. A key role of soil-available sulfur in controlling grain As was suggested by our models. Our approach and results may help develop potential soil amendment strategies for decreasing As and/or Cd accumulation in soils.
Collapse
|
45
|
Wang P, Zhao F. 我国主要粮食作物中镉限量标准问题的若干思考. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Jiang N, Li Z, Yang J, Zu Y. Responses of antioxidant enzymes and key resistant substances in perennial ryegrass (Lolium perenne L.) to cadmium and arsenic stresses. BMC PLANT BIOLOGY 2022; 22:145. [PMID: 35337264 PMCID: PMC8957149 DOI: 10.1186/s12870-022-03475-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 05/25/2023]
Abstract
Cadmium (Cd) and arsenic (As) exist simultaneously in soil environment, which poses a serious threat to the safety of agricultural products and forage production. Four Perennial Ryegrass (Lolium perenne L.) cultivars with different accumulation characteristics ('Nicaragua', 'Venus', 'Excellent' and 'Monro') were selected as the material for pot experiment. The coupled responses of key components and related enzyme activities under combined stresses of Cd and As were investigated. key components contents include Non protein sulfhydryl (NPT), glutathione (GSH) and phytochelatins (PCs). The related enzyme includes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), γ-glutamylcysteine synthetase (γ-ECS), glutathione synthetase (GSS), phytochelatin synthetases (PCSase) and arsenate reductase (AR). The results showed that Cd contents of perennial ryegrass were higher than those of As contents with TFCd/As < 1. Cd and As contents in roots were in the higher proportion than those in shoots. Compared to control, POD activities increased by 2.72 folds under 120 mg kg-1 As treatment. The contents of PCs increased by 5.68 folds under 120 mg kg-1 As treatment. Under combined Cd and As stress, the MDA contents and antioxidant enzyme activities of 'Venus' were higher than those of 'Nicaragua'. 'Nicaragua', a high accumulation cultivar. Under the combined stresses of Cd and As, the enzyme activities and the key components were significantly correlated (P < 0.05) with the contents of Cd and As. The tolerance to Cd and As was improved with increase in GSH and PCs contents and γ-ECS, GSS, PCSase and AR activities. In conclusion, the antioxidant enzyme system and key resistant substances of perennial ryegrass have important and antagonistic effects on Cd and As stresses.
Collapse
Affiliation(s)
- Na Jiang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201, Kunming, China
- College of Resources and Environment, Yunnan Agricultural University, 650201, Kunming, China
| | - Zuran Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China.
| | - Jingmin Yang
- College of Resources and Environment, Yunnan Agricultural University, 650201, Kunming, China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, 650201, Kunming, China.
| |
Collapse
|