1
|
Wang Z, Zhang H, Xiong Y, Zhang L, Cui J, Li G, Du C, Wen K. Remediation mechanism of high concentrations of multiple heavy metals in contaminated soil by Sedum alfredii and native microorganisms. J Environ Sci (China) 2025; 147:179-188. [PMID: 39003038 DOI: 10.1016/j.jes.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 07/15/2024]
Abstract
Pollution accident of nonferrous metallurgy industry often lead to serious heavy metal pollution of the surrounding soil. Phytoremediation of contaminated soil is an environmental and sustainable technology, and soil native microorganisms in the process of phytoremediation also participate in the remediation of heavy metals. However, the effects of high concentrations of multiple heavy metals (HCMHMs) on plants and native soil microorganisms remain uncertain. Thus, further clarification of the mechanism of phytoremediation of HCMHMs soil by plants and native soil microorganisms is required. Using the plant Sedum alfredii (S. alfredii) to restore HCMHM-contaminated soil, we further explored the mechanism of S. alfredii and native soil microorganisms in the remediation of HCMHM soils. The results showed that (i) S. alfredii can promote heavy metals from non-rhizosphere soil to rhizosphere soil, which is conducive to the effect of plants on heavy metals. In addition, it can also enrich the absorbed heavy metals in its roots and leaves; (ii) native soil bacteria can increase the abundance of signal molecule-synthesizing enzymes, such as trpE, trpG, bjaI, rpfF, ACSL, and yidC, and promote the expression of the pathway that converts serine to cysteine, then synthesize substances to chelate heavy metals. In addition, we speculated that genes such as K19703, K07891, K09711, K19703, K07891, and K09711 in native bacteria may be involved in the stabilization or absorption of heavy metals. The results provide scientific basis for S. alfredii to remediate heavy metals contaminated soils, and confirm the potential of phytoremediation of HCMHM contaminated soil.
Collapse
Affiliation(s)
- Zihe Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Han Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ying Xiong
- Beijing Water Science and Technology Institute, Beijing 100044, China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianglong Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guowen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caili Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kaiyang Wen
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
2
|
Liu M, Feng Y, Wang M, Sun X, Qi CY, Yang X, Zhang D. Sedum alfredii Hance: A cadmium and zinc hyperaccumulating plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117588. [PMID: 39721422 DOI: 10.1016/j.ecoenv.2024.117588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The hyperaccumulating ecotype Sedum alfredii Hance is one of few Cd hyperaccumulators with Cd contents in leaves and stems up to 9000 mg/kg (dry weight, DW) and 6500 mg/kg (DW) respectively without displaying significant toxicity symptoms as reported in 2004. Numerous studies have been conducted to uncover the mystery of its hypertolerance and hyperaccumulation using high-throughput sequencing, biochemical and molecular techniques, mainly pointing to the root-microorganism interaction, restrained Cd storage in roots, efficient root-shoot translocation, effective cellular detoxification, and phloem-mediated metal remobilization. This also encourages studies on functional genes involved in metal transport, antioxidant, transcription regulation and stress response, providing candidates for genetic modification. Moreover, researchers have focused on the practical application and optimal managements in phytoremediation. Sedum alfredii Hance is of scientific significance as a model plant elucidating hypertolerance and hyperaccumulation traits or decontaminating heavy metals. More efforts are required to deepen the knowledge of Sedum alfredii Hance and provide theoretical guidance for practical phytoremediation.
Collapse
Affiliation(s)
- Mingying Liu
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Ying Feng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Miao Wang
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Xinglin Sun
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Chen Yinfei Qi
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, PR China.
| |
Collapse
|
3
|
Yu S, Sheng Q, Sahito ZA, Wang W, Xu S, Lian J, Du P, Tong W, Feng Y, Yang X. Harmonizing soil restoration and microbial diversity: Insights from a Two-Year field experiment with Sedum-Rice rotation systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175336. [PMID: 39134265 DOI: 10.1016/j.scitotenv.2024.175336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
Phytoremediation coupled with agroproduction (PCA) model contributes to sustainable agriculture and environmental management. This study investigated the impact of continuous cropping early/late season rice (RR) and Sedum alfredii-rice rotation (SR) on soil physical and chemical properties, as well as their relationships with soil microbial community. In 2022, SR treatment significantly increased pH value and organic matter content by 7 % and 17 %, respectively, compared to the levels in 2020, while RR treatment showed no change. RR treatment resulted in a significant decrease in soil concentrations of Ca, Mg, and K by 18.42 %, 29.01 %, and 7.77 %, respectively. Furthermore, SR treatment saw reductions of 29.62 % in total Cd and 38.30 % in DTPA extractable Cd in the soil. Over the two years, both treatments notably influenced the diversity, structure, and network of the rhizosphere bacterial and fungal communities, which are crucial for nutrient cycling and plant health. Notably, SR treatment exhibited a more complex network compared to RR, suggesting a greater impact on the interconnected systems. Therefore, these findings highlight the potential of Sedum rotation system to rehabilitate contaminated soils while supporting agricultural practices, which is essential for food security and environmental sustainability. This research direction holds promise for future exploration and application in the fields of phytoremediation and agroecology.
Collapse
Affiliation(s)
- Song Yu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qi Sheng
- Shenergy Environmental Technology Co., Ltd, Room 506, Building 8, Xixi Octagon City, Wuchang Street, Zhejiang Province, People's Republic of China
| | - Zulfiqar Ali Sahito
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Wenkai Wang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shunan Xu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Pengtao Du
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Wenbin Tong
- Agricultural Technology Promotion Center, Qujiang District, Quzhou City, Zhejiang Province, People's Republic of China.
| | - Ying Feng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
4
|
Khursheed MHUR, Shahbaz M, Ramzan T, Haider A, Maqsood MF, Khan A, Zulfiqar U, Jamil M, Hussain S, Al-Ghamdi AA, Rizwana H. Enhancing Wheat Tolerance to Cadmium Stress through Moringa Leaf Extract Foliar Application. SCIENTIFICA 2024; 2024:2919557. [PMID: 39376252 PMCID: PMC11458294 DOI: 10.1155/2024/2919557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Cadmium, a hazardous heavy metal prevalent in plants and soil, poses a significant threat to human health, particularly as approximately 60% of the global population consumes wheat, which can accumulate high levels of Cd through its roots. This uptake leads to the translocation of Cd to the shoots and grains, exacerbating the potential health risks. However, promising results have been observed with the use of moringa leaf extract (MLE) foliar spray in mitigating the adverse effects of Cd stress. The current experiment was conducted to find out the Cd stress tolerance of wheat varieties V1 = Akbar-19 and V2 = Dilkash-2020 under exogenous spray of MLE. The treatments of this study were T0 = 0% MLE + 0 µM Cd, T1 = 3% MLE + 0 µM Cd, T2 = 0% MLE + 400 µM Cd, and T3 = 3% MLE + 400 µM Cd. Cd stress demonstrated a significant reduction in morphological attributes as shoot and root fresh weight (22%), shoot and root dry weight (24.5%), shoot and root length (22.5%), area of leaf and number of leaves 30.5%, and photosynthetic attributes (69.8%) in comparison with control. Exposure of wheat plants to Cd toxicity cause oxidative stress, increased H2O2, and MDA up to 75% while foliar application of MLE reduced the activities of reactive oxygen species (ROS). The activity of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbic acid (AsA) increased up to 81.5% as well as organic osmolytes such as phenolics, total soluble proteins, and total soluble sugars were improved up to 77% by MLE applications under Cd stress. Higher accumulation of ionic contents root Na+ (22%) and Cd (44%) was documented in plants under Cd stress as compared to control, while uptake of root mineral ions Ca2+ and K+ was 35% more in MLE-treated plants. In crux, Cd toxicity significantly declined the growth, photosynthetic, and biochemical parameters while 3% MLE application was found effective in alleviating the Cd toxicity by improving growth and physiological parameters while declining reactive oxygen species and root Na+ as well as Cd uptake in wheat.
Collapse
Affiliation(s)
| | - Muhammad Shahbaz
- Department of BotanyUniversity of Agriculture, Faisalabad 38040, Pakistan
| | - Tahrim Ramzan
- Department of BotanyUniversity of Agriculture, Faisalabad 38040, Pakistan
| | - Arslan Haider
- Department of BotanyUniversity of Agriculture, Faisalabad 38040, Pakistan
| | | | - Arbaz Khan
- Department of BotanyUniversity of Agriculture, Faisalabad 38040, Pakistan
| | - Usman Zulfiqar
- Department of AgronomyFaculty of Agriculture and EnvironmentThe Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Jamil
- Department of BotanyThe Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sadam Hussain
- College of AgronomyNorthwest A&F University, Yangling, Xianyang 712100, China
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and MicrobiologyCollege of ScienceKing Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Humaira Rizwana
- Department of Botany and MicrobiologyCollege of ScienceKing Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Dong Q, Zuo S, Chu B, Li Y, Wang Z. Bio-pump cadmium phytoextraction efficiency promoted by phytohormones in Festuca arundinacea. CHEMOSPHERE 2024; 363:142794. [PMID: 38977248 DOI: 10.1016/j.chemosphere.2024.142794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The leaves of Festuca arundinacea can excrete cadmium (Cd) out onto the leaf surface, leading to a bio-pump phytoremediation strategy based on "root uptake-root-to-leaf translocation-leaf excretion". However, the bio-bump efficiency of soil Cd is a limiting factor for the implementation of this novel technology. Bio-bump remediation involves the bioprocess of plant root uptake from soil, root-to-leaf translocation, and leaf hydathode excretion. Here we show the significant effects of phytohormones in regulating the bio-pump phytoextraction efficiency. The results showed that salicylic acid and ethylene enhanced the whole process of Cd root uptake, root-to-leaf translocation, and leaf excretion, promoting the bio-pump phytoextraction efficiency by 63.6% and 73.8%, respectively. Gibberellin also greatly promoted Cd translocation, leaf excretion, and phytoextraction, but did not significantly impact Cd root uptake. Our results indicate that salicylic acid and ethylene could be recommended to promote bio-pump phytoextraction efficiency in F. arundinacea. Gibberellin might be used for a short-term promotion of the leaf Cd excretion.
Collapse
Affiliation(s)
- Qin Dong
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Shaofan Zuo
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Baohua Chu
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yanbang Li
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Zhaolong Wang
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
6
|
Chen Z, Liu Q, Chen D, Wu Y, Hamid Y, Lin Q, Zhang S, Feng Y, He Z, Yin X, Yang X. Enhancing the phytoextraction efficiency of heavy metals in acidic and alkaline soils by Sedum alfredii Hance: A study on the synergistic effect of plant growth regulator and plant growth-promoting bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173029. [PMID: 38719039 DOI: 10.1016/j.scitotenv.2024.173029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Plant growth regulators (PGR) and plant growth-promoting bacteria (PGPB) have the potential in phytoremediation of heavy metals (HMs) contaminated soils. However, their sole application may not yield the optimal results, thus necessitating the combined application. The present study aimed to enhance the phytoremediation efficiency of Sedum alfredii Hance (S. alfredii) in acidic and alkaline soils through the combination of PGR (Brassinolide, BR) and PGPB (Pseudomonas fluorescens, P. fluorescens). The combination of BR and P. fluorescens (BRB treatment) effectively increased the removal efficiency of S. alfredii for Cd, Pb, and Zn by 355.2 and 155.3 %, 470.1 and 128.9 %, and 408.4 and 209.6 %, in acidic and alkaline soils, respectively. Moreover, BRB treatment led to a substantial increase in photosynthetic pigments contents and antioxidant enzymes activities, resulting in a remarkable increase in biomass (86.71 and 47.22 %) and dry mass (101.49 and 42.29 %) of plants grown in acidic and alkaline soils, respectively. Similarly, BRB treatment significantly elevated the Cd (109.4 and 71.36 %), Pb (174.9 and 48.03 %), and Zn levels (142.8 and 104.3 %) in S. alfredii shoots, along with cumulative accumulation of Cd (122.7 and 79.47 %), Pb (183.8 and 60.49 %), and Zn (150.7 and 117.9 %), respectively. In addition, the BRB treatment lowered the soil pH and DTPA-HMs contents, while augmenting soil enzymatic activities, thereby contributing soil microecology and facilitating the HMs absorption and translocation by S. alfredii to over-ground tissues. Furthermore, the evaluation of microbial community structure in phyllosphere and rhizosphere after remediation revealed the shift in microbial abundance. The combined treatment altered the principal effects on S. alfredii HMs accumulation from bacterial diversity to the soil HMs availability. In summary, our findings demonstrated that synergistic application of BR and P. fluorescens represents a viable approach to strengthen the phytoextraction efficacy of S. alfredii in varying soils.
Collapse
Affiliation(s)
- Zhiqin Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yasir Hamid
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiang Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijun Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945, United States
| | - Xianyuan Yin
- Beautiful Rural Construction Center Quzhou District, Quzhou 324003, Zhejiang, China
| | - Xiaoe Yang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Ortiz-Oliveros HB, Mendoza-Guzmán MM, Zarazúa-Ortega G, Lara-Almazán N, Mestizo-Gutiérrez SL, González-Ruíz A. Evaluation of succulent plants Echeveria elegans as a biomonitor of heavy metals and radionuclides. ENVIRONMENTAL RESEARCH 2024; 251:118611. [PMID: 38452916 DOI: 10.1016/j.envres.2024.118611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
This work evaluates the use of Echeveria elegans as a biomonitor of metals and radionuclides, using semi-urban soils as a study area. The study area is exposed to various trace elements of concern for various social groups in nearby localities. The quantification of metals and radionuclides was performed by X-ray fluorescence spectrometry and gamma spectrometry, respectively. Cumulative frequency distribution curves, descriptive statistics, and multivariate analysis were used to estimate the local geochemical baseline and identify geochemical and anthropogenic patterns of metals and radionuclides from topsoil and E. elegans. The evaluation of contaminants and the contribution of possible exposure routes (topsoil and atmospheric deposition) was performed with the enrichment factor (EF) and the relative concentration factor (CFR). The results suggest that the plant does not present significant physical stress due to the environmental conditions to which it was exposed. Likewise, it can bioaccumulate heavy metals from natural and anthropogenic sources. The quantification of radionuclides in the plant is below the detection limits, indicating a low bioavailability and transfer factor. The CFR and EF results showed that the plant accumulates metals from the topsoil and atmospheric deposition. The bioaccumulation mechanism would be related to the functioning of Crassulaceae Acid Metabolism (CAM). In topsoil, the organic acids of the plant would modify the solubility of the metals present in an insoluble form in the soil, acting as ligands and, subsequently, following the transport route of these metabolites. In atmospheric deposition, the metals deposited in the leaves would be incorporated into the plant through the opening of the stomata because of the capture of CO2 (at night, day, or during environmental stress) by the CAM. Overall, the evidence showed that the succulent can be used as a biomonitor of heavy metals. However, additional studies are required to determine its usefulness as a radionuclide biomonitor.
Collapse
Affiliation(s)
- H B Ortiz-Oliveros
- Dirección de Investigación Tecnológica, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México, C.P. 52750, Mexico.
| | - M M Mendoza-Guzmán
- Facultad de Ciencias Químicas, Universidad Veracruzana, Xalapa, Veracruz, C.P. 91020, Mexico
| | - G Zarazúa-Ortega
- Dirección de Investigación Tecnológica, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México, C.P. 52750, Mexico
| | - N Lara-Almazán
- Dirección de Investigación Tecnológica, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México, C.P. 52750, Mexico
| | - S L Mestizo-Gutiérrez
- Facultad de Ciencias Químicas, Universidad Veracruzana, Xalapa, Veracruz, C.P. 91020, Mexico
| | - A González-Ruíz
- Dirección de Investigación Tecnológica, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México, C.P. 52750, Mexico
| |
Collapse
|
8
|
Ur Rahman S, Qin A, Zain M, Mushtaq Z, Mehmood F, Riaz L, Naveed S, Ansari MJ, Saeed M, Ahmad I, Shehzad M. Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon 2024; 10:e27724. [PMID: 38500979 PMCID: PMC10945279 DOI: 10.1016/j.heliyon.2024.e27724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Lead (Pb) is a highly toxic contaminant that is ubiquitously present in the ecosystem and poses severe environmental issues, including hazards to soil-plant systems. This review focuses on the uptake, accumulation, and translocation of Pb metallic ions and their toxicological effects on plant morpho-physiological and biochemical attributes. We highlight that the uptake of Pb metal is controlled by cation exchange capacity, pH, size of soil particles, root nature, and other physio-chemical limitations. Pb toxicity obstructs seed germination, root/shoot length, plant growth, and final crop-yield. Pb disrupts the nutrient uptake through roots, alters plasma membrane permeability, and disturbs chloroplast ultrastructure that triggers changes in respiration as well as transpiration activities, creates the reactive oxygen species (ROS), and activates some enzymatic and non-enzymatic antioxidants. Pb also impairs photosynthesis, disrupts water balance and mineral nutrients, changes hormonal status, and alters membrane structure and permeability. This review provides consolidated information concentrating on the current studies associated with Pb-induced oxidative stress and toxic conditions in various plants, highlighting the roles of different antioxidants in plants mitigating Pb-stress. Additionally, we discussed detoxification and tolerance responses in plants by regulating different gene expressions, protein, and glutathione metabolisms to resist Pb-induced phytotoxicity. Overall, various approaches to tackle Pb toxicity have been addressed; the phytoremediation techniques and biochar amendments are economical and eco-friendly remedies for improving Pb-contaminated soils.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Anzhen Qin
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang, 453002, China
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Zain Mushtaq
- Department of Soil Science, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Faisal Mehmood
- Department of Land and Water Management, Faculty of Agricultural Engineering, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, 47150, Punjab, Pakistan
| | - Sadiq Naveed
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2240, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Shehzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
9
|
Charagh S, Hui S, Wang J, Raza A, Zhou L, Xu B, Zhang Y, Sheng Z, Tang S, Hu S, Hu P. Unveiling Innovative Approaches to Mitigate Metals/Metalloids Toxicity for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14226. [PMID: 38410873 DOI: 10.1111/ppl.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Due to anthropogenic activities, environmental pollution of heavy metals/metalloids (HMs) has increased and received growing attention in recent decades. Plants growing in HM-contaminated soils have slower growth and development, resulting in lower agricultural yield. Exposure to HMs leads to the generation of free radicals (oxidative stress), which alters plant morpho-physiological and biochemical pathways at the cellular and tissue levels. Plants have evolved complex defense mechanisms to avoid or tolerate the toxic effects of HMs, including HMs absorption and accumulation in cell organelles, immobilization by forming complexes with organic chelates, extraction via numerous transporters, ion channels, signaling cascades, and transcription elements, among others. Nonetheless, these internal defensive mechanisms are insufficient to overcome HMs toxicity. Therefore, unveiling HMs adaptation and tolerance mechanisms is necessary for sustainable agriculture. Recent breakthroughs in cutting-edge approaches such as phytohormone and gasotransmitters application, nanotechnology, omics, and genetic engineering tools have identified molecular regulators linked to HMs tolerance, which may be applied to generate HMs-tolerant future plants. This review summarizes numerous systems that plants have adapted to resist HMs toxicity, such as physiological, biochemical, and molecular responses. Diverse adaptation strategies have also been comprehensively presented to advance plant resilience to HMs toxicity that could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Bo Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Yuanyuan Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| |
Collapse
|
10
|
Shi A, Xu J, Guo Y, Rensing C, Chang J, Zhang T, Zhang L, Xing S, Ni W, Yang W. Jasmonic acid's impact on Sedum alfredii growth and cadmium tolerance: A physiological and transcriptomic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169939. [PMID: 38211868 DOI: 10.1016/j.scitotenv.2024.169939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Soil cadmium (Cd) pollution is escalating, necessitating effective remediation strategies. This study investigated the effects of exogenous jasmonic acid (JA) on Sedum alfredii Hance under Cd stress, aiming to enhance its phytoextraction efficiency. Initially, experiments were conducted to assess the impact of various concentrations of JA added to environments with Cd concentrations of 100, 300, and 500 μmol/L. The results determined that a concentration of 1 μmol/L JA was optimal. This concentration effectively mitigated the level of ROS products by enhancing the activity of antioxidant enzymes. Additionally, JA fostered Cd absorption and accumulation, while markedly improving plant biomass and photosynthetic performance. In further experiments, treatment with 1 μmol/L JA under 300 μmol/L Cd stress was performed and transcriptomic analysis unveiled a series of differentially expressed genes (DEGs) instrumental in the JA-mediated Cd stress response. These DEGs encompass not only pathways of JA biosynthesis and signaling but also genes encoding functions that influence antioxidant systems and photosynthesis, alongside genes pertinent to cell wall synthesis, and metal chelation and transport. This study highlights that JA treatment significantly enhances S. alfredii's Cd tolerance and accumulation, offering a promising strategy for plant remediation and deepening our understanding of plant responses to heavy metal stress.
Collapse
Affiliation(s)
- An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junlong Xu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingmin Guo
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinqing Chang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taoxiang Zhang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liming Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou 310058, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Chen Z, Liu Q, Zhang S, Hamid Y, Lian J, Huang X, Zou T, Lin Q, Feng Y, He Z, Yang X. Foliar application of plant growth regulators for enhancing heavy metal phytoextraction efficiency by Sedum alfredii Hance in contaminated soils: Lab to field experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169788. [PMID: 38181951 DOI: 10.1016/j.scitotenv.2023.169788] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The phytoremediation efficiency of plants in removing the heavy metals (HMs) might be influenced by their growth status and accumulation capacity of plants. Herein, we conducted a lab-scale experiment and a field try out to assess the optimal plant growth regulators (PGRs) including indole-3-acetic acid (IAA)/brassinolide (BR)/abscisic acid (ABA) in improving the phytoextraction potential of Sedum alfredii Hance (S. alfredii). The results of pot experiment revealed that application of IAA at 0.2 mg/L, BR at 0.4 mg/L, and ABA at 0.2 mg/L demonstrated notable potential as optimal dosage for Cd/Pb/Zn phytoextraction in S. alfredii. The findings of subcellular level of Cd/Pb/Zn in leaves showed that IAA (0.2 mg/L), BR (0.4 mg/L) or ABA (0.2 mg/L) promoted the HMs storage in the soluble and cell wall fraction, therefore contributing HMs subcellular compartmentation. In addition, application of PGRs notably enhanced the antioxidant system (SOD, CAT, POD, APX activities) while reducing lipid peroxidation (MDA content) in S. alfredii, consequently improving HMs tolerance and growth of S. alfredii. Moreover, the results of field trial showed that application of BR, IAA, or ABA+BR substantially improved the growth of S. alfredii by inducing plants biomass and augmenting the levels of photosynthetic pigment contents. Notably, ABA+BR noticed the highest theoretical biomass by 42.9 %, followed by IAA (41.6 %), and BR (36.4 %), as compared with CK. Additionally, ABA+BR treatment showed effectiveness in removing the Cd by 103.4 %, while BR and IAA led to a significant increase of Pb and Zn removal by 239 % and 116 %, respectively, when compared with CK. Overall, the results of this study highlights that the foliar application of IAA, BR, or ABA+BR can serve as viable strategy to boosting phytoremediation efficiency of S. alfredii in contaminated soil by improving the biomass and metal accumulation in harvestable parts.
Collapse
Affiliation(s)
- Zhiqin Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shijun Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yasir Hamid
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiapan Lian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiwei Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Tong Zou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qiang Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945, United States
| | - Xiaoe Yang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
12
|
Sanjana S, Jazeel K, Janeeshma E, Nair SG, Shackira AM. Synergistic interactions of assorted ameliorating agents to enhance the potential of heavy metal phytoremediation. STRESS BIOLOGY 2024; 4:13. [PMID: 38363436 PMCID: PMC10873264 DOI: 10.1007/s44154-024-00153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Pollution by toxic heavy metals creates a significant impact on the biotic community of the ecosystem. Nowadays, a solution to this problem is an eco-friendly approach like phytoremediation, in which plants are used to ameliorate heavy metals. In addition, various amendments are used to enhance the potential of heavy metal phytoremediation. Symbiotic microorganisms such as phosphate-solubilizing bacteria (PSB), endophytes, mycorrhiza and plant growth-promoting rhizobacteria (PGPR) play a significant role in the improvement of heavy metal phytoremediation potential along with promoting the growth of plants that are grown in contaminated environments. Various chemical chelators (Indole 3-acetic acid, ethylene diamine tetra acetic acid, ethylene glycol tetra acetic acid, ethylenediamine-N, N-disuccinic acid and nitrilotri-acetic acid) and their combined action with other agents also contribute to heavy metal phytoremediation enhancement. With modern techniques, transgenic plants and microorganisms are developed to open up an alternative strategy for phytoremediation. Genomics, proteomics, transcriptomics and metabolomics are widely used novel approaches to develop competent phytoremediators. This review accounts for the synergistic interactions of the ameliorating agent's role in enhancing heavy metal phytoremediation, intending to highlight the importance of these various approaches in reducing heavy metal pollution.
Collapse
Affiliation(s)
- S Sanjana
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India
| | - K Jazeel
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India
| | - E Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala, India
| | - Sarath G Nair
- Department of Botany, Mar Athanasius College, Mahatma Gandhi University, Kottayam, Kerala, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India.
| |
Collapse
|
13
|
Hussain M, Hafeez A, Al-Huqail AA, Alsudays IM, Alghanem SMS, Ashraf MA, Rasheed R, Rizwan M, Abeed AHA. Effect of hesperidin on growth, photosynthesis, antioxidant systems and uptake of cadmium, copper, chromium and zinc by Celosia argentea plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108433. [PMID: 38364631 DOI: 10.1016/j.plaphy.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Rapid industrialization and extensive agricultural practices are the major causes of soil heavy metal contamination, which needs urgent attention to safeguard the soils from contamination. However, the phytotoxic effects of excessive metals in plants are the primary obstacle to efficient phytoextraction. The present study evaluated the effects of hesperidin (HSP) on metals (Cu, Cd, Cr, Zn) phytoextraction by hyperaccumulator (Celosia argentea L.) plants. For this purpose, HSP, a flavonoid compound with strong antioxidant potential to assist metal phytoextraction was used under metal stress in plants. Celosia argentea plants suffered significant (P ≤ 0.001) oxidative damage due to the colossal accumulation of metals (Cu, Cd, Cr, Zn). However, HSP supplementation notably (P ≤ 0.001) abated ROS generation (O2•‒, •OH, H2O2), lipoxygenase activity, methylglyoxal production, and relative membrane permeability that clearly indicated HSP-mediated decline in oxidative injury in plants. Exogenous HSP improved (P ≤ 0.001) the production of non-protein thiol, phytochelatins, osmolytes, and antioxidant compounds. Further, HSP enhanced (P ≤ 0.001) H2S and NO endogenous production, which might have improved the GSH: GSSG ratio. Consequently, HSP-treated C. argentea plants had higher biomass alongside elevated metal accumulation mirrored as profound modifications in translocation factor (TF), bioaccumulation coefficient (BAC), and bioconcentration factor (BCF). In this context, HSP significantly enhanced TF of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.01), while BAC of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.001). Further, BCF was significant (P ≤ 0.05) only in plants grown under Cr-spiked soil. Overall, HSP has the potential for phytoremediation of metals by C. argentea, which might be a suitable strategy for metal-polluted soils.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
14
|
Pérez-López AV, Lim SD, Cushman JC. Tissue succulence in plants: Carrying water for climate change. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154081. [PMID: 37703768 DOI: 10.1016/j.jplph.2023.154081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Tissue succulence in plants involves the storage of water in one or more organs or tissues to assist in maintaining water potentials on daily or seasonal time scales. This drought-avoidance or drought-resistance strategy allows plants to occupy diverse environments including arid regions, regions with rocky soils, epiphytic habitats, and saline soils. Climate-resilient strategies are of increasing interest in the context of the global climate crisis, which is leading to hotter and drier conditions in many regions throughout the globe. Here, we describe a short history of succulent plants, the basic concepts of tissue succulence, the anatomical diversity of succulent morphologies and associated adaptive traits, the evolutionary, phylogenetic, and biogeographical diversity of succulent plants, extinction risks to succulents due to poaching from their natural environments, and the myriad uses and applications of economically important succulent species and the products derived from them. Lastly, we discuss current prospects for engineering tissue succulence to improve salinity and drought tolerance in crops.
Collapse
Affiliation(s)
- Arely V Pérez-López
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| | - Sung Don Lim
- Department of Plant Life and Resource Science, Sangji University, Gangwon-do, 26339, South Korea.
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| |
Collapse
|
15
|
Wu Q, Lin X, Li S, Liang Z, Wang H, Tang T. Endophytic Bacillus sp. AP10 harboured in Arabis paniculata mediates plant growth promotion and manganese detoxification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115170. [PMID: 37354566 DOI: 10.1016/j.ecoenv.2023.115170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/27/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Phytoremediation of heavy metal-polluted soils assisted by plant-associated endophytes, is a suitable method for plant growth and manganese (Mn) removal in contaminated soils. This investigation was conducted to evaluate the Mn-resistant endophytic resources of the Mn hyperaccumulator Arabis paniculata and their functions in the phytoremediation of Mn2+ toxicity. This study isolated an endophytic bacterium with high Mn resistance and indole-3-acetic acid (IAA) production form A. paniculata and identified it as Bacillus sp. AP10 using 16 S rRNA gene sequencing analysis. The effects of Bacillus sp. AP10 on the alleviation of Mn2+ toxicity in Arabidopsis thaliana seedlings and the molecular mechanisms were further investigated using biochemical tests and RNA-seq analysis. Under Mn2+ stress, Bacillus sp. AP10 increased the biomass, chlorophyll content and the translocation factor (TF) values of Mn in the aerial parts, while decreased the malondialdehyde (MDA) content of A. thaliana seedlings compared with that of control plants. The differentially expressed genes (DEGs) and enrichment analysis showed that Bacillus sp. AP10 could significantly increase the expression of key genes involved in cell-wall loosening, which may improve plant growth under Mn stress. Superoxide dismutase (SOD)-encoding genes were detected as DEGs after AP10 treatment. Moreover, AP10 regulated the expression of genes responsible for phenylpropanoid pathway, which may promote antioxidant flavonoids accumulation for reactive oxygen species (ROS) scavenging to improve Mn tolerance. The activation of ATP-binding cassette (ABC) transporter gene expression especially ABCB1 after AP10 stimulation, explained the elevation of metal ion binding or transport related to enhanced Mn accumulation in plants. Futhermore, AP10 might alleviate Mn toxicity through enhancing abscisic acid (ABA) responsive gene expression and ABA biosynthesis. These findings provide new insights into the functions and regulatory mechanism of Bacillus sp. AP10 in promoting plant growth, and tolerance, improving Mn accumulation and alleviating Mn2+ toxicity in plants. The application of Bacillus sp. AP10 as potential phytoremediators may be a promising strategy in Mn2+ contaminated fields. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Qingtao Wu
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xianjing Lin
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shaoqing Li
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhenting Liang
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haihua Wang
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Ting Tang
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
16
|
Ge Y, Wen Z, He L, Sheng X. Metal-immobilizing Pseudomonas taiwanensis WRS8 reduces heavy metal accumulation in Coriandrum sativum by changing the metal immobilization-related bacterial population abundances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27967-2. [PMID: 37247148 DOI: 10.1007/s11356-023-27967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Metal-immobilizing bacteria play a critical role in metal accumulation in vegetables. However, little is known concerning the mechanisms involved in bacteria-induced reduced metal availability and uptake in vegetables. In this study, the impacts of metal-immobilizing Pseudomonas taiwanensis WRS8 on the plant biomass, Cd and Pb availability and uptake in two coriander (Coriandrum sativum L.) cultivars, and bacterial community structure were investigated in the polluted soil. Strain WRS8 increased the biomass of two coriander cultivars by 25-48% and reduced Cd and Pb contents in the edible tissues by 40-59% and available Cd and Pb contents in the rhizosphere soils by 11.1-15.2%, compared with the controls. Strain WRS8 significantly increased the pH values and relative abundances of the dominant populations of Sphingomonas, Pseudomonas, Gaiellales, Streptomyces, Frankiales, Bradyrhizobium, and Luteimonas, while strain WRS8 significantly decreased the relative abundances of the dominant populations of Gemmatimonadaceae, Nitrospira, Haliangium, Paenibacillus, Massilia, Bryobacter, and Rokubacteriales and the rare bacterial populations of Enterorhabdus, Roseburia, Luteibacter, and Planifilum in the rhizosphere soils, compared with the controls. Significantly negative correlations were observed between the available metal concentrations and the abundances of Pseudomonas, Luteimonas, Frankiales, and Planifilum. These results implied that strain WRS8 could affect the abundances of the dominant and rare bacterial populations involved in metal immobilization, resulting in increased pH values and decreased metal availability and uptake in the vegetables in the contaminated soil.
Collapse
Affiliation(s)
- Yanyan Ge
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, China
| | - Zhenyu Wen
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, China
| | - Linyan He
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, China
| | - Xiafang Sheng
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, China.
| |
Collapse
|
17
|
Rasouli F, Hassanpouraghdam MB, Pirsarandib Y, Aazami MA, Asadi M, Ercisli S, Mehrabani LV, Puglisi I, Baglieri A. Improvements in the biochemical responses and Pb and Ni phytoremediation of lavender (Lavandula angustifolia L.) plants through Funneliformis mosseae inoculation. BMC PLANT BIOLOGY 2023; 23:252. [PMID: 37173650 PMCID: PMC10182630 DOI: 10.1186/s12870-023-04265-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Heavy metals (HMs) phytoremediation is a well-recognized protocol to remove toxic elements from the soil. As known, arbuscular mycorrhizal fungi (AMF) enhance the plants' growth responses. The idea of the present study was to assay the response of lavender plants to HMs stress under AMF inoculation. We hypothesized that mycorrhiza will enhance the phytoremediation and simultaneously reduce the harmful effects of heavy HMs. So, lavender (Lavandula angustifolia L.) plants were inoculated with AMF (0 and 5 g Kg-1 soil) under Pb [150 and 225 mg kg-1 soil from Pb (NO3)2] and Ni [220 and 330 mg kg-1 soil from Ni (NO3)2] pollution, in the greenhouse conditions. The control treatment was plants not treated with AMF and HMs. Doing this, the root colonization, HMs uptake, enzymatic and non-enzymatic antioxidants pool, MDA, proline, total phenolics (TPC), flavonoids (TFC), anthocyanins, and essential oil (EO) components were evaluated. RESULTS According to the findings, the AMF inoculation enhanced shoot and root Pb and Ni content, antioxidant enzymes activity, the total antioxidant activity by DPPH and FRAP methods, TPC, TFC, anthocyanins, and H2O2 content in the lavender plants subjected to Pb and Ni stress. Moreover, the highest (28.91%) and the least (15.81%) percentages of borneol were identified in the lavender plants subjected to AMF under 150 mg kg-1 of Pb and the control plants without AMF application, respectively. Furthermore, the top 1,8-cineole (12.75%) content was recorded in AMF-inoculated plants. CONCLUSIONS The overall results verify that AMF inoculation can be a reliable methodology to enhance the phytoremediation of Pb and Ni by lavender plants while maintaining reliable growth potential. The treatments improved the main EO constituents content, especially under moderate HMs stress conditions. With more detailed studies, the results will be advisable for the extension section for the phytoremediation of polluted soils.
Collapse
Affiliation(s)
- Farzad Rasouli
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran
| | | | - Yaghoub Pirsarandib
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran
| | - Mohammad Ali Aazami
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran
| | - Mohammad Asadi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Türkiye & HGF Agro, Ata Teknokent, Erzurum, TR-25240, Turkey
| | - Lamia Vojodi Mehrabani
- Department of Agronomy and Plant Breeding, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Ivana Puglisi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123, Catania, Italy
| | - Andrea Baglieri
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123, Catania, Italy
| |
Collapse
|
18
|
Yang C, Xia L, Zeng Y, Chen Y, Zhang S. Hexaploid Salix rehderiana is more suitable for remediating lead contamination than diploids, especially male plants. CHEMOSPHERE 2023; 333:138902. [PMID: 37182717 DOI: 10.1016/j.chemosphere.2023.138902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Willows are promising candidates for phytoremediation, but the lead (Pb) phytoremediation potential of different willow ploidy and sex has not yet been exploited. In this study, the Pb uptake, translocation and detoxification capacities of hexaploid and diploid, female and male Salix rehderiana were investigated. The results showed that Pb treatment inhibited biomass accumulation and gas exchange, caused ultrastructural and oxidative damage, and induced antioxidant, phytohormonal and transcriptional regulation in S. rehderiana. Absorbed Pb was mainly accumulated in the roots with restricted root-to-shoot transport. Despite lower biomass, greater transpiration, phytohormonal and transcriptional regulation indicated that hexaploid S. rehderiana had higher tissue Pb concentration, total accumulated Pb amount (4.39 mg, 6.19 mg, 6.60 mg and 10.83 mg in diploid and hexaploid females and males, respectively) as well as bioconcentration factors and translocation factors (0.412, 0.593, 0.921 and 1.320 for bioconcentration factors in roots, and 0.029, 0.032, 0.035 and 0.047 for translocation factors in diploid and hexaploid females and males, respectively) than diploids. Higher soil urease and acid phosphatase activities also favored hexaploids to use more available N and P than diploids in Pb-contaminated soils. Additionally, hexaploid S. rehderiana had stronger antioxidant, phytohormonal and transcriptional responses, and displayed less morphological and ultrastructural damage than diploids after Pb treatment, suggesting that hexaploids have greater Pb uptake, translocation and detoxification capacities than diploids. Moreover, S. rehderiana males had greater Pb uptake and translocation abilities, as well as stronger antioxidant, phytohormonal, and transcriptional regulation mediated Pb detoxification capacities than females. Therefore, hexaploid S. rehderiana are superior to diploids, and males are better than females in Pb phytoremediation. This study provides novel and valuable insights for selecting better willow materials to mitigate Pb contamination.
Collapse
Affiliation(s)
- Congcong Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
19
|
Guo K, Yan L, He Y, Li H, Lam SS, Peng W, Sonne C. Phytoremediation as a potential technique for vehicle hazardous pollutants around highways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121130. [PMID: 36693585 DOI: 10.1016/j.envpol.2023.121130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
With the synchronous development of highway construction and the urban economy, automobiles have entered thousands of households as essential means of transportation. This paper reviews the latest research progress in using phytoremediation technology to remediate the environmental pollution caused by automobile exhaust in recent years, including the prospects for stereoscopic forestry. Currently, most automobiles on the global market are internal combustion vehicles using fossil energy sources as the primary fuel, such as gasoline, diesel, and liquid or compressed natural gas. The composition of vehicle exhaust is relatively complex. When it enters the atmosphere, it is prone to a series of chemical reactions to generate various secondary pollutants, which are very harmful to human beings, plants, animals, and the eco-environment. Despite improving the automobile fuel quality and installing exhaust gas purification devices, helping to reduce air pollution, the treatment costs of these approaches are expensive and cannot achieve zero emissions of automobile exhaust pollutants. The purification of vehicle exhaust by plants is a crucial way to remediate the environmental pollution caused by automobile exhaust and improve the environment along the highway by utilizing the ecosystem's self-regulating ability. Therefore, it has become a global trend to use phytoremediation technology to restore the automobile exhaust pollution. Now, there is no scientific report or systematic review about how plants absorb vehicle pollutants. The screening and configuration of suitable plant species is the most crucial aspect of successful phytoremediation. The mechanisms of plant adsorption, metabolism, and detoxification are reviewed in this paper to address the problem of automobile exhaust pollution.
Collapse
Affiliation(s)
- Kang Guo
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lijun Yan
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
20
|
Elevated CO 2 may increase the health risks of consuming leafy vegetables cultivated in flooded soils contaminated with Cd and Pb. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49733-49743. [PMID: 36781664 DOI: 10.1007/s11356-023-25863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Elevated CO2 levels threat the crop quality by altering the environmental behavior of heavy metals (HMs) in soils. In reality, multiple HMs often co-exist in field, while details regarding coexisting HMs migration in flooded soil at elevated CO2 levels remain unclear. A pot experiment in open-top chambers (CO2 at 400 and 600 μmol mol-1) was conducted to explore the uptake and transfer of cadmium (Cd) and lead (Pb) in water dropwort (Oenanthe javanica DC.) grown in flooded soils contaminated with Cd and Pb. Results showed that elevated CO2 significantly reduced soil pH, promoting the release of Cd and Pb (by 63.64-106.90% and 10.66-30.99%, respectively) into soil porewater. In the harvested O. javanica, elevated CO2 decreased the root uptake of Cd but promoted that of Pb. Further mechanism analysis showed that elevated CO2 promoted the formation of iron plaque on root surface by 44.60-139.57%, with lower adsorption capacity to HMs (0-34.93% and 63.61-67.69% for Cd and Pb, respectively). Meanwhile, Pb showed lower adsorbability in iron plaque but higher transfer capacity when compared with Cd. Ultimately, elevated CO2 increased the target hazard quotient values of Pb in O. javanica. These findings provide new insights on the effects of elevated CO2 on the transfer of coexisting HMs in soil-plant system, and the risk of HMs pollution under climate changes needs to be more fully assessed.
Collapse
|
21
|
Li L, Zheng Q, Jiang W, Xiao N, Zeng F, Chen G, Mak M, Chen ZH, Deng F. Molecular Regulation and Evolution of Cytokinin Signaling in Plant Abiotic Stresses. PLANT & CELL PHYSIOLOGY 2023; 63:1787-1805. [PMID: 35639886 DOI: 10.1093/pcp/pcac071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of crops faces increasing challenges from global climate change and human activities, which leads to increasing instances of many abiotic stressors to plants. Among the abiotic stressors, drought, salinity and excessive levels of toxic metals cause reductions in global agricultural productivity and serious health risks for humans. Cytokinins (CKs) are key phytohormones functioning in both normal development and stress responses in plants. Here, we summarize the molecular mechanisms on the biosynthesis, metabolism, transport and signaling transduction pathways of CKs. CKs act as negative regulators of both root system architecture plasticity and root sodium exclusion in response to salt stress. The functions of CKs in mineral-toxicity tolerance and their detoxification in plants are reviewed. Comparative genomic analyses were performed to trace the origin, evolution and diversification of the critical regulatory networks linking CK signaling and abiotic stress. We found that the production of CKs and their derivatives, pathways of signal transduction and drought-response root growth regulation are evolutionarily conserved in land plants. In addition, the mechanisms of CK-mediated sodium exclusion under salt stress are suggested for further investigations. In summary, we propose that the manipulation of CK levels and their signaling pathways is important for plant abiotic stress and is, therefore, a potential strategy for meeting the increasing demand for global food production under changing climatic conditions.
Collapse
Affiliation(s)
- Lijun Li
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Nayun Xiao
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
22
|
Chen X, Feng J, Mou H, Liang Z, Ding T, Chen S, Li F. Utilization of Indole Acetic Acid with Leucadendron rubrum and Rhododendron pulchrum for the Phytoremediation of Heavy Metals in the Artificial Soil Made of Municipal Sewage Sludge. TOXICS 2022; 11:toxics11010043. [PMID: 36668769 PMCID: PMC9864706 DOI: 10.3390/toxics11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 05/06/2023]
Abstract
The development of phytoremediation by garden plants is an effective way to deal with the dilemma of municipal sewage sludge disposal. In this study, two ornamental plants were used as phytoremediation plants to rehabilitate heavy-metal-contaminated municipal sewage sludge in field experiments, and the role of exogenous phytohormone IAA was also tested. Ornamental plants Loropetalum chinense var. rubrum (L. rubrum) and Rhododendron pulchrum (R. pulchrum) adapted well to the artificial soil made of municipal sewage sludge, and the concentrations of Cu, Zn, Pb, and Ni were decreased by 7.29, 261, 20.2, and 11.9 mg kg−1, respectively, in the soil planted with L. rubrum, and 7.60, 308, 50.1, and 17.7 mg kg−1, respectively, in the soil planted with R. pulchrum, accounted for 11−37% of the total amounts and reached significant levels (p < 0.05), except Cd. The concentration of Pb in all parts of the two ornamental plants was increased, as well as most heavy metals in L. rubrum root. As a result, three months after transplant, the phyto-extraction amounts in L. rubrum were 397, 10.9, and 1330 μg for Ni, Cd, and Pb, respectively, increased by 233% to 279%. The phyto-extraction amount in R. pulchrum were 1510, 250, and 237 μg for Zn, Pb, and Cu, respectively, increased by 143% to 193%. These results indicated a potential to remediate heavy metals of the two ornamental plants, especially L. rubrum. The results of correlation analysis implied that the interaction of heavy metals in the plant itself played an important role in the uptake of heavy metals. This seemed to explain why applying IAA in the experiment had little effect on plant growth and phytoremediation of heavy metals. This study provided a green and feasible idea for the proper disposal of municipal sewage sludge.
Collapse
Affiliation(s)
- Xiaoling Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jianru Feng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Huaqian Mou
- Jinhua Water Treatment Co., Ltd., Jinhua 321016, China
| | - Zheng Liang
- Shaoxing Institute of Energy Testing, Shaoxing 312000, China
| | - Tianzheng Ding
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shiyu Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
- Correspondence:
| |
Collapse
|
23
|
Li X, Xiao J, Salam MMA, Chen G. Evaluation of dendroremediation potential of ten Quercus spp. for heavy metals contaminated soil: A three-year field trial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158232. [PMID: 36007636 DOI: 10.1016/j.scitotenv.2022.158232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Woody plants have gained considerable attention for remediating soils contaminated with heavy metals because of their cost-efficient and ecologically friendly nature. However, most studies on potential phytoremediation evaluation are limited to short-term experiments in greenhouse or field, meaning that differences may exist between laboratory results and application in natural environment. In this study, ten Quercus spp. were tested in a consecutive 3-year field trial (2018-2020) to assess their dendroremediation abilities for Cd and Zn contaminated soil. The results revealed that nine Quercus spp. demonstrated good survival ability without any stress, except for Quercus velutina Lam., in the 3-year growth period. In 2020, Quercus texana Buckley and Quercus fabri Hance plants produced the greatest biomass (2100 and 1880 g plant-1) among the nine Quercus spp. Quercus texana had the highest total Cd accumulation (39.3 mg plant-1) in 2020, which was 8.5 times higher than that in 2018, followed by Quercus pagoda Raf. (8.85 mg plant-1) and Q. fabri (8.07 mg plant-1) plants, respectively, whereas Cd accumulation increased by 7.4 times for Q. pagoda and 22 times for Q. fabri compared to 2018. The results from 2020 indicated that Q. fabri had the highest Zn accumulation (205 mg plant-1), followed by Quercus nigra L. (149 mg plant-1) and Q. texana (140 mg plant-1), respectively, and these values increased 14, 6.4, and 6.2 times in comparison to 2018. The comprehensive bioaccumulation index (CBAI) was proposed to evaluate the dendroremediation potential of Quercus spp., suggesting that Q. texana and Q. fabri had the most outstanding potential for remediation of Cd and Zn polluted soil, with the values of 0.82 and 0.60, respectively. In summary, Q. texana and Q. fabri are ideal for remediating Cd/Zn-contaminated soil, and long-term field trials and the CBAI method are helpful for comprehensively evaluating the remediation capacity of trees.
Collapse
Affiliation(s)
- Xiaogang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China; Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiang Xiao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Mir Md Abdus Salam
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100 Joensuu, Finland; Natural Resources Institute Finland (LUKE), Yliopistokatu 6B, 80100 Joensuu, Finland
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China.
| |
Collapse
|
24
|
Xie H, Chen J, Qiao Y, Xu K, Lin Z, Tian S. Biofortification Technology for the Remediation of Cadmium-Contaminated Farmland by the Hyperaccumulator Sedum alfredii under Crop Rotation and Relay Cropping Mode. TOXICS 2022; 10:691. [PMID: 36422899 PMCID: PMC9692257 DOI: 10.3390/toxics10110691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Soil cadmium (Cd) extraction for hyperaccumulators is one of the most important technologies for the remediation of Cd-contaminated farmland soil. However, a phytoremediation model using a single hyperaccumulator cannot guarantee normal agricultural production in contaminated areas. To solve this problem, a combination of efficient remediation and safe production has been developed. Based on two-period field experiments, this study explored the effect of biofortification on soil Cd remediation using the fruit tree Sedum alfredii Hance and oil sunflower crop rotation and relay cropping mode. BioA and BioB treatments could markedly improve the efficiency of Cd extraction and remediation, and the maximum increase in Cd accumulation was 243.29%. When BioB treatment was combined with papaya-S. alfredii and oil sunflower crop rotation and relay cropping mode, the highest soil Cd removal rate in the two periods was 40.84%, whereas the Cd concentration of papaya fruit was lower than safety production standards (0.05 mg/kg). These results demonstrate that biofortification measures can significantly improve the Cd extraction effect of S. alfredii crop rotation and relay cropping restoration modes, which has guiding significance for Cd pollution remediation and safe production in farmland.
Collapse
|
25
|
Liu Q, Chen Z, Wu Y, Huang L, Munir MAM, Zhou Q, Wen Z, Jiang Y, Tao Y, Feng Y. Inconsistent effects of a composite soil amendment on cadmium accumulation and consumption risk of 14 vegetables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71810-71825. [PMID: 35604595 DOI: 10.1007/s11356-022-20939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Organic and inorganic mixtures can be developed as immobilizing agents that could reduce heavy metal accumulation in crops and contribute to food safety. Here, inorganic materials (lime, L; zeolite, Z; and sepiolite, S) and organic materials (biochar, B, and compost, C) were selectively mixed to produce six composite soil amendments (LZBC, LSBC, LZC, LZB, LSC, and LSB). Given the fact that LZBC showed the best performance in decreasing soil Cd availability in the incubation experiment, it was further applied in the field condition with 14 vegetables as the test crops to investigate its effects on crop safety production in polluted greenhouse. The results showed that LZBC addition elevated rhizosphere soil pH by 0.1-2.0 units and reduced soil Cd availability by 1.85-37.99%. Both the biomass and the yields of edible parts of all vegetables were improved by LZBC addition. However, LZBC addition differently affected Cd accumulation in edible parts of the experimental vegetables, with the observation that Cd contents were significantly reduced in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., but increased in the three species of Lactuca sativa. Further health risk assessment showed that LZBC application significantly decreased daily intake of metal (DIM), health risk index (HRI), and target hazard quotient (THQ) for Cd in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., whereas increased all the indexes in Lactuca sativa. Our results showed that the effect of a composite amendment on Cd accumulation in different vegetables could be divergent and species-dependent, which suggested that it is essential to conduct a pre-experiment to verify applicable species for a specific soil amendment designed for heavy metal immobilization.
Collapse
Affiliation(s)
- Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhiqin Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Mehr Ahmed Mujtaba Munir
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qiyao Zhou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yugen Jiang
- Hangzhou Fuyang Agricultural Technology Extension Center, Fuyang, 311400, People's Republic of China
| | - Yi Tao
- Huzhou Ruibosi Testing Technology Co., Ltb, Huzhou, 313000, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
26
|
Kumar S, Shah SH, Vimala Y, Jatav HS, Ahmad P, Chen Y, Siddique KHM. Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. FRONTIERS IN PLANT SCIENCE 2022; 13:972856. [PMID: 36186053 PMCID: PMC9515544 DOI: 10.3389/fpls.2022.972856] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/17/2022] [Indexed: 05/06/2023]
Abstract
Heavy metal (HM) stress is threatening agricultural crops, ecological systems, and human health worldwide. HM toxicity adversely affects plant growth, physiological processes, and crop productivity by disturbing cellular ionic balance, metabolic balance, cell membrane integrity, and protein and enzyme activities. Plants under HM stress intrinsically develop mechanisms to counter the adversities of HM but not prevent them. However, the exogenous application of abscisic acid (ABA) is a strategy for boosting the tolerance capacity of plants against HM toxicity by improving osmolyte accumulation and antioxidant machinery. ABA is an essential plant growth regulator that modulates various plant growth and metabolic processes, including seed development and germination, vegetative growth, stomatal regulation, flowering, and leaf senescence under diverse environmental conditions. This review summarizes ABA biosynthesis, signaling, transport, and catabolism in plant tissues and the adverse effects of HM stress on crop plants. Moreover, we describe the role of ABA in mitigating HM stress and elucidating the interplay of ABA with other plant growth regulators.
Collapse
Affiliation(s)
- Sandeep Kumar
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Sajad Hussain Shah
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Yerramilli Vimala
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Hanuman Singh Jatav
- Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University Jobner, Jaipur, India
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir, India
| | - Yinglong Chen
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
27
|
Shen C, Yang YM, Sun YF, Zhang M, Chen XJ, Huang YY. The regulatory role of abscisic acid on cadmium uptake, accumulation and translocation in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:953717. [PMID: 36176683 PMCID: PMC9513065 DOI: 10.3389/fpls.2022.953717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
To date, Cd contamination of cropland and crops is receiving more and more attention around the world. As a plant hormone, abscisic acid (ABA) plays an important role in Cd stress response, but its effect on plant Cd uptake and translocation varies among plant species. In some species, such as Arabidopsis thaliana, Oryza sativa, Brassica chinensis, Populus euphratica, Lactuca sativa, and Solanum lycopersicum, ABA inhibits Cd uptake and translocation, while in other species, such as Solanum photeinocarpum and Boehmeria nivea, ABA severs the opposite effect. Interestingly, differences in the methods and concentrations of ABA addition also triggered the opposite result of Cd uptake and translocation in Sedum alfredii. The regulatory mechanism of ABA involved in Cd uptake and accumulation in plants is still not well-established. Therefore, we summarized the latest studies on the ABA synthesis pathway and comparatively analyzed the physiological and molecular mechanisms related to ABA uptake, translocation, and detoxification of Cd in plants at different ABA concentrations or among different species. We believe that the control of Cd uptake and accumulation in plant tissues can be achieved by the appropriate ABA application methods and concentrations in plants.
Collapse
|
28
|
Influence of DOM and its subfractions on the mobilization of heavy metals in rhizosphere soil solution. Sci Rep 2022; 12:14082. [PMID: 35982100 PMCID: PMC9388525 DOI: 10.1038/s41598-022-18419-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Long-term industrial pollution, wastewater irrigation, and fertilizer application are known factors that can contribute to the contamination of heavy metals (HMs) in agricultural soil. In addition, dissolved organic matter (DOM) plays key roles in the migration and fate of HMs in soil. This study investigated the effects of amending exogenous DOM extracted from chicken manure (DOMc), humus soil (DOMs), rice husk (DOMr), and its sub-fractions on the mobilization and bio-uptake of Cd, Zn, and Pb. The results suggested that the exogenous DOM facilitate the dissolution of HMs in rhizosphere soil, and the maximum solubility of Zn, Cd, and Pb were 1264.5, 121.3, and 215.7 μg L-1, respectively. Moreover, the proportion of Zn-DOM and Cd-DOM increased as the DOM concentration increased, and the highest proportions were 97.5% and 86.9%. However, the proportion of Pb-DOM was stable at > 99% in all treatments. In addition, the proportion of hydrophilic acid (Hy) and Pb/Cd in the rhizosphere soil solution were 17.5% and 8.3%, respectively. This finding suggested that the Hy-metals complex has a vital influence on the mobilization of metals, besides its complexation with fulvic acid and humic acid. Furthermore, the elevated DOM addition contributed to an increment of HMs uptake by Sedum alfredii, in the following order, DOMc > DOMs > DOMr. This study can provide valuable insights to enhance the development of phytoremediation technologies and farmland manipulation. Since the risk that exogenous DOM would increase the uptake of HMs by crops, it is also needed to evaluate this case from an agricultural management perspective.
Collapse
|
29
|
Zhou X, Shi A, Rensing C, Yang J, Ni W, Xing S, Yang W. Wood vinegar facilitated growth and Cd/Zn phytoextraction of Sedum alfredii Hance by improving rhizosphere chemical properties and regulating bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119266. [PMID: 35413404 DOI: 10.1016/j.envpol.2022.119266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Soil Cd and Zn contamination has become a serious environmental problem. This work explored the performance of wood vinegar (WV) in enhancing the phytoextraction of Cd/Zn by hyperaccumulator Sedum alfredii Hance. Rhizosphere chemical properties, enzyme activities and bacterial community were analyzed to determine the mechanisms of metal accumulation in this process. Results demonstrated that, after 120 days growth, different times dilution of WV increased the shoot biomass of S. alfredii by 85.2%-148%. In addition, WV application significantly increased soil available Cd and Zn by lowing soil pH, which facilitated plant uptake. The optimal Cd and Zn phytoextraction occurred from the 100 times diluted WV (D100), which increased the Cd and Zn extraction by 188% and 164%, compared to CK. The 100 and 50 times diluted WV significantly increased soil total and available carbon, nitrogen and phosphorus, and enhancing enzyme activities of urease, acid phosphatase, invertase and protease by 10.1-21.4%, 29.1-42.7%,12.2-38.3% and 26.8-85.7%, respectively, compared to CK. High-throughput sequencing revealed that the D 100 significantly increased the bacterial diversity compared to CK. Soil bacterial compositions at phylum, family and genera level were changed by WV addition. Compared to CK, WV application increased the relative abundances of genus with plant growth promotion and metal mobilization function such as, Bacillus, Gemmatimonas, Streptomyces, Sphingomonas and Polycyclovorans, which was positively correlated to biomass, Cd/Zn concentrations and extractions by S. alfredii. Structural equation modeling analysis showed that, soil chemical properties, enzyme activities and bacterial abundance directly or indirectly contributed to the biomass promotion, Cd, and Zn extraction by S. alfredii. To sum up, WV improved phytoextraction efficiency by enhancing plant growth, Cd and Zn extraction and increasing soil nutrients, enzyme activities, and modifying bacterial community.
Collapse
Affiliation(s)
- Xueqi Zhou
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
30
|
Karalija E, Selović A, Bešta-Gajević R, Šamec D. Thinking for the future: Phytoextraction of cadmium using primed plants for sustainable soil clean-up. PHYSIOLOGIA PLANTARUM 2022; 174:e13739. [PMID: 35765975 DOI: 10.1111/ppl.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) soil contamination is a global problem for food security due to its ubiquity, toxicity at low levels, persistence, and bioaccumulation in living organisms. Humans' intake of heavy metals is usually due to direct contact with contaminated soil, through the food chain (Cd accumulation in crops and edible plants) or through drinking water in cases of coupled groundwater-surface water systems. Phytoextraction is one of the eco-friendly, sustainable solutions that can be used as a method for soil clean-up with the possibility of re-use of extracted metals through phytomining. Phytoextraction is often limited by the tolerance level of hyperaccumulating plants and the restriction of their growth. Mechanisms of hyperaccumulation of heavy metals in tolerant species have been studied, but there are almost no data on mechanisms of further improvement of the accumulation capacity of such plants. Priming can influence plant stress tolerance by the initiation of mild stress cues resulting in acclimation of the plant. The potential of plant priming in abiotic stress tolerance has been extensively investigated using different types of molecules that are supplemented exogenously to plant organs (roots, leaves, etc.), resulting in enhanced tolerance of abiotic stress. This review focuses on mechanisms of enhancement of plant stress tolerance in hyperaccumulating plants for their exploitation in phytoextraction processes.
Collapse
Affiliation(s)
- Erna Karalija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Alisa Selović
- Laboratory for Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Renata Bešta-Gajević
- Laboratory for Microbiology, Department for Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Dunja Šamec
- Department of Food Technology, University North, Koprivnica, Croatia
| |
Collapse
|
31
|
Field Experiments of Phyto-Stabilization, Biochar-Stabilization, and Their Coupled Stabilization of Soil Heavy Metal Contamination around a Copper Mine Tailing Site, Inner Mongolia. MINERALS 2022. [DOI: 10.3390/min12060702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A field trial was conducted in Inner Mongolia to evaluate the stabilization effects of phyto-stabilization, biochar-stabilization, and their coupled stabilization for As, Cu, Pb, and Zn in soil. Stabilization plants (Achnatherum splendens, Puccinellia chinampoensis, and Chinese small iris) and biochar (wood charcoals and chelator-modified biochar) were introduced in the field trial. The acid-extractable fraction and residual fraction of the elements were extracted following a three-stage modified procedure to assess the stabilization effect. The results after 60 days showed that the coupled stabilization produced a better stabilization effect than biochar-/phyto- stabilization alone. Achnatherum splendens and Puccinellia chinampoensis were found to activate the target elements: the residual fraction proportion of As, Cu, Pb, and Zn decreased while the acid-extractable fraction proportion of Cu and Zn increased in the corresponding planting area. Neither type of biochar produced a notable stabilization effect. The residual fraction proportion of As (20.8–84.0%, 29.2–82%), Pb (31.6–39.3%, 32.1–48.9%), and Zn (30.0–36.2%, 30.1–41.4%) increased, while the acid-extractable fraction proportion remained nearly unchanged after treatment using Chinese small iris-straw biochar or Achnatherum splendens-straw biochar, respectively. The results indicate that phyto-stabilization or biochar-stabilization alone are not suitable, whereas the coupled stabilization approach is a more efficient choice.
Collapse
|