1
|
Cheng CH, Hao WR, Cheng TH. Use of graphene nanocomposites for air disinfection in dental clinics: A game-changer in infection control. World J Clin Cases 2025; 13:100139. [DOI: 10.12998/wjcc.v13.i8.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 12/04/2024] Open
Abstract
This manuscript features the promising findings of a study conducted by Ju et al, who used graphene nanocomposites for air disinfection in dental clinics. Their study demonstrated that, compared with conventional filters, graphene nanocomposites substantially improved air quality and reduced microbial contamination. This manuscript highlights the innovative application of graphene materials, emphasizing their potential to enhance dental clinic environments by minimizing secondary pollution. On the basis of the unique antimicrobial properties of graphene and the original study’s rigorous methodology, we recommend using graphene nanocomposites in clinical settings to control airborne infections.
Collapse
Affiliation(s)
- Chun-Han Cheng
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei 23561, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11002, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
2
|
Ding Y, Yang G, Zheng S, Gao X, Xiang Z, Gao M, Wang C, Liu M, Zhong J. Advanced photocatalytic disinfection mechanisms and their challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121875. [PMID: 39018863 DOI: 10.1016/j.jenvman.2024.121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Currently, microbial contamination issues have globally brought out a huge health threat to human beings and animals. To be specific, microorganisms including bacteria and viruses display durable ecological toxicity and various diseases to aquatic organisms. In the past decade, the photocatalytic microorganism inactivation technique has attracted more and more concern owing to its green, low-cost, and sustainable process. A variety kinds of photocatalysts have been employed for killing microorganisms in the natural environment. However, two predominant shortcomings including low activity of photocatalysts and diverse impacts of water characteristics are still displayed in the current photocatalytic disinfection system. So far, various strategies to improve the inherent activity of photocatalysts. Other than the modification of photocatalysts, the optimization of environments of water bodies has been also conducted to enhance microorganisms inactivation. In this mini-review, we outlined the recent progress in photocatalytic sterilization of microorganisms. Meanwhile, the relevant methods of photocatalyst modification and the influences of water body characteristics on disinfection ability were thoroughly elaborated. More importantly, the relationships between strategies for constructing advanced photocatalytic microorganism inactivation systems and improved performance were correlated. Finally, the perspectives on the prospects and challenges of photocatalytic disinfection were presented. We sincerely hope that this critical mini-review can inspire some new concepts and ideas in designing advanced photocatalytic disinfection systems.
Collapse
Affiliation(s)
- Yang Ding
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Guoxiang Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Sirui Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xing Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhuomin Xiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Mengyang Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chunhua Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, 99077, China
| | - Meijiao Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Jiasong Zhong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| |
Collapse
|
3
|
Chen X, Zou M, Liu S, Cheng W, Guo W, Feng X. Applications of Graphene Family Nanomaterials in Regenerative Medicine: Recent Advances, Challenges, and Future Perspectives. Int J Nanomedicine 2024; 19:5459-5478. [PMID: 38863648 PMCID: PMC11166159 DOI: 10.2147/ijn.s464025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Graphene family nanomaterials (GFNs) have attracted considerable attention in diverse fields from engineering and electronics to biomedical applications because of their distinctive physicochemical properties such as large specific surface area, high mechanical strength, and favorable hydrophilic nature. Moreover, GFNs have demonstrated the ability to create an anti-inflammatory environment and exhibit antibacterial effects. Consequently, these materials hold immense potential in facilitating cell adhesion, proliferation, and differentiation, further promoting the repair and regeneration of various tissues, including bone, nerve, oral, myocardial, and vascular tissues. Note that challenges still persist in current applications, including concerns regarding biosecurity risks, inadequate adhesion performance, and unsuitable degradability as matrix materials. This review provides a comprehensive overview of current advancements in the utilization of GFNs in regenerative medicine, as well as their molecular mechanism and signaling targets in facilitating tissue repair and regeneration. Future research prospects for GFNs, such as potential in promoting ocular tissue regeneration, are also discussed in details. We hope to offer a valuable reference for the clinical application of GFNs in the treatment of bone defects, nerve damage, periodontitis, and atherosclerosis.
Collapse
Affiliation(s)
- Xiuwen Chen
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Meiyan Zou
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Siquan Liu
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Weilin Cheng
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiaoli Feng
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Soleimani S, Jannesari A, Yousefzadi M, Ghaderi A, Shahdadi A. Fouling-Resistant Behavior of Hydrophobic Surfaces Based on Poly(dimethylsiloxane) Modified by Green rGO@ZnO Nanocomposites. ACS APPLIED BIO MATERIALS 2024; 7:2794-2808. [PMID: 38593040 DOI: 10.1021/acsabm.3c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In line with global goals to solve marine biofouling challenges, this study proposes an approach to developing a green synthesis inspired by natural resources for fouling-resistant behavior. A hybrid antifouling/foul release (HAF) coating based on poly(dimethylsiloxane) containing a green synthesized nanocomposite was developed as an environmentally friendly strategy. The nanocomposites based on graphene oxide (GO) and using marine sources, leaves, and stems of mangroves (Avicennia marina), brown algae (Polycladia myrica), and zinc oxide were compared. The effectiveness of this strategy was checked first in the laboratory and then in natural seawater. The performance stability of the coatings after immersion in natural seawater was also evaluated. With the lowest antifouling (17.95 ± 0.7%) and the highest defouling (51.2 ± 0.9%), the best fouling-resistant performance was for the coatings containing graphene oxide reduced with A. marina stem/zinc oxide (PrGZS) and graphene oxide reduced with A. marina leaves/zinc oxide with 50% multiwall carbon nanotubes (PrGZHC50), respectively. Therefore, the HAF coatings can be considered as developed and eco-friendly HAF coatings for the maritime industry.
Collapse
Affiliation(s)
- Soolmaz Soleimani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Ali Jannesari
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran
| | | | - Arash Ghaderi
- Department of Chemistry, College of Sciences, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Adnan Shahdadi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
5
|
Omran BA, Tseng BS, Baek KH. Nanocomposites against Pseudomonas aeruginosa biofilms: Recent advances, challenges, and future prospects. Microbiol Res 2024; 282:127656. [PMID: 38432017 DOI: 10.1016/j.micres.2024.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
6
|
Xu J, Xia W, Sheng G, Jiao G, Liu Z, Wang Y, Zhang X. Progress of disinfection catalysts in advanced oxidation processes, mechanisms and synergistic antibiotic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169580. [PMID: 38154648 DOI: 10.1016/j.scitotenv.2023.169580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Human diseases caused by pathogenic microorganisms make people pay more attention to disinfection. Meanwhile, antibiotics can cause microbial resistance and increase the difficulty of disease treatment, resulting in risk of triggering a vicious circle. Advanced oxidation process (AOPs) has been widely studied in the field of synergistic treatment of the two contaminates. This paper reviews the application of catalytic materials and their modification strategies in the context of AOPs for disinfection and antibiotic degradation. It also delves into the mechanisms of disinfection such as the pathways for microbial inactivation and the related influencing factors, which are essential for understanding the pivotal role of catalytic materials in disinfection principles by AOPs. More importantly, the exploratory research on the combined use of AOPs for disinfection and antibiotic degradation is discussed, and the potential and prospects in this field is highlighted. Finally, the limitations and challenges associated with the application of AOPs in disinfection and antibiotic degradation are summarized. It aims to provide a starting point for future research efforts to facilitate the widespread use of advanced oxidation processes in the field of public health.
Collapse
Affiliation(s)
- Jin Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wannan Xia
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guo Sheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guanhao Jiao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhenhao Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
7
|
Selim MS, Azzam AM, Shenashen MA, Higazy SA, Mostafa BB, El-Safty SA. Comparative study between three carbonaceous nanoblades and nanodarts for antimicrobial applications. J Environ Sci (China) 2024; 136:594-605. [PMID: 37923468 DOI: 10.1016/j.jes.2023.02.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 11/07/2023]
Abstract
The design of nanostructured materials occupies a privileged position in the development and management of affordable and effective technology in the antibacterial sector. Here, we discuss the antimicrobial properties of three carbonaceous nanoblades and nanodarts materials of graphene oxide (GO), reduced graphene oxide (RGO), and single-wall carbon nanotubes (SWCNTs) that have a mechano-bactericidal effect, and the ability to piercing or slicing bacterial membranes. To demonstrate the significance of size, morphology and composition on the antibacterial activity mechanism, the designed nanomaterials have been characterized. The minimum inhibitory concentration (MIC), standard agar well diffusion, and transmission electron microscopy were utilized to evaluate the antibacterial activity of GO, RGO, and SWCNTs. Based on the evidence obtained, the three carbonaceous materials exhibit activity against all microbial strains tested by completely encapsulating bacterial cells and causing morphological disruption by degrading the microbial cell membrane in the order of RGO > GO > SWCNTs. Because of the external cell wall structure and outer membrane proteins, the synthesized carbonaceous nanomaterials exhibited higher antibacterial activity against Gram-positive bacterial strains than Gram-negative and fungal microorganisms. RGO had the lowest MIC values (0.062, 0.125, and 0.25 mg/mL against B. subtilis, S. aureus, and E. coli, respectively), as well as minimum fungal concentrations (0.5 mg/mL for both A. fumigatus and C. albicans). At 12 hr, the cell viability values against tested microbial strains were completely suppressed. Cell lysis and death occurred as a result of severe membrane damage caused by microorganisms perched on RGO nanoblades. Our work gives an insight into the design of effective graphene-based antimicrobial materials for water treatment and remediation.
Collapse
Affiliation(s)
- Mohamed S Selim
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-Shi, Ibaraki-Ken 305-0047, Japan; Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City 11727, Egypt
| | - Ahmed M Azzam
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-Shi, Ibaraki-Ken 305-0047, Japan; Department of Environmental Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed A Shenashen
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-Shi, Ibaraki-Ken 305-0047, Japan; Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City 11727, Egypt.
| | - Shimaa A Higazy
- Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City 11727, Egypt
| | - Bayaumy B Mostafa
- Department of Environmental Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-Shi, Ibaraki-Ken 305-0047, Japan.
| |
Collapse
|
8
|
Liou TH, Huang JJ. Efficient Removal of Hazardous P-Nitroaniline from Wastewater by Using Surface-Activated and Modified Multiwalled Carbon Nanotubes with Mesostructure. TOXICS 2024; 12:88. [PMID: 38276723 PMCID: PMC10821441 DOI: 10.3390/toxics12010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
P-nitroaniline (PNA) is an aniline compound with high toxicity and can cause serious harm to aquatic animals and plants. Multiwalled carbon nanotubes (MWCNTs) are a multifunctional carbon-based material that can be applied in energy storage and biochemistry applications and semiconductors as well as for various environmental purposes. In the present study, MWCNTs (CO2-MWCNTs and KOH-MWCNTs) were obtained through CO2 and KOH activation. ACID-MWCNTs were obtained through surface treatment with an H2SO4-HNO3 mixture. Herein, we report, for the first time, the various MWCNTs that were employed as nanoadsorbents to remove PNA from aqueous solution. The MWCNTs had nanowire-like features and different tube lengths. The nanotubular structures were not destroyed after being activated. The KOH-MWCNTs, CO2-MWCNTs, and ACID-MWCNTs had surface areas of 487, 484, and 80 m2/g, respectively, and pore volumes of 1.432, 1.321, and 0.871 cm3/g, respectively. The activated MWCNTs contained C-O functional groups, which facilitate PNA adsorption. To determine the maximum adsorption capacity of the MWCNTs, the influences of several adsorption factors-contact time, solution pH, stirring speed, and amount of adsorbent-on PNA adsorption were investigated. The KOH-MWCNTs had the highest adsorption capacity, followed by the CO2-MWCNTs, pristine MWCNTs, and ACID-MWCNTs. The KOH-MWCNTs exhibited rapid PNA adsorption (>85% within the first 5 min) and high adsorption capacity (171.3 mg/g). Adsorption isotherms and kinetics models were employed to investigate the adsorption mechanism. The results of reutilization experiments revealed that the MWCNTs retained high adsorption capacity after five cycles. The surface-activated and modified MWCNTs synthesized in this study can effectively remove hazardous pollutants from wastewater and may have additional uses.
Collapse
Affiliation(s)
- Tzong-Horng Liou
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan District, New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, 259 Wenhua 1st Rd., Guishan District, Taoyuan City 33302, Taiwan
| | - Jyun-Jie Huang
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan District, New Taipei City 24301, Taiwan
| |
Collapse
|
9
|
Ponomarev VA, Sheveyko AN, Kuptsov KA, Sukhanova EV, Popov ZI, Permyakova ES, Slukin PV, Ignatov SG, Ilnitskaya AS, Gloushankova NA, Timoshenko RV, Erofeev AS, Kuchmizhak AA, Shtansky DV. X-ray and UV Irradiation-Induced Reactive Oxygen Species Mediated Antibacterial Activity in Fe and Pt Nanoparticle-Decorated Si-Doped TiCaCON Films. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37888937 DOI: 10.1021/acsami.3c13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Bone implants with biocompatibility and the ability to biomineralize and suppress infection are in high demand. The occurrence of early infections after implant placement often leads to repeated surgical treatment due to the ineffectiveness of antibiotic therapy. Therefore, an extremely attractive solution to this problem would be the ability to initiate bacterial protection of the implant by an external influence. Here, we present a proof-of-concept study based on the generation of reactive oxygen species (ROS) by the implant surface in response to X-ray irradiation, including through a layer of 3 mm adipose tissue, providing bactericidal protection. The effect of UV and X-ray irradiation of the implant surface on the ROS formation and the associated bactericidal activity was compared. The focus of our study was light-sensitive Si-doped TiCaCON films decorated with Fe and Pt nanoparticles (NPs) with photoinduced antibacterial activity mediated by ROS. In the visible and infrared range of 300-1600 nm, the films absorb more than 60% of the incident light. The high light absorption capacity of TiO2/TiC and TiO2/TiN heterostructures was demonstrated by density functional theory calculations. After short-term (5-10 s) low-dose X-ray irradiation, the films generated significantly more ROS than after UV illumination for 1 h. The Fe/TiCaCON-Si films showed enhanced biomineralization capacity, superior cytocompatibility, and excellent antibacterial activity against multidrug-resistant hospital Escherichia coli U20 and K261 strains and methicillin-resistant Staphylococcus aureus MW2 strain. Our study clearly demonstrates that oxidized Fe NPs are a promising alternative to the widely used Ag NPs in antibacterial coatings, and X-rays can potentially be used in ROS-regulating therapy to suppress inflammation in case of postimplant complications.
Collapse
Affiliation(s)
- Viktor A Ponomarev
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | | | | | | | - Zakhar I Popov
- Emanuel Institute of Biochemical Physics RAS, Moscow 199339, Russia
- Plekhanov Russian University of Economics, 36 Stremyanny per., Moscow 117997, Russia
| | | | - Pavel V Slukin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia
| | - Sergei G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia
| | - Alla S Ilnitskaya
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Natalya A Gloushankova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Roman V Timoshenko
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Alexander S Erofeev
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Aleksandr A Kuchmizhak
- Institute for Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
- Pacific Quantum Center, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| |
Collapse
|
10
|
Yao J, Zhi H, Shi Q, Zhang Y, Feng J, Liu J, Huang H, Xie X. Tannic Acid Interfacial Modification of Prochloraz Ethyl Cellulose Nanoparticles for Enhancing the Antimicrobial Effect and Biosafety of Fungicides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41324-41336. [PMID: 37602737 DOI: 10.1021/acsami.3c07761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
With the poorly soluble and intrinsically unstable feature, prochloraz (Pro) was confronted with lower bioavailability in the crop defense against fungal erosion. Therefore, it was a challenging project to explore the innovative antifungal compound delivery system for improving bioavailability. The superior adhesive fungicide formulation was supposed to be an efficient pathway to enhance transmembrane permeability and biological activity. According to abundant phenolic hydroxyl groups, tannic acid (TA) was an ideal modified adhesive biomaterial to improve interfacial interactions. The fundamental purpose of this research was focused on the synergistic mechanism of TA-interfacial-modified Pro-ethyl cellulose (EC) nanoparticles for improving bioavailability and biosafety. In the stability test, TA-modified Pro-EC nanoparticles had the capacity to reduce Pro initial release burst, extending a persistent validity and improving anti-photodegradation property. The toxicity index of Pro-EC and Pro-EC-TA was approximately 2.93-fold and 4.96-fold that of Pro technical against Fusarium graminearum (F. graminearum), respectively. Compared with nonmodified EC nanoparticles, TA-modified EC nanoparticles obtained eminent transmembrane permeability and superior adherence ability to F. graminearum, for hydroxyl and carboxyl groups of TA to enhance interaction with target cell membranes. The contents of cellular reactive oxygen species induced by Pro-EC and Pro-EC-TA nanoparticles were about 2.31 times and 3.00 times that of the control check (CK), respectively. Compared to the CK group, the membrane potential and ergosterol values of F. graminearum treated with Pro-EC-TA nanoparticles were drastically reduced by 74.91 and 56.20%, respectively. In the biosafety assay, the maximum half-lethal concentration value of the TA-modified Pro-EC nanoparticles indicated that the acute toxicity of the Pro-EC-TA nanoparticles to adult zebrafish was approximately 8.34-fold reduced compared to that of the Pro technical. These findings demonstrated that the successful interfacial modification of Pro-EC nanoparticles with TA was a highly efficient, environmentally safe, and promising alternative for sustainable agricultural application, thus making the fungicide formulation process more simplified, easier fabrication, and lower cost.
Collapse
Affiliation(s)
- Junwei Yao
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Heng Zhi
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Jin Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Jingxia Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Hui Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| |
Collapse
|
11
|
Manikandan DB, Arumugam M, Sridhar A, Perumalsamy B, Ramasamy T. Sustainable fabrication of hybrid silver-copper nanocomposites (Ag-CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. ENVIRONMENTAL RESEARCH 2023; 228:115867. [PMID: 37044164 DOI: 10.1016/j.envres.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a sustainable fabrication of hybrid silver-copper oxide nanocomposites (Ag-CuO NCs) was accomplished utilizing Ocimum americanum L. by one pot green chemistry method. The multifarious biological and environmental applications of the green fabricated Ag-CuO NCs were evaluated through their antibacterial, anticancer, dye degradation, and microalgae growth inhibition activities. The morphological features of the surface functionalized hybrid Ag-CuO NCs were confirmed by FE-SEM and HR-TEM techniques. The surface plasmon resonance λmax peak appeared at 441.56 nm. The average hydrodynamic size distribution of synthesized nanocomposite was 69.80 nm. Zeta potential analysis of Ag-CuO NCs confirmed its remarkable stability at -21.5 mV. XRD and XPS techniques validated the crystalline structure and electron binding affinity of NCs, respectively. The Ag-CuO NCs demonstrated excellent inhibitory activity against Vibrio cholerae (19.93 ± 0.29 mm) at 100 μg/mL. Anticancer efficacy of Ag-CuO NCs was investigated against the A549 lung cancer cell line, and Ag-CuO NCs exhibited outstanding antiproliferative activity with a low IC50 of 2.8 ± 0.05 μg/mL. Furthermore, staining and comet assays substantiated that the Ag-CuO NCs hindered the progression of the A549 cells and induced apoptosis as a result of cell cycle arrest at the G0/G1 phase. Concerning the environmental applications, the Ag-CuO NCs displayed efficient photocatalytic activity against eosin yellow degradation up to 80.94% under sunlight irradiation. Microalgae can be used as an early bio-indicator/prediction of environmental contaminants and toxic substances. The treatment of the Ag-CuO NCs on the growth of marine microalgae Tetraselmis suecica demonstrated the dose and time-dependent growth reduction and variations in the chlorophyll content. Therefore, the efficient multifunctional properties of hybrid Ag-CuO NCs could be exploited as a regime against infective diseases and cancer. Further, the findings of our investigation witness the remarkable scope and potency of Ag-CuO NCs for environmental applications.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
12
|
Bhatt S, Pathak R, Punetha VD, Punetha M. Recent advances and mechanism of antimicrobial efficacy of graphene-based materials: a review. JOURNAL OF MATERIALS SCIENCE 2023; 58:7839-7867. [PMID: 37200572 PMCID: PMC10166465 DOI: 10.1007/s10853-023-08534-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Graphene-based materials have undergone substantial investigation in recent years owing to their wide array of physicochemical characteristics. Employment of these materials in the current state, where infectious illnesses caused by microbes have severely damaged human life, has found widespread application in combating fatal infectious diseases. These materials interact with the physicochemical characteristics of the microbial cell and alter or damage them. The current review is dedicated to molecular mechanisms underlying the antimicrobial property of graphene-based materials. Various physical and chemical mechanisms leading to cell membrane stress, mechanical wrapping, photo-thermal ablation as well as oxidative stress exerting antimicrobial effect have also been thoroughly discussed. Furthermore, an overview of the interactions of these materials with membrane lipids, proteins, and nucleic acids has been provided. A thorough understanding of discussed mechanisms and interactions is essential to develop extremely effective antimicrobial nanomaterial for application as an antimicrobial agent. Graphical abstract
Collapse
Affiliation(s)
- Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| |
Collapse
|
13
|
Bhatt S, Punetha VD, Pathak R, Punetha M. Graphene in nanomedicine: A review on nano-bio factors and antibacterial activity. Colloids Surf B Biointerfaces 2023; 226:113323. [PMID: 37116377 DOI: 10.1016/j.colsurfb.2023.113323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Graphene-based nanomaterials possess potent antibacterial activity and have engrossed immense interest among researchers as an active armour against pathogenic microbes. A comprehensive perception of the antibacterial activity of these nanomaterials is critical to the fabrication of highly effective antimicrobial nanomaterials, which results in highly efficient and enhanced activity. These materials owing to their antimicrobial activity are utilized as nanomedicine against various pathogenic microbes. The present article reviews the antimicrobial activity of graphene and its analogs such as graphene oxide, reduced graphene oxide as well as metal, metal oxide and polymeric composites. The review draws emphasis on the effect of various nano-bio factors on the antibacterial capability. It also provides an insight into the antibacterial properties of these materials along with a brief discussion on the discrepancies in their activities as evidenced by the scientific communities. In this way, the review is expected to shed light on future research and development in graphene-based nanomedicine.
Collapse
Affiliation(s)
- Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India.
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India
| | - Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India
| |
Collapse
|
14
|
Graphene in Polymeric Nanocomposite Membranes—Current State and Progress. Processes (Basel) 2023. [DOI: 10.3390/pr11030927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
One important application of polymer/graphene nanocomposites is in membrane technology. In this context, promising polymer/graphene nanocomposites have been developed and applied in the production of high-performance membranes. This review basically highlights the designs, properties, and use of polymer/graphene nanocomposite membranes in the field of gas separation and purification. Various polymer matrices (polysulfone, poly(dimethylsiloxane), poly(methyl methacrylate), polyimide, etc.), have been reinforced with graphene to develop nanocomposite membranes. Various facile strategies, such as solution casting, phase separation, infiltration, self-assembly, etc., have been employed in the design of gas separation polymer/graphene nanocomposite membranes. The inclusion of graphene in polymeric membranes affects their morphology, physical properties, gas permeability, selectivity, and separation processes. Furthermore, the final membrane properties are affected by the nanofiller content, modification, dispersion, and processing conditions. Moreover, the development of polymer/graphene nanofibrous membranes has introduced novelty in the field of gas separation membranes. These high-performance membranes have the potential to overcome challenges arising from gas separation conditions. Hence, this overview provides up-to-date coverage of advances in polymer/graphene nanocomposite membranes, especially for gas separation applications. The separation processes of polymer/graphene nanocomposite membranes (in parting gases) are dependent upon variations in the structural design and processing techniques used. Current challenges and future opportunities related to polymer/graphene nanocomposite membranes are also discussed.
Collapse
|
15
|
Ban G, Hou Y, Shen Z, Jia J, Chai L, Ma C. Potential Biomedical Limitations of Graphene Nanomaterials. Int J Nanomedicine 2023; 18:1695-1708. [PMID: 37020689 PMCID: PMC10069520 DOI: 10.2147/ijn.s402954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Graphene-family nanomaterials (GFNs) possess mechanical stiffness, optical properties, and biocompatibility making them promising materials for biomedical applications. However, to realize the potential of graphene in biomedicine, it must overcome several challenges that arise when it enters the body's circulatory system. Current research focuses on the development of tumor-targeting devices using graphene, but GFNs accumulated in different tissues and cells through different pathways, which can cause toxic reactions leading to cell apoptosis and body dysfunction when the accumulated amount exceeds a certain limit. In addition, as a foreign substance, graphene can induce complex inflammatory reactions with immune cells and inflammatory factors, potentially enhancing or impairing the body's immune function. This review discusses the biomedical applications of graphene, the effects of graphene materials on human immune function, and the biotoxicity of graphene materials.
Collapse
Affiliation(s)
- Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
- Correspondence: Ge Ban, Email
| | - Yingze Hou
- Clinical Medical College, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Zhean Shen
- Department of Biomedical Research, Research and Innovation Center, Xinjiang Institute of Technology, Xinjiang, 843100, People’s Republic of China
| | - Jingjing Jia
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Lei Chai
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Chongyang Ma
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| |
Collapse
|
16
|
Antimicrobial and mechanical performance of epoxy/graphene-based powder coatings. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-022-01107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Li S, Qi M, Yang Q, Shi F, Liu C, Du J, Sun Y, Li C, Dong B. State-of-the-Art on the Sulfate Radical-Advanced Oxidation Coupled with Nanomaterials: Biological and Environmental Applications. J Funct Biomater 2022; 13:jfb13040227. [PMID: 36412867 PMCID: PMC9680365 DOI: 10.3390/jfb13040227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Sulfate radicals (SO4-·) play important biological roles in biomedical and environmental engineering, such as antimicrobial, antitumor, and disinfection. Compared with other common free radicals, it has the advantages of a longer half-life and higher oxidation potential, which could bring unexpected effects. These properties have prompted researchers to make great contributions to biology and environmental engineering by exploiting their properties. Peroxymonosulfate (PMS) and peroxydisulfate (PDS) are the main raw materials for SO4-· formation. Due to the remarkable progress in nanotechnology, a large number of nanomaterials have been explored that can efficiently activate PMS/PDS, which have been used to generate SO4-· for biological applications. Based on the superior properties and application potential of SO4-·, it is of great significance to review its chemical mechanism, biological effect, and application field. Therefore, in this review, we summarize the latest design of nanomaterials that can effectually activate PMS/PDS to create SO4-·, including metal-based nanomaterials, metal-free nanomaterials, and nanocomposites. Furthermore, we discuss the underlying mechanism of the activation of PMS/PDS using these nanomaterials and the application of SO4-· in the fields of environmental remediation and biomedicine, liberating the application potential of SO4-·. Finally, this review provides the existing problems and prospects of nanomaterials being used to generate SO4-· in the future, providing new ideas and possibilities for the development of biomedicine and environmental remediation.
Collapse
Affiliation(s)
- Sijia Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Qijing Yang
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Fangyu Shi
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Juanrui Du
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yue Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Correspondence: (Y.S.); (C.L.); (B.D.)
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Correspondence: (Y.S.); (C.L.); (B.D.)
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- Correspondence: (Y.S.); (C.L.); (B.D.)
| |
Collapse
|
18
|
Natural phenolics and flavonoids modified the hierarchical cellular cellulose sponges for efficient water disinfection. Carbohydr Polym 2022; 296:119962. [DOI: 10.1016/j.carbpol.2022.119962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
|
19
|
Briñas E, González VJ, Herrero MA, Zougagh M, Ríos Á, Vázquez E. SERS-Based Methodology for the Quantification of Ultratrace Graphene Oxide in Water Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9527-9535. [PMID: 35700386 PMCID: PMC9261266 DOI: 10.1021/acs.est.2c00937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The extensive use of graphene materials in real-world applications has increased their potential release into the environment. To evaluate their possible health and ecological risks, there is a need for analytical methods that can quantify these materials at very low concentrations in environmental media such as water. In this work, a simple, reproducible, and sensitive method to detect graphene oxide (GO) in water samples using the surface-enhanced Raman spectroscopy (SERS) technique is presented. The Raman signal of graphene is enhanced when deposited on a substrate of gold nanoparticles (AuNPs), thus enabling its determination at low concentrations with no need for any preconcentration step. The practical limit of quantification achieved with the proposed method was 0.1 ng mL-1, which is lower than the predicted concentrations for graphene in effluent water reported to date. The optimized procedure has been successively applied to the determination of ultratraces of GO in water samples.
Collapse
Affiliation(s)
- Elena Briñas
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
| | - Viviana Jehová González
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
| | - María Antonia Herrero
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
- Department
of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Mohammed Zougagh
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
- Department
of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
| | - Ángel Ríos
- Department
of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Department
of Analytical Chemistry and Food Technology, University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
- Department
of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| |
Collapse
|
20
|
Polymer/Graphene Nanocomposite Membranes: Status and Emerging Prospects. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6030076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Graphene is a unique nanocarbon nanomaterial, frequently explored with polymeric matrices for technical purposes. An indispensable application of polymer/graphene nanocomposites has been observed for membrane technology. This review highlights the design, properties, and promising features of the polymer/graphene nanomaterials and nanocomposite membranes for the pervasion and purification of toxins, pollutants, microbials, and other desired contents. The morphology, pore size, pore structure, water flux, permeation, salt rejection, and other membrane properties are examined. Graphene oxide, an important modified form of graphene, is also utilized in nanocomposite membranes. Moreover, polymer/graphene nanofibers are employed to develop high-performance membranes for methodological purposes. The adaptability of polymer/graphene nanocomposites is observed for water management and purification technologies.
Collapse
|
21
|
Omran BA, Baek KH. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114806. [PMID: 35240500 DOI: 10.1016/j.jenvman.2022.114806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the most critical issues worldwide and is a priority in all scientific agendas. Green nanotechnology presents a plethora of promising avenues for wastewater treatment. This review discusses the current trends in the valorization of zero-cost, biodegradable, and readily available agro-industrial biowaste to produce green bio-nanocatalysts and bio-nanosorbents for wastewater treatment. The promising roles of green bio-nanocatalysts and bio-nanosorbents in removing organic and inorganic water contaminants are discussed. The potent antimicrobial activity of bio-derived nanodisinfectants against water-borne pathogenic microbes is reviewed. The bioactive molecules involved in the chelation and tailoring of green synthesized nanomaterials are highlighted along with the mechanisms involved. Furthermore, this review emphasizes how the valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment adheres to the fundamental principles of green chemistry, circular economy, nexus thinking, and zero-waste manufacturing. The potential economic, environmental, and health impacts of valorizing agro-industrial biowaste to green nanomaterials are highlighted. The challenges and future outlooks for the management of agro-industrial biowaste and safe application of green nanomaterials for wastewater treatment are summarized.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
22
|
Mazarji M, Mahmoodi NM, Nabi Bidhendi G, Minkina T, Sushkova S, Mandzhieva S, Bauer T, Soldatov A. Visible-Light-Driven Reduced Graphite Oxide as a Metal-Free Catalyst for Degradation of Colored Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:374. [PMID: 35159719 PMCID: PMC8838983 DOI: 10.3390/nano12030374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Abstract
Reduced graphite oxide (rGO)-based materials have demonstrated promising potential for advanced oxidation processes. Along with its distinctive 2D characteristics, rGO offers the prospect of catalytic degradation of various kinds of organic pollutants from aqueous environments. The practical application of rGO as a metal-free catalyst material to promote the Fenton reaction depends on the degree of rGO reduction. In this regard, the rGO was prepared according to oxidation by modified Hummers' method and two-step reduction via hydrothermal and calcination in the N2 atmosphere. The as-prepared rGO was characterized in terms of X-ray diffraction, Fourier-transform infrared spectroscopy, thermal gravimetric analysis, scanning electron microscopy, UV-vis absorption spectroscopy, and transmission electron microscopy. The effectiveness of as-prepared rGO as a photocatalyst and the metal-free catalyst to decolorize different textile dyes, including basic red 46, basic red 18, and methylene blue, was investigated in visible/rGO and visible/rGO/H2O2 systems. The impact of operational factors such as catalyst dose, pH, and initial dye concentration was examined. The dye degradation process was investigated by the pseudo-first-order kinetic model. In addition, the recyclability of rGO in the visible/rGO/H2O2 system was examined.
Collapse
Affiliation(s)
- Mahmoud Mazarji
- Academy of Biology and Biotechnology Named D.I. Ivanovsky, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.); (T.B.); (A.S.)
| | - Niyaz Mohammad Mahmoodi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran 1668836471, Iran;
| | | | - Tatiana Minkina
- Academy of Biology and Biotechnology Named D.I. Ivanovsky, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.); (T.B.); (A.S.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology Named D.I. Ivanovsky, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.); (T.B.); (A.S.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology Named D.I. Ivanovsky, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.); (T.B.); (A.S.)
| | - Tatiana Bauer
- Academy of Biology and Biotechnology Named D.I. Ivanovsky, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.); (T.B.); (A.S.)
| | - Alexander Soldatov
- Academy of Biology and Biotechnology Named D.I. Ivanovsky, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.); (T.B.); (A.S.)
| |
Collapse
|