1
|
Irshad MK, Aqeel M, Saleem S, Javed W, Noman A, Kang MW, Khalid N, Lee SS. Mechanistic insight into interactive effect of microplastics and arsenic on growth of rice (Oryza sativa L.) and soil health indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176875. [PMID: 39395497 DOI: 10.1016/j.scitotenv.2024.176875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Microplastics (MPs) pollution has recently become a major concern for agroecosystems. The interplay between MPs, and heavy metal(loid)s in the soil can intensify the risks to plant growth and human health. The current study investigated the interactive effects of arsenic (As) and biodegradable and petroleum-based conventional MPs on rice growth, As bioavailability, soil bacterial communities, and soil enzyme activities. As-contaminated soil (5 mg kg-1) was treated with conventional MPs i.e., polystyrene (PS) and polyethylene (PE) and biodegradable MPs i.e., polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT) at 0.1 % and 1 % rates. In a pot experiment, rice plants were cultivated in soil co-contaminated with As and MPs. PLA-MPs exhibited significant interactions with As, increasing its bioavailability and impairing rice plant growth by enhancing plant oxidative stress. The results illustrated that T2 treatment (PLA-MPs @ 1 % + As 5 mg kg-1) significantly decreased the root and shoot lengths, root and shoot dry weights as well as the rates of photosynthesis, transpiration, intercellular CO2, and stomatal conductance in rice plants. Biodegradable PLA-MPs @ 1 % resulted in increased uptake of As in rice roots, stems, and leaves by 13.4 %, 38.9 %, and 20.6 %, respectively. In contrast, conventional PE-MPs @ 1 % showed contradictory results with As uptake declined by 2.2 %, 5.1 %, and 9.9 % in rice roots, stem and leaves. Soil enzyme kinetics showed that biodegradable MPs increased the activities of soil catalase, dehydrogenase, and phytase enzymes, whereas both conventional PS and PE-MPs decreased their activities. Moreover, As and PLA-MPs combined stress altered soil bacterial communities by increasing the relative abundance of Protobacteria, Acidobacteria, Chloroflexi, and Firmicutes phyla by 49 %, 29 %, 82 %, and 57 %, respectively. This study provides new insights into MPs-As interactions in soil-plant system and ecological risks associated with their coexistence.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea; Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Saba Saleem
- Department of Statistics, Government Graduate College, 122 JB, Sargodha Road, Faisalabad, Pakistan
| | - Wasim Javed
- Water Management Research Centre (WMRC), University of Agriculture Faisalabad, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Min Woo Kang
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Noreen Khalid
- Department of Botany, Government College Women University Sialkot, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| |
Collapse
|
2
|
Xiang Y, Yao B, Peñuelas J, Sardans J, Nizzetto L, Li R, Liu Y, Luo Y, Räty M, Long J, Li Y. Microplastic effects on soil nitrogen cycling enzymes: A global meta-analysis of environmental and edaphic factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136677. [PMID: 39631204 DOI: 10.1016/j.jhazmat.2024.136677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Microplastic accumulation in soil ecosystems poses significant environmental concerns, potentially impacting nitrogen cycling processes and ecosystem health. This meta-analysis of 147 studies (1138 data points) assessed the impact of microplastics (MPs) on soil nitrogen-acquisition enzymes. We found that MPs exposure significantly increased soil urease (UE) and leucine aminopeptidase activities by 7.6 % and 8.0 %, respectively, while N-acetyl-β-D-glucosaminidase activity was not significantly affected. Biodegradable MPs showed more pronounced effects compared to conventional MPs. Enzyme activities were influenced by MPs properties (e.g., polymer type, size, concentration), experimental conditions (e.g., field or laboratory setting, temperature, nitrogen fertilization), and soil properties (e.g., clay content, pH, organic carbon, total nitrogen). For instance, acidic soils enhanced UE activity, while neutral soils reduced it. These findings emphasize the complex interactions between MPs and soil ecosystems, highlighting the need for context-specific environmental management strategies and policy-making approaches to mitigate the impacts of MPs pollution on soil health.
Collapse
Affiliation(s)
- Yangzhou Xiang
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, School of Geography and Resources, Guizhou Education University, Guiyang 550018, China
| | - Bin Yao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecology Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Josep Peñuelas
- CSIC Global Ecology Unit, CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF - Ecological and Forestry Applications Research Centre, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Jordi Sardans
- CSIC Global Ecology Unit, CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF - Ecological and Forestry Applications Research Centre, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Rui Li
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ying Liu
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Yang Luo
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, School of Geography and Resources, Guizhou Education University, Guiyang 550018, China
| | - Mari Räty
- Grasslands and Sustainable Farming, Production Systems Unit, Natural Resources Institute Finland, Halolantie 31A, Maaninka, Kuopio FI-71750, Finland
| | - Jian Long
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, School of Geography and Resources, Guizhou Education University, Guiyang 550018, China.
| | - Yuan Li
- Grasslands and Sustainable Farming, Production Systems Unit, Natural Resources Institute Finland, Halolantie 31A, Maaninka, Kuopio FI-71750, Finland.
| |
Collapse
|
3
|
Ullah R, Farias J, Feyissa BA, Tsui MTK, Chow A, Williams C, Karanfil T, Ligaba-Osena A. Combined effects of polyamide microplastic and sulfamethoxazole in modulating the growth and transcriptome profile of hydroponically grown rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175909. [PMID: 39233070 DOI: 10.1016/j.scitotenv.2024.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
The use of reclaimed water from wastewater treatment plants for irrigation has a risk of introducing micropollutants such as microplastics (MPs) and antimicrobials (AMs) into the agroecosystem. This study was conducted to investigate the effects of single and combined treatment of 0.1 % polyamide (PA ∼15 μm), and varying sulfamethoxazole (SMX) levels 0, 10, 50, and 150 mg/L on rice seedlings (Oryza sativa L.) for 12 days. The study aimed to assess the impact of these contaminants on the morphological, physiological, and biochemical parameters of the rice plants. The findings revealed that rice seedlings were not sensitive to PA alone. However, SMX alone or in combination with PA, significantly inhibited shoot and root growth, total biomass, and affected photosynthetic pigments. Higher concentrations of SMX increased antioxidant enzyme activity, indicating oxidative stress. The roots had a higher SMX content than the shoots, and the concentration of minerals such as iron, copper, and magnesium were reduced in roots treated with SMX. RNA-seq analysis showed changes in the expression of genes related to stress, metabolism, and transport in response to the micropollutants. Overall, this study provides valuable insights on the combined impacts of MPs and AMs on food crops, the environment, and human health in future risk assessments and management strategies in using reclaimed water.
Collapse
Affiliation(s)
- Raza Ullah
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA
| | - Julia Farias
- USDA-ARS, US Arid Land Agricultural Research Center, 21881 N. Cardon Ln, Maricopa, AZ 85138, USA
| | | | - Martin Tsz-Ki Tsui
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA; School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, New Territories, China; Earth and Environmental Sciences Program, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, China
| | - Alex Chow
- Earth and Environmental Sciences Program, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, China
| | - Clinton Williams
- USDA-ARS, US Arid Land Agricultural Research Center, 21881 N. Cardon Ln, Maricopa, AZ 85138, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
4
|
Garai S, Bhattacharjee C, Sarkar S, Moulick D, Dey S, Jana S, Dhar A, Roy A, Mondal K, Mondal M, Mukherjee S, Ghosh S, Singh P, Ramteke P, Manna D, Hazra S, Malakar P, Banerjee H, Brahmachari K, Hossain A. Microplastics in the soil-water-food nexus: Inclusive insight into global research findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173891. [PMID: 38885699 DOI: 10.1016/j.scitotenv.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Nuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process. This review has been theorized to assess the current research trends (along with possible gap areas), widespread use of MP, enhancement of the harshness of heavy metals (HMs), complex interactions with physico-chemical constituents of arable soil, accumulation in the edible parts of field crops, dairy products, and other sources to penetrate the food web. So far, the available review articles are oriented to a certain aspect of MP and lack a totality when considered from in soil-water-food perspective. In short, a comprehensive perspective of the adverse effects of MP on human health has been assessed. Moreover, an agro-techno-socio-health prospective-oriented critical assessment of policies and remedial measures linked with MP has provided an extra edge over other similar articles in influential future courses of research.
Collapse
Affiliation(s)
- Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Chandrima Bhattacharjee
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal -741235, India
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anannya Dhar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Krishnendu Mondal
- Dhaanyaganga Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute, Sargachhi, West Bengal, India
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, The Neotia University, Sarisha, West Bengal, India
| | - Siddhartha Mukherjee
- Division of Agriculture, Faculty Centre for Agriculture, Rural and Tribal Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Morabadi, Ranchi, Jharkhand, India
| | - Samrat Ghosh
- Emergent Ventures India, Gurugram, Haryana, India
| | - Puja Singh
- Department of Soil Science and Agricultural Chemistry, Natural Resource Management, Horticultural College, Birsa Agricultural University, Khuntpani, Chaibasa, Jharkhand, India
| | - Pratik Ramteke
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS 444104, India
| | - Dipak Manna
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Shreyasee Hazra
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Pushkar Malakar
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Hirak Banerjee
- Regional Research Station (CSZ), Bidhan Chandra Krishi Viswavidyalaya, Kakdwip, West Bengal, India
| | - Koushik Brahmachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
5
|
Naeem A, Farooq MA, Shafiq M, Arshad M, Din AA, Alazba AA. Quantification and polymeric characterization of microplastics in composts and their accumulation in lettuce. CHEMOSPHERE 2024; 361:142520. [PMID: 38834092 DOI: 10.1016/j.chemosphere.2024.142520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Organic fertilizers have become a vector for the transport of microplastics (MPs), which pose human health concerns through the food chain. This study aimed to quantify and characterize MPs in eight different compost samples of various raw materials and their subsequent translocation to lettuce (Lacuta sativa) grown on contaminated composts. The results revealed that the MP abundance ranged from 3810 to 16530 MP/kg. Municipal solid waste compost (MSWC) had highest abundance (16082 ± 632 MP/kg), followed by leaf compost (LC) and organic compost (OC) (6299 ± 1011 and 3680 ± 419 MP/kg, respectively). MPs of <100 μm in size were most dominant in MSWC and LC. Fragments and fibers were the prevalent shape types, with white/transparent colored MPs being more abundant. Polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were the dominant polymers. MPs accumulation in the lettuce leaves was greatest in the lettuce plants grown on MSWC, followed by those grown on LC and OC, indicating that MSWC grown lettuce is not suitable for human consumption. The decrease in the growth (leaf length, number of leaves, leaf fresh and weights) and physiological (membrane stability index, relative water contents) parameters of lettuce was in line with the trend of MP accumulations. Hence, it is highly important to regulate the plastic contents in compost because it is a threat to ecosystems and human health.
Collapse
Affiliation(s)
- Aamna Naeem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
| | - Muhammad Shafiq
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh, 11451, Saudi Arabia
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Aamir Alaud Din
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Abdulrahman Ali Alazba
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Piyathilake U, Lin C, Bolan N, Bundschuh J, Rinklebe J, Herath I. Exploring the hidden environmental pollution of microplastics derived from bioplastics: A review. CHEMOSPHERE 2024; 355:141773. [PMID: 38548076 DOI: 10.1016/j.chemosphere.2024.141773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024]
Abstract
Bioplastics might be an ecofriendly alternative to traditional plastics. However, recent studies have emphasized that even bioplastics can end up becoming micro- and nano-plastics due to their degradation under ambient environmental conditions. Hence, there is an urgent need to assess the hidden environmental pollution caused by bioplastics. However, little is known about the evolutionary trends of bibliographic data, degradation pathways, formation, and toxicity of micro- and nano-scaled bioplastics originating from biodegradable polymers such as polylactic acid, polyhydroxyalkanoates, and starch-based plastics. Therefore, the prime objective of the current review was to investigate evolutionary trends and the latest advancements in the field of micro-bioplastic pollution. Additionally, it aims to confront the limitations of existing research on microplastic pollution derived from the degradation of bioplastic wastes, and to understand what is needed in future research. The literature survey revealed that research focusing on micro- and nano-bioplastics has begun since 2012. This review identifies novel insights into microbioplastics formation through diverse degradation pathways, including photo-oxidation, ozone-induced degradation, mechanochemical degradation, biodegradation, thermal, and catalytic degradation. Critical research gaps are identified, including defining optimal environmental conditions for complete degradation of diverse bioplastics, exploring micro- and nano-bioplastics formation in natural environments, investigating the global occurrence and distribution of these particles in diverse ecosystems, assessing toxic substances released during bioplastics degradation, and bridging the disparity between laboratory studies and real-world applications. By identifying new trends and knowledge gaps, this study lays the groundwork for future investigations and sustainable solutions in the realm of sustainable management of bioplastic wastes.
Collapse
Affiliation(s)
- Udara Piyathilake
- Environmental Science Division, National Institute of Fundamental Studies (NIFS), Kandy, 2000, Sri Lanka
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jochen Bundschuh
- School of Engineering, Faculty of Health, Engineering and Sciences, The University of Southern Queensland, West Street, 4350, QLD, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Indika Herath
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
7
|
Zhang S, Li Y, Jiang L, Chen X, Zhao Y, Shi W, Xing Z. From organic fertilizer to the soils: What happens to the microplastics? A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170217. [PMID: 38307274 DOI: 10.1016/j.scitotenv.2024.170217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
In recent, soil microplastic pollution arising from organic fertilizers has been of a great increasing concern. In response to this concern, this review presents a comprehensive analysis of the occurrence and evolution of microplastics in organic fertilizers, their ingress into the soil, and the subsequent impacts. Organic fertilizers are primarily derived from solid organic waste generated by anthropocentric activities including urban (daily-life, municipal wastes and sludge), agricultural (manure, straw), and industrial (like food industrial waste etc.) processes. In order to produce organic fertilizer, the organic solid wastes are generally treated by aerobic composting or anaerobic digestion. Currently, microplastics have been widely detected in the raw materials and products of organic fertilizer. During the process of converting organic solid waste materials into fertilizer, intense oxidation, hydrolysis, and microbial actions significantly alter the physical, chemical, and surface biofilm properties of the plastics. After the organic fertilizer application, the abundances of microplastics significantly increased in the soil. Additionally, the degradation of these microplastics often promotes the adsorption of organic pollutants and affects their retention time in the soil. These microplastics, covered by biofilms, also significantly alter soil ecology due to the unique properties of the biofilm. Furthermore, the biofilms also play a role in the degradation of microplastics in the soil environment. This review offers a new perspective on the soil environmental processes involving microplastics from organic fertilizer sources and highlights the challenges associated with further research on organic fertilizers and microplastics.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing 102206, China.
| | - Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhijie Xing
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Hu M, Huang Y, Liu L, Ren L, Li C, Yang R, Zhang Y. The effects of Micro/Nano-plastics exposure on plants and their toxic mechanisms: A review from multi-omics perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133279. [PMID: 38141304 DOI: 10.1016/j.jhazmat.2023.133279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
In recent years, plastic pollution has become a global environmental problem, posing a potential threat to agricultural ecosystems and human health, and may further exacerbate global food security problems. Studies have revealed that exposure to micro/nano-plastics (MPs/NPs) might cause various aspects of physiological toxicities, including plant biomass reduction, intracellular oxidative stress burst, photosynthesis inhibition, water and nutrient absorption reduction, cellular and genotoxicity, seed germination retardation, and that the effects were closely related to MP/NP properties (type, particle size, functional groups), exposure concentration, exposure duration and plant characteristics (species, tissue, growth stage). Based on a brief review of the physiological toxicity of MPs/NPs to plant growth, this paper comprehensively reviews the potential molecular mechanism of MPs/NPs on plant growth from perspectives of multi-omics, including transcriptome, metabolome, proteome and microbiome, thus to reveal the role of MPs/NPs in plant transcriptional regulation, metabolic pathway reprogramming, protein translational and post-translational modification, as well as rhizosphere microbial remodeling at multiple levels. Meanwhile, this paper also provides prospects for future research, and clarifies the future research directions and the technologies adopted.
Collapse
Affiliation(s)
- Mangu Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lin Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
9
|
Grifoni M, Pellegrino E, Arrighetti L, Bronco S, Pezzarossa B, Ercoli L. Interactive impacts of microplastics and arsenic on agricultural soil and plant traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169058. [PMID: 38070573 DOI: 10.1016/j.scitotenv.2023.169058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
The ability of microplastics (MPs) to interact with environmental pollutants is currently of great concern due to the increasing use of plastic. Agricultural soils are sinks for multipollutants and the safety of biodegradable MPs in field conditions is questioned. However, still few studies have investigated the interactive effects between MPs and metals on the soil-plant system with agricultural soil and testing crops for human consumption. In this work, we tested the effect on soil and plant parameters of two common MPs, non-degradable plastic low-density polyethylene and biodegradable polymer polylactic acid at two different sizes (<250 μm and 250-300 μm) in association with arsenic (As). Lettuce (Lactuca sativa L.) was used as a model plant in a small-scale experiment lasting 60 days. Microplastics and As explained 12 % and 47 % of total variance, respectively, while their interaction explained 21 %, suggesting a higher toxic impact of As than MPs. Plant growth was promoted by MPs alone, especially when biodegradable MPs were added (+22 %). However, MPs did not affect nutrient concentrations in roots and leaves. The effect of MPs on enzyme activities was variable depending on the time of exposure (with larger effects immediately after exposure), the type and size of the MPs. On the contrary, the co-application of MP and As, although it did not change the amount of bioavailable As in soil in the short and medium term, it resulted in a significant decrease in lettuce biomass (-19 %) and root nutrient concentrations, especially when polylactic acid was applied. Generally, MPs in association with As determined the plant-soil toxicity. This work provides insights into the risk of copollution of MPs and As in agricultural soil and its phytotoxic effect for agricultural crops. However, the mechanisms of the joint effect of MP and As on plant toxicity need further investigation, especially under field conditions and in long-term experiments.
Collapse
Affiliation(s)
- Martina Grifoni
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Elisa Pellegrino
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - Leonardo Arrighetti
- Institute for Chemical and Physical Processes, Consiglio Nazionale delle Ricerche, CNR-IPCF, 56127 Pisa, Italy
| | - Simona Bronco
- Institute for Chemical and Physical Processes, Consiglio Nazionale delle Ricerche, CNR-IPCF, 56127 Pisa, Italy
| | - Beatrice Pezzarossa
- Research Institute on Terrestrial Ecosystems, Consiglio Nazionale delle Ricerche, CNR-IRET, 56127 Pisa, Italy
| | - Laura Ercoli
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| |
Collapse
|
10
|
Wang W, Xie Y, Li H, Dong H, Li B, Guo Y, Wang Y, Guo X, Yin T, Liu X, Zhou W. Responses of lettuce (Lactuca sativa L.) growth and soil properties to conventional non-biodegradable and new biodegradable microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122897. [PMID: 37949158 DOI: 10.1016/j.envpol.2023.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Residual plastic films in soils are posing a potential threat to agricultural ecosystem. However, little is known about the impacts of microplastics (MPs) derived from biodegradable and non-biodegradable plastic films on plant-soil systems. Here, we carried out a pot experiment using soil-cultivated lettuce treated by two types of MPs, degradable poly(butylene adipate-co-terephthalate) (PBAT-MPs) and non-biodegradable polyethylene (PE-MPs). MPs resulted in different degrees of reduction in shoot biomass, chlorophyll content, photosynthetic parameters, and leaf contents of nitrogen (N), phosphorus (P), and potassium (K), accelerated accumulation of hydrogen peroxide and superoxide, and increased malondialdehyde content in lettuce leaves. Moreover, MPs obviously decreased contents of total N, nitrate, ammonium, and available K in soils, and increased available P, thus altering soil nutrient availability. MPs also significantly decreased proportions of macroaggregates, and decreased soil electrical conductivity and microbial activity. PBAT-MPs had significantly greater impacts on oxidative damage, photosynthetic rate, soil aggregation, microbial activity, and soil ammonium than those of PE-MPs. Our results suggested that MPs caused oxidative damages, nutrient uptake inhibition, soil properties alteration, ultimately leading to growth reduction, and PBAT-MPs exhibited stronger impacts. Therefore, it is urgent to further study the ecological effects of MPs, especially biodegradable MPs, on soil-plant systems.
Collapse
Affiliation(s)
- Weixuan Wang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China
| | - Yingmei Xie
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China
| | - Han Li
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China
| | - Hongmin Dong
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China
| | - Bin Li
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China
| | - Yunjie Guo
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China
| | - Yutong Wang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China
| | - Xinrui Guo
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China
| | - Tao Yin
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China
| | - Xiaowei Liu
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Weiwei Zhou
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266000, China.
| |
Collapse
|
11
|
Dainelli M, Pignattelli S, Bazihizina N, Falsini S, Papini A, Baccelli I, Mancuso S, Coppi A, Castellani MB, Colzi I, Gonnelli C. Can microplastics threaten plant productivity and fruit quality? Insights from Micro-Tom and Micro-PET/PVC. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165119. [PMID: 37364840 DOI: 10.1016/j.scitotenv.2023.165119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Solanum lycopersicum L., a crop grown worldwide with a high nutritional value for the human diet, was used to test the impact of microplastics on plant growth, productivity, and fruit quality. Two of the most represented microplastics in soils, polyethylene terephthalate (PET) and polyvinyl chloride (PVC), were tested. Plants were grown in pots with an environmentally realistic concentration of microplastics and, during the whole crop life cycle, photosynthetic parameters, number of flowers and fruits were monitored. At the end of the cultivation, plant biometry and ionome were evaluated, along with fruit production and quality. Both pollutants had negligible effects on shoot traits, with only PVC causing a significant reduction in shoot fresh weight. Despite an apparent low or no toxicity during the vegetative stage, both microplastics decreased the number of fruits and, in the case of PVC, also their fresh weights. The plastic polymer-induced decline in fruit production was coupled with wide variations in fruit ionome, with marked increases in Ni and Cd. By contrast there was a decline in the nutritionally valuable lycopene, total soluble solids, and total phenols. Altogether, our results reveal that microplastics can not only limit crop productivity but also negatively impact fruit quality and enhance the concentration of food safety hazards, thus raising concerns for their potential health risks for humans.
Collapse
Affiliation(s)
- Marco Dainelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Sara Pignattelli
- CNR-Institute of Bioscience and Bioresources, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Nadia Bazihizina
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Sara Falsini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Alessio Papini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Ivan Baccelli
- CNR-Institute for Sustainable Plant Protection, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Stefano Mancuso
- Department of Agriculture, Food, Environment and Forestry, Università degli Studi di Firenze, via delle Idee 30, 50019 Sesto Fiorentino, Italy; Fondazione per il Futuro delle Città, Via Boccaccio 50, 50133 Firenze, Italy
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | | | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| |
Collapse
|
12
|
Wang J, Zhang X, Li X, Wang Z. Exposure pathways, environmental processes and risks of micro (nano) plastics to crops and feasible control strategies in agricultural regions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132269. [PMID: 37607458 DOI: 10.1016/j.jhazmat.2023.132269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Micro/nanoplastics (MPs/NPs) pollution may adversely impact agricultural ecosystems, threatening the sustainability and security of agricultural production. This drives an urgent need to comprehensively understand the environmental behavior and effects of MPs/NPs in soil and atmosphere in agricultural regions, and to seek relevant pollution prevention strategies. The rhizosphere and phyllosphere are the interfaces where crops are exposed to MPs/NPs. The environmental behavior of MPs/NPs in soil and atmosphere, especially in the rhizosphere and phyllosphere, determines their plant accessibility, bioavailability and ecotoxicity. This article comprehensively reviews the transformation and migration of MPs/NPs in soil, transportation and deposition in the atmosphere, environmental behavior and effects in the rhizosphere and phyllosphere, and plant uptake and transportation pathways. The article also summarizes the key factors controlling MPs/NPs environmental processes, including their properties, biotic and abiotic factors. Based on the sources, environmental processes and intake risks of MPs/NPs in agroecosystems, the article offers several feasible pollution prevention and risk management options. Finally, the review highlights the need for further research on MPs/NPs in agro-systems, including developing quantitative detection methods, exploring transformation and migration patterns in-situ soil, monitoring long-term field experiments, and establishing pollution prevention and control systems. This review can assist in improving our understanding of the biogeochemistry behavior of MPs/NPs in the soil-plant-atmosphere system and provide a roadmap for future research.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
13
|
Jia L, Liu L, Zhang Y, Fu W, Liu X, Wang Q, Tanveer M, Huang L. Microplastic stress in plants: effects on plant growth and their remediations. FRONTIERS IN PLANT SCIENCE 2023; 14:1226484. [PMID: 37636098 PMCID: PMC10452891 DOI: 10.3389/fpls.2023.1226484] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023]
Abstract
Microplastic (MP) pollution is becoming a global problem due to the resilience, long-term persistence, and robustness of MPs in different ecosystems. In terrestrial ecosystems, plants are exposed to MP stress, thereby affecting overall plant growth and development. This review article has critically analyzed the effects of MP stress in plants. We found that MP stress-induced reduction in plant physical growth is accompanied by two complementary effects: (i) blockage of pores in seed coat or roots to alter water and nutrient uptake, and (ii) induction of drought due to increased soil cracking effects of MPs. Nonetheless, the reduction in physiological growth under MP stress is accompanied by four complementary effects: (i) excessive production of ROS, (ii) alteration in leaf and root ionome, (iii) impaired hormonal regulation, and (iv) decline in chlorophyll and photosynthesis. Considering that, we suggested that targeting the redox regulatory mechanisms could be beneficial in improving tolerance to MPs in plants; however, antioxidant activities are highly dependent on plant species, plant tissue, MP type, and MP dose. MP stress also indirectly reduces plant growth by altering soil productivity. However, MP-induced negative effects vary due to the presence of different surface functional groups and particle sizes. In the end, we suggested the utilization of agronomic approaches, including the application of growth regulators, biochar, and replacing plastic mulch with crop residues, crop diversification, and biological degradation, to ameliorate the effects of MP stress in plants. The efficiency of these methods is also MP-type-specific and dose-dependent.
Collapse
Affiliation(s)
- Li Jia
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Lining Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wenxuan Fu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Qianqian Wang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
14
|
Zhang Z, Li Y, Qiu T, Duan C, Chen L, Zhao S, Zhang X, Fang L. Microplastics addition reduced the toxicity and uptake of cadmium to Brassica chinensis L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158353. [PMID: 36055513 DOI: 10.1016/j.scitotenv.2022.158353] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 05/23/2023]
Abstract
The coexistence of microplastics (MPs) and toxic metal contaminants in soils is becoming increasingly common, thereby posing serious threat to soil-plant systems. Cadmium (Cd) is the most common metal contaminant in soil and can easily combine with MPs, thereby altering its bioavailability. However, few studies have focused on the co-pollution of MPs and Cd, particularly the complex phytotoxicity caused by their interaction and the effect of co-exposure on Cd uptake in plants. We conducted pot experiments to compare the effects of exposure to polystyrene (PS) and Cd, as well as the effects of co-exposure (PS + Cd), on the physiological characteristics of Brassica chinensis L. and explored the regulatory factors of MPs on Cd uptake in plant tissues. The results showed that plant biomass, photosynthetic parameters, and chlorophyll content significantly decreased (p < 0.05) with increasing PS doses under treatment with MPs alone. Although the negative effects of PS and Cd co-exposure on plants were higher than those of PS alone, however, the addition of MPs reduced the toxicity effects of Cd on plants and decreased the uptake and accumulation of Cd by plants compared with the Cd treatment alone. Furthermore, plants can resist the increased malondialdehyde content and oxidative stress induced by PS and Cd exposure by increasing the activities of superoxide dismutase and peroxidase. Under the PS + Cd treatment, linear models showed that soil organic carbon and sucrase activity were the key variables affecting Cd uptake by plant shoots and roots, respectively. The results of the partial least squares path modeling further showed that PS indirectly affected Cd uptake by B. chinensis by significantly affecting the physicochemical properties of soil, Cd concentration, and enzyme activity. Our results provide a new perspective and an important reference for further understanding the effects of MPs on the bioavailability and fate of heavy metals.
Collapse
Affiliation(s)
- Zhiqin Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Li
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tianyi Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchang Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| |
Collapse
|