1
|
Zhang N, Zhang B, Wang C, Sui H, Zhang N, Wen Z, He A, Zhang R, Xue R. Magnetic CoFe hydrotalcite composite Co metal-organic framework material efficiently activating peroxymonosulfate to degrade sulfamethoxazole: Oxygen vacancy-mediated radical and non-radical pathways. J Colloid Interface Sci 2024; 671:110-123. [PMID: 38795532 DOI: 10.1016/j.jcis.2024.05.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Herein, a novel rich oxygen vacancy (Ov) cobalt-iron hydrotalcite composite cobalt metal-organic framework material (ZIF-67/CoFe-LDH) was prepared by simple urea water and heat reduction approach and utilized for the peroxymonosulfate (PMS) system to remove sulfamethoxazole (SMX). 95 ± 1.32 % SMX (20 mg/L) was able to degraded in 20 min with TOC removal of 53 ± 1.56 % in ZIF-67/CoFe-LDH/PMS system. The system maintained a fantastic catalytic capability with wide pH range (3-9) and common interfering substances (Cl-, NO3-, CO32-, PO42- and humic acid (HA)), and the degradation efficiency could even remain 80.2 ± 1.48 % at the fifth cycle. Meanwhile, the applicability and feasibility of the catalysts for practical water treatment was verified by the degradation effects of SMX in different water environments and several other typical pollutants. Co and Fe bimetallic active centers synergistically activate PMS, and density functional theory (DFT) predicted adsorption energy about Ov in ZIF-67/CoFe-LDH for PMS was 1.335 eV, and OO bond length of PMS was stretched to 1.826 Å. As a result, PMS was more easily activated and broken, which accelerated the singlet oxygen (1O2), sulfate radical (SO4•-), high-valent metals and other reactive oxygen species (ROS). Radical and non-radical jointly degrading the pollutants improved the catalytic effect. Finally, SMX degradation intermediates were analyzed to explain the degradation pathway and their biotoxicity was also evaluated. This paper provides a new research perspective of oxygen vacancy activating PMS to degrade pollutants.
Collapse
Affiliation(s)
- Nianbo Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Baoyong Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chen Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Huiying Sui
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Na Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Zunqing Wen
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Ao He
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Ruiyan Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Rong Xue
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China.
| |
Collapse
|
2
|
Li S, Zhang Y, Ding S, Li X, Wang W, Dong N, Nie M, Chen P. Investigation into the Synergistic Effect of the Zinc Peroxide/Peroxymonosulfate Double-Oxidation System for the Efficient Degradation of Tetracycline. Molecules 2024; 29:4120. [PMID: 39274968 PMCID: PMC11397340 DOI: 10.3390/molecules29174120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
The increasingly severe antibiotic pollution has become one of the most critical issues. In this study, a zinc peroxide/peroxymonosulfate (ZnO2/PMS) double-oxidation system was developed for tetracycline (TC) degradation. A small amount of ZnO2 (10 mg) and PMS (30 mg) could effectively degrade 82.8% of TC (100 mL, 50 mg/L), and the degradation process could be well described by the pseudo-second-order kinetic model. Meanwhile, the ZnO2/PMS double-oxidation system showed high adaptability in terms of reaction temperature (2-40 °C), initial pH value (4-12), common inorganic anions (Cl-, NO3-, SO42- and HCO3-), natural water source and organic pollutant type. The quenching experiment and electron paramagnetic resonance (EPR) characterization results confirmed that the main reactive oxygen species (ROS) was singlet oxygen (1O2). Moreover, three possible pathways of TC degradation were deduced according to the analyses of intermediates. On the basis of comparative characterization and experiment results, a synergistic activation mechanism was further proposed for the ZnO2/PMS double-oxidation system, accounting for the superior degradation performance. The released OH- and H2O2 from ZnO2 could activate PMS to produce major 1O2 and minor superoxide radicals (•O2-), respectively.
Collapse
Affiliation(s)
- Shefeng Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Yong Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Siyu Ding
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Xuli Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Wei Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ningning Dong
- Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Miaomiao Nie
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Pei Chen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Shen Q, Song X, Fan J, Chen C, Guo Z. Degradation of humic acid by UV/PMS: process comparison, influencing factors, and degradation mechanism. RSC Adv 2024; 14:22988-23003. [PMID: 39040703 PMCID: PMC11261339 DOI: 10.1039/d4ra04328f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
In natural water bodies, humic acid (HA), generated during the chlorination disinfection process at water treatment plants, can produce halogenated disinfection by-products, increasing the risk to drinking water safety and posing a threat to human health. Effectively removing HA from natural waters is a critical focus of environmental research. This study established a synergistic ultraviolet/peroxymonosulfate (UV/PMS) system to remove HA from water. It compared the efficacy of various UV/advanced oxidation processes (AOPs) on HA degradation, and assessed the influence of different water sources, initial pH, oxidant concentration, and anions (HCO3 -, Cl-, NO3 -) on HA degradation. The degradation mechanism of HA by the UV/PMS process was also investigated. Results showed that under the conditions of 3 mmol L-1 PMS concentration, 10 mg L-1 HA concentration, initial solution pH of 7, and a reaction time of 240 minutes, the mineralization rate of HA by UV/PMS reached 94.15%. The pseudo-first-order kinetic constant (k obs) was 0.01034 and the single-electric energy (EE/O) was 0.0157 kW h m-3, indicating superior HA removal efficiency compared to other systems. Common anions (HCO3 -, Cl-, NO3 -) in water were found to inhibit the degradation of HA, and acidic conditions were more conducive to HA removal, with the optimal pH being 3. Free radical quenching experiments showed that both sulfate radical (SO4 -˙) and hydroxyl radical (˙OH) radicals were involved in HA degradation, with SO4 -˙ being the primary oxidant and ˙OH as the auxiliary species. Analyses using 3D-excitation-emission matrix (EEM), parallel factor analysis (PARAFAC), specific fluorescence index, and absorbance demonstrated that UV/PMS technology could effectively degrade HA in water. This study provides theoretical references for further research on the removal of HA and other organic substances using UV/PMS technology.
Collapse
Affiliation(s)
- Qingchao Shen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| | - Xiaosan Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| | - Jishuo Fan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| | - Cheng Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| | - Zili Guo
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| |
Collapse
|
4
|
Pan X, Pu J, Zhang L, Gong X, Luo X, Fan L. Bimetallic iron-nickel phosphide as efficient peroxymonosulfate activator for tetracycline hydrochloride degradation: Performance and mechanism. ENVIRONMENTAL RESEARCH 2024; 249:118362. [PMID: 38325787 DOI: 10.1016/j.envres.2024.118362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 02/09/2024]
Abstract
Sulfate radical-based advanced oxidation processes with (SR-AOPs) are widely employed to degrade organic pollutants due to their high efficiency, cost-effectiveness and safety. In this study, a highly active and stable FeNiP was successfully prepared by reduction and heat treatment. FeNiP exhibited high performance of peroxymonosulfate (PMS) activation for tetracycline hydrochloride (TC) removal. Over a wide pH range, an impressive TC degaradation efficiency 97.86% was achieved within 60 min employing 0.1 g/L FeNiP and 0.2 g/L PMS at room temperature. Both free radicals of SO4·-, ·OH, ·O2- and non-free radicals of 1O2 participated the TC degradation in the FeNiP/PMS system. The PMS activation ability was greatly enhanced by the cycling between Ni and Fe bimetal, and the active site regeneration was achieved due to the existence of the negatively charged Pn-. Moreover, the FeNiP/PMS system exhibited substantial TC degradation levels in both simulated real-world disturbance scenarios and practical water tests. Cycling experiments further affirmed the robust stability of FeNiP catalyst, demonstrating sustained degradation efficiency of approximately 80% even after four cycles. These findings illuminate its promising potential across natural water bodies, presenting an innovative catalyst construction approach for PMS activation in the degradation of antibiotic pollutants.
Collapse
Affiliation(s)
- Xiaofang Pan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Jiaxing Pu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Lingrui Zhang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xiaobo Gong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, Sichuan, 610068, China.
| | - Xuan Luo
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Lu Fan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, Sichuan, 610068, China.
| |
Collapse
|
5
|
Wang Y, Wang S, Liu Y, Wang J. Peroxymonosulfate activation by nanocomposites towards the removal of sulfamethoxazole: Performance and mechanism. CHEMOSPHERE 2024; 353:141586. [PMID: 38452980 DOI: 10.1016/j.chemosphere.2024.141586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Heterogeneous activation of peroxomonosulfate (PMS) has been extensively studied for the degradation of antibiotics. The cobalt ferrite spinel exhibits good activity in the PMS activation, but suffers from the disadvantage of low PMS utilization efficiency. Herein, the nanocomposites including FeS, CoS2, CoFe2O4 and Fe2O3 were synthesized by hydrothermal method and used for the first time to activate PMS for the removal of sulfamethoxazole (SMX). The nanocomposites showed superior catalytic activity in which the SMX could be completely removed at 40 min, 0.1 g L-1 nanocomposites and 0.4 mM PMS with the first order kinetic constant of 0.2739 min-1. The PMS utilization efficiency was increased by 29.4% compared to CoFe2O4. Both radicals and non-radicals contributed to the SMX degradation in which high-valent metal oxo dominated. The mechanism analysis indicated that sulfur modification, on one hand, enhanced the adsorption of nanocomposites for PMS, and promoted the redox cycles of Fe2+/Fe3+ and Co2+/Co3+ on the other hand. This study provides new way to enhance the catalytic activity and PMS utilization efficiency of spinel cobalt ferrite.
Collapse
Affiliation(s)
- Yuexinxi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology (INET) Tsinghua University, Beijing 100084, PR China
| | - Shizong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology (INET) Tsinghua University, Beijing 100084, PR China.
| | - Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology (INET) Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory for Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
6
|
Dong L, Yao Z, Sun S, Wang M, Jia R. Effect of UV/peroxymonosulfate pretreatment on disinfection byproduct (DBP) formation during post-chlorination of humic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:422-432. [PMID: 38015407 DOI: 10.1007/s11356-023-30908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
UV/peroxymonosulfate (UV/PMS) is a promising advanced oxidation technology in water treatment. This study aimed to investigate the impact of UV/PMS on humic acid (HA) and the influence of PMS dosage, pretreatment time, pH pretreatment, nitrate, nitrite, ammonium, and bicarbonate influencing factors on disinfection byproduct (DBP) formation during post-chlorination. With increased PMS dosage or pretreatment time, the UV/PMS treatment significantly reduced ultraviolet absorbance and increased mineralization. It altered the fractional constituent as humic substances were gradually transformed into building blocks and low-molecular-weight acids. However, most DBP formation increased initially and then decreased after subsequent chlorination. Rising nitrate or nitrite concentrations markedly promoted halonitromethane (HNM) formation. The presence of ammonia had a more significant impact on dichloroacetonitrile (DCAN) formation. Bicarbonate in UV/PMS pretreatment increased carbonated disinfection byproduct (C-DBP) formation, whereas it had a negligible impact on nitrogenous disinfection byproduct (N-DBP) formation. The present study revealed the impact of a series of influencing factors on DBP formation in UV/PMS reaction systems, providing comprehensive insights on applying UV/PMS in actual practice.
Collapse
Affiliation(s)
- Lulu Dong
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Zhenxing Yao
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China
| | - Shaohua Sun
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China
| | - Mingquan Wang
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China
| | - Ruibao Jia
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China.
| |
Collapse
|
7
|
Shams M, Niazi Z, Saeb MR, Mozaffari Moghadam S, Mohammadi AA, Fattahi M. Tailoring the topology of ZIF-67 metal-organic frameworks (MOFs) adsorbents to capture humic acids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115854. [PMID: 38154210 DOI: 10.1016/j.ecoenv.2023.115854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023]
Abstract
Chlorination is a versatile technique to combat water-borne pathogens. Over the last years, there has been continued research interest to abate the formation of chlorinated disinfection by-products (DBPs). To prevent hazardous DBPs in drinking water, it is decided to diminish organic precursors, among which humic acids (HA) resulting from the decomposition and transformation of biomass. Metal-organic frameworks (MOFs) such as zeolitic imidazolate frameworks (ZIFs) have recently received tremendous attention in water purification. Herein, customized ZIF-67 MOFs possessing various physicochemical properties were prepared by changing the cobalt source. The HA removal by ZIF-67-Cl, ZIF-67-OAc, ZIF-67-NO3, and ZIF-67-SO4 were 85.6%, 68.9%, 86.1%, and 87.4%, respectively, evidently affected by the specific surface area. HA uptake by ZIF-67-SO4 indicated a removal efficiency beyond 90% in 4 90% after 60 min mixing the solution with 0.3 g L-1 ZIF-67-SO4. Notably, an acceptable removal performance (∼72.3%) was obtained even at HA concentrations up to 100 mg L-1. The equilibrium data fitted well with the isotherm models in the order of Langmuir> Hill > BET> Khan > Redlich-Peterson> Jovanovic> Freundlich > and Temkin. The maximum adsorption capacity qm for HA uptake by ZIF-67-SO4 was 175.89 mg g-1, well above the majority of adsorbents. The pseudo-first-order model described the rate of HA adsorption by time. In conclusion, ZIF-67-SO4 presented promising adsorptive properties against HA. Further studies would be needed to minimize cobalt leaching from the ZIF-67-SO4 structure and improve its reusability safely, to ensure its effectiveness and the economy of adsorption system.
Collapse
Affiliation(s)
- Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Niazi
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Sina Mozaffari Moghadam
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering &Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
8
|
Song T, Gao Y, Wei H, Zhao Y, Li S, Jiang Y. The utilization of microwaves in revitalizing peroxymonosulfate for tetracycline decomposition: optimization via response surface methodology. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2986-2995. [PMID: 38096083 PMCID: wst_2023_375 DOI: 10.2166/wst.2023.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Antibiotic contamination in water has received significant attention in recent years for the reason that the residuals of antibiotics can promote the progression of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs). It is difficult to treat antibiotics using conventional biological treatment methods. In order to investigate an efficient new method of treating antibiotics in water, in this study, microwave (MW) was employed in revitalizing peroxymonosulfate (PMS) to treat typical antibiotic tetracycline (TC). The Box-Behnken design (BBD) was applied to organize the experimental schemes. The response surface methodology (RSM) optimization was run to derive the best experimental conditions and validated using actual data. Moreover, the main mechanisms of PMS activation via MW were resolved. The results demonstrated that the relationship between TC removal rate and influencing factors was consistent with a quadratic model, where the P-value was less than 0.05, and the model was considered significant. The optimal condition resulting from the model optimization were power = 800 W, [PMS] = 0.4 mM, and pH = 6.0. Under such conditions, the actual removal of TC was 99.3%, very close to the predicted value of 99%. The quenching experiment confirmed that SO4•- and •OH were jointly responsible for TC removal.
Collapse
Affiliation(s)
- Tiehong Song
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130600, China E-mail: ;
| | - Yanjiao Gao
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China
| | - Hongyan Wei
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130600, China
| | - Yu Zhao
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130600, China
| | - Shujie Li
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130600, China
| | - Yi Jiang
- Key Lab of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
9
|
Huang C, Liu H, Sun C, Wang P, Tian Z, Cheng H, Huang S, Yang X, Wang M, Liu Z. Peroxymonosulfate activation by graphene oxide-supported 3D-MoS 2/FeCo 2O 4 sponge for highly efficient organic pollutants degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121391. [PMID: 36871747 DOI: 10.1016/j.envpol.2023.121391] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
To address conventional powder catalysts' recovery and aggregation issues that greatly restrain their practical application, a recoverable graphene oxide (GO)-supported 3D-MoS2/FeCo2O4 sponge (SFCMG) was developed through a simple impregnation pyrolysis method. SFCMG can efficiently activate peroxymonosulfate (PMS) to produce reactive species for rapid degradation of rhodamine B (RhB), with 95.0% and 100% of RhB being removed within 2 min and 10 min, respectively. The presence of GO enhances the electron transfer performance of the sponge, and the three-dimensional melamine sponge serves as a substrate to provide a highly dispersed carrier for FeCo2O4 and MoS2/GO hybrid sheets. SFCMG exhibits a synergistic catalytic effect of Fe and Co, and facilitates the redox cycles of Fe(III)/Fe(II) and Co(III)/Co(II) by MoS2 co-catalysis, which enhances its catalytic activity. Electron paramagnetic resonance results demonstrate that SO4•-, ·O2- and 1O2 are all involved in SFCMG/PMS system, and 1O2 played a prominent role in RhB degradation. The system has good resistance to anions (Cl-, SO42-, and H2PO4-) and humic acid and excellent performance for many typical contaminants degradation. Additionally, it works efficiently over a wide pH range (3-9) and possesses high stability and reusability with the metal leaching far below the safety standards. The present study extends the practical application of metal co-catalysis and offers a promising Fenton-like catalyst for the treatment of organic wastewater.
Collapse
Affiliation(s)
- Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chengyou Sun
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Zhongyu Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hao Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Su Huang
- School of Business Administration, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Xiong Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Mengxin Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| |
Collapse
|
10
|
Zhao Z, Li Y, Zhou Y, Hou Y, Sun Z, Wang W, Gou J, Cheng X. Activation of sulfite by micron-scale iron-carbon composite for metronidazole degradation: Theoretical and experimental studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130873. [PMID: 36731316 DOI: 10.1016/j.jhazmat.2023.130873] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In recent years, sulfite (S(Ⅳ)), as an alternative to persulfates, has played a crucial role in eliminating antibiotics in wastewater, so there is an urgent need to develop a cheap, environmentally friendly, and effective catalyst. Zero-valent iron (ZVI) has great potential for activated S(Ⅳ) removal of organic pollutants, but its reactivity in water is reduced due to passivation. In this study, a micron-scale iron-carbon composite(mZVI@C-800) prepared via high-temperature calcination was coupled with S(Ⅳ) to degrade metronidazole (MNZ). Under the optimized reaction conditions of mZVI@C-800 dosage of 0.2 g/L and S(Ⅳ) concentration of 0.1 g/L, the MNZ removal rate was up to 81.5 % in acidic and neutral environments. The surface chemical properties of the catalysts were characterized by different analytical techniques, and the corresponding catalytic mechanism was analyzed based on these analytical results. As a result, Fe2+ is the main active site, and ·OH and SO4·- were the dominant active species. The increase in efficiency was attributed to the introduction of carbon to enhance the corrosion of mZVI further releasing more Fe2+. Additionally proposed were the potential response mechanism, the degradation path, and the toxicity change rule. These results demonstrate that the catalytic breakdown of antibiotics in wastewater treatment can be accelerated by the use of the outstanding catalytic material mZVI@C-800.
Collapse
Affiliation(s)
- Zixuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yunhe Li
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yuerong Zhou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yilong Hou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhengyi Sun
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Wenhao Wang
- Civil Engineering Department, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, PR China
| | - Jianfeng Gou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Xiuwen Cheng
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Chemistry and Environmental Science, Yili Normal University, Yining 835000, PR China.
| |
Collapse
|
11
|
Zeng Q, Wang Y, Zhang Q, Hu J, Wen Y, Wang J, Wang R, Zhao S. Activity and mechanism of vanadium sulfide for organic contaminants oxidation with peroxymonosulfate. J Colloid Interface Sci 2023; 635:358-369. [PMID: 36599235 DOI: 10.1016/j.jcis.2022.12.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Transition metal sulfides have been demonstrated to be effective for peroxymonosulfate (PMS) activation towards wastewater treatment. However, the activity of vanadium sulfide (VS4) and the role of the chemical state of V have not been revealed. Here, three types of VS4 with various morphologies and chemical states of V were synthesized by using methanol (M-VS4, nanosphere composed of nanosheets), ethanol (E-VS4, sea urchin like nanosphere) and ultrapure water (U-VS4, compact nanosphere) as hydrothermal solvent, respectively, and used as heterogeneous catalysts to activate PMS for the degradation of refractory organic pollutants. The effects of PMS concentration, temperature, pH, inorganic ions, and humic acid (HA) on the degradation efficiency of VS4/PMS system were investigated systematically. The results indicated that the highest specific surface area and lowest ratio of V5+ enable E-VS4/PMS system possessed the highest performance in degrading tetracycline hydrochloride (TCH), in which 100% TCH was removed after operating 10 min (0.805 min-1) under a relatively low concentration of PMS (1 mM) and catalyst (100 mg/L). It also revealed that the system exhibited a typical radical process in TCH degradation, which could be attributed to the redox cycles between V5+, V4+ and V3+ in the presence of PMS to generate various radicals. This radical process enabled the E-VS4/PMS system with a high activity in wide reaction conditions and high mineralization ratios in degrading various refractory organic pollutants within 10 min. In addition, the E-VS4/PMS system exhibited favorable reusability and stability with very less V and S ions leaching, and showed excellent performance in real water purification.
Collapse
Affiliation(s)
- Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| | - Yumei Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyan Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jiayu Hu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Rongzhong Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| | - Shuaifei Zhao
- Deakin University, Geelong, Institute for Frontier Materials (IFM), VIC 3216, Australia
| |
Collapse
|
12
|
Zhang C, Liao X, Wang X, Li G. Fabrication of a Co 3O 4 monolithic membrane catalyst as an efficient PMS activator for the removal of methylene blue. NEW J CHEM 2023. [DOI: 10.1039/d2nj06358a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
An oxalate-pyrolysis method was proposed for the fabrication of an integral Co3O4 catalyst towards PMS activation to degrade MB.
Collapse
|