1
|
Simonis C, Zink L, Johnston SE, Bogard M, Pyle GG. Effects of water quality on palladium-induced olfactory toxicity and bioaccumulation in rainbow trout (Oncorhynchus mykiss). INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1407-1419. [PMID: 38329152 DOI: 10.1002/ieam.4900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
Through emission processes, palladium (Pd) particulates from industrial sources are introduced into a range of ecosystems including freshwater environments. Despite this, research on Pd-induced bioaccumulation, uptake, and toxicity is limited for freshwater fishes. Unlike other metals, there are currently no regulations or protective guidelines to limit Pd release into aquatic systems, indicating a global absence of measures addressing its environmental impact. To assess the olfactory toxicity potential of Pd, the present study aimed to explore Pd accumulation in olfactory tissues, olfactory disruption, and oxidative stress in rainbow trout (Oncorhynchus mykiss) following waterborne Pd exposure. Olfactory sensitivity, measured by electro-olfactography, demonstrated that Pd inhibits multiple pathways of the olfactory system following 96 h of Pd exposure. In this study, the concentrations of Pd for inhibition of olfactory function by 20% (2.5 μg/L; IC20) and 50% (19 μg/L; IC50) were established. Rainbow trout were then exposed to IC20 and IC50 Pd concentrations in combination with varying exposure conditions, as changes in water quality alter the toxicity of metals. Independent to Pd, increased water hardness resulted in decreased olfactory perception owing to ion competition at the olfactory epithelium. No other environmental parameter in this study significantly influenced Pd-induced olfactory toxicity. Membrane-associated Pd was measured at the olfactory rosette and gill following exposure; however, this accumulation did not translate to oxidative stress as measured by the production of malondialdehyde. Our data suggest that Pd is toxic to rainbow trout via waterborne contamination near field-measured levels. This study further demonstrated Pd bioavailability and uptake at water-adjacent tissues, adding to our collective understanding of the toxicological profile of Pd. Taken together, our results provide novel insights into the olfactory toxicity in fish following Pd exposure. Integr Environ Assess Manag 2024;20:1407-1419. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Carolyn Simonis
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Lauren Zink
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Sarah E Johnston
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, Alaska, USA
| | - Matthew Bogard
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
2
|
Roy R, Samanta S, Pandit S, Naaz T, Banerjee S, Rawat JM, Chaubey KK, Saha RP. An Overview of Bacteria-Mediated Heavy Metal Bioremediation Strategies. Appl Biochem Biotechnol 2024; 196:1712-1751. [PMID: 37410353 DOI: 10.1007/s12010-023-04614-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Contamination-free groundwater is considered a good source of potable water. Even in the twenty-first century, over 90 percent of the population is reliant on groundwater resources for their lives. Groundwater influences the economical state, industrial development, ecological system, and agricultural and global health conditions worldwide. However, different natural and artificial processes are gradually polluting groundwater and drinking water systems throughout the world. Toxic metalloids are one of the major sources that pollute the water system. In this review work, we have collected and analyzed information on metal-resistant bacteria along with their genetic information and remediation mechanisms of twenty different metal ions [arsenic (As), mercury (Hg), lead (Pb), chromium (Cr), iron (Fe), copper (Cu), cadmium (Cd), palladium (Pd), zinc (Zn), cobalt (Co), antimony (Sb), gold (Au), silver (Ag), platinum (Pt), selenium (Se), manganese (Mn), molybdenum (Mo), nickel (Ni), tungsten (W), and uranium (U)]. We have surveyed the scientific information available on bacteria-mediated bioremediation of various metals and presented the data with responsible genes and proteins that contribute to bioremediation, bioaccumulation, and biosorption mechanisms. Knowledge of the genes responsible and self-defense mechanisms of diverse metal-resistance bacteria would help us to engineer processes involving multi-metal-resistant bacteria that may reduce metal toxicity in the environment.
Collapse
Affiliation(s)
- Rima Roy
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India.
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - Tahseena Naaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - Srijoni Banerjee
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Janhvi Mishra Rawat
- Department of Life Sciences, Graphic Era Deemed to Be University, Dehradun, 248002, Uttarakhand, India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Rudra P Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India.
| |
Collapse
|
3
|
Rodrigues JP, Santos-Echeandía J, Chaves-Pozo E, Campillo JA, Rocha-Santos T, Duarte AC, Rivera-Hernández JR, Valdés J, Albentosa M. Interactive effects of palladium (Pd) and microplastics (MPs) on metal bioaccumulation and biological responses in the Mediterranean mussel, Mytilus galloprovincialis. MARINE POLLUTION BULLETIN 2023; 194:115284. [PMID: 37478783 DOI: 10.1016/j.marpolbul.2023.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
This study investigates the potential of MPs as carriers of pollutants as they can strengthen bioaccumulation of toxic metals on marine organisms. For the first time, the interaction of the metal palladium (Pd) with the widespread MPs, both with increasing concentrations in water environments from anthropogenic sources, was tested. Mytilus galloprovincialis, an important seafood product, was exposed to Pd (24 h) in two ways: water-dissolved and MPs-adsorbed, with depuration followed for 144 h. Quantification of Pd in tissues shown an accumulation 2-3 times higher (59 % of initial Pd) for mussels exposed to MPs-adsorbed Pd and higher in digestive gland than when exposed to water-dissolved Pd (25 %; higher in gills). Additionally, it was demonstrated that Pd induced oxidative stress and altered the feeding behavior of mussels. Therefore, this work support MPs as being vectors of metals (i.e. Pd) to enhance their bioaccumulation on marine organisms which highlights ecological risk of these emerging pollutants.
Collapse
Affiliation(s)
- Joana Patrício Rodrigues
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Juan Santos-Echeandía
- Centro Oceanográfico de Vigo (COV-IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia (COMU-IEO, CSIC), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Juan Antonio Campillo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO, CSIC), C/Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Teresa Rocha-Santos
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Armando C Duarte
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - José R Rivera-Hernández
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Joel Montes Camarena s/n Cerro del Vigía, 82047 Mazatlan, Sinaloa, Mexico
| | - Juliana Valdés
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO, CSIC), C/Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Marina Albentosa
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO, CSIC), C/Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| |
Collapse
|
4
|
Zieritz A, Sousa R, Aldridge DC, Douda K, Esteves E, Ferreira‐Rodríguez N, Mageroy JH, Nizzoli D, Osterling M, Reis J, Riccardi N, Daill D, Gumpinger C, Vaz AS. A global synthesis of ecosystem services provided and disrupted by freshwater bivalve molluscs. Biol Rev Camb Philos Soc 2022; 97:1967-1998. [PMID: 35770724 PMCID: PMC9545824 DOI: 10.1111/brv.12878] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Identification of ecosystem services, i.e. the contributions that ecosystems make to human well-being, has proven instrumental in galvanising public and political support for safeguarding biodiversity and its benefits to people. Here we synthesise the global evidence on ecosystem services provided and disrupted by freshwater bivalves, a heterogenous group of >1200 species, including some of the most threatened (in Unionida) and invasive (e.g. Dreissena polymorpha) taxa globally. Our systematic literature review resulted in a data set of 904 records from 69 countries relating to 24 classes of provisioning (N = 189), cultural (N = 491) and regulating (N = 224) services following the Common International Classification of Ecosystem Services (CICES). Prominent ecosystem services included (i) the provisioning of food, materials and medicinal products, (ii) knowledge acquisition (e.g. on water quality, past environments and historical societies), ornamental and other cultural contributions, and (iii) the filtration, sequestration, storage and/or transformation of biological and physico-chemical water properties. About 9% of records provided evidence for the disruption rather than provision of ecosystem services. Synergies and trade-offs of ecosystem services were observed. For instance, water filtration by freshwater bivalves can be beneficial for the cultural service 'biomonitoring', while negatively or positively affecting food consumption or human recreation. Our evidence base spanned a total of 91 genera and 191 species, dominated by Unionida (55% of records, 76% of species), Veneroida (21 and 9%, respectively; mainly Corbicula spp.) and Myoida (20 and 4%, respectively; mainly Dreissena spp.). About one third of records, predominantly from Europe and the Americas, related to species that were non-native to the country of study. The majority of records originated from Asia (35%), with available evidence for 23 CICES classes, as well as Europe (29%) and North America (23%), where research was largely focused on 'biomonitoring'. Whilst the earliest record (from 1949) originated from North America, since 2000, annual output of records has increased rapidly in Asia and Europe. Future research should focus on filling gaps in knowledge in lesser-studied regions, including Africa and South America, and should look to provide a quantitative valuation of the socio-economic costs and benefits of ecosystem services shaped by freshwater bivalves.
Collapse
Affiliation(s)
- Alexandra Zieritz
- School of GeographyUniversity of NottinghamUniversity Park, Sir Clive Granger BuildingNG7 2RDNottinghamUK
| | - Ronaldo Sousa
- CBMA – Centre of Molecular and Environmental Biology, Department of BiologyUniversity of MinhoCampus Gualtar4710‐057BragaPortugal
| | - David C. Aldridge
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUK
| | - Karel Douda
- Department of Zoology and FisheriesCzech University of Life Sciences PragueKamýcká129PragueCzech Republic
| | - Eduardo Esteves
- Departamento de Engenharia Alimentar, Instituto Superior de Engenharia and CCMAR Centre of Marine SciencesUniversidade do AlgarveEstr. da Penha8005‐139FaroPortugal
| | - Noé Ferreira‐Rodríguez
- Departamento de Ecoloxía e Bioloxía Animal, Facultade de BioloxíaUniversidade de VigoCampus As Lagoas – Marcosende36310VigoSpain
| | - Jon H. Mageroy
- Norwegian Institute of Nature Research, OsloSognsveien 680855OsloNorway
| | - Daniele Nizzoli
- Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaViale delle Scienze, 11/A43124ParmaItaly
| | - Martin Osterling
- Department of Environmental and Life Sciences – BiologyKarlstad UniversityUniversitetsgatan 2651 88KarlstadSweden
| | - Joaquim Reis
- Faculdade de Ciências da Universidade de LisboaMARE – Marine and Environmental Sciences CentreCampo Grande1749‐016LisbonPortugal
| | - Nicoletta Riccardi
- CNR‐IRSA Water Research InstituteCorso Tonolli, 5028922Verbania Pallanza (VB)Italy
| | - Daniel Daill
- blattfisch e.U. – Consultants in Aquatic Ecology and EngineeringGabelsbergerstraße 74600WelsAustria
| | - Clemens Gumpinger
- blattfisch e.U. – Consultants in Aquatic Ecology and EngineeringGabelsbergerstraße 74600WelsAustria
| | - Ana Sofia Vaz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do Porto4485‐661VairãoPortugal
- Departamento de Biologia, Faculdade de CiênciasUniversidade do Porto4099‐002PortoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão4485‐661VairãoPortugal
| |
Collapse
|
5
|
Hung GY, Wu CL, Motoyama C, Horng JL, Lin LY. Zebrafish embryos as an in vivo model to investigate cisplatin-induced oxidative stress and apoptosis in mitochondrion-rich ionocytes. Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109395. [PMID: 35697282 DOI: 10.1016/j.cbpc.2022.109395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Pharmaceuticals and personal care products are emerging environmental pollutants. Cisplatin, one of the most widely used platinum-based chemotherapeutic agents, has been found to contaminate aquatic environments. Using zebrafish embryos as a model, cisplatin was previously found to impair skin ionocytes and ion regulation. The purpose of this study was to further investigate how cisplatin damages ionocytes. Zebrafish embryos were exposed to cisplatin (0, 50, and 100 μM) for 96 h (4-100 h post-fertilization) and then stained with fluorescent dyes to reveal mitochondrial activity (rhodamine123), apoptosis (acridine orange), and oxidative stress (CellROX/MitoSOX) in ionocytes of living embryos. Results showed that cisplatin exposure decreased rhodamine 123-labeled ionocytes, induced oxidative stress in ionocytes, and promoted apoptosis in a concentration-dependent manner. Quantitative PCR analysis showed that mRNA levels of antioxidative genes (sod1, sod2, gpx1a, and cat) and an apoptotic gene (caps3a) were induced. In the time-course experiment at 96-98 h post-fertilization, cisplatin increased oxidative stress and apoptosis in ionocytes in a time-dependent manner. In conclusion, this study demonstrates that cisplatin exposure induces oxidative stress, mitochondrial damage, and apoptosis in ionocytes of zebrafish embryos.
Collapse
Affiliation(s)
- Giun-Yi Hung
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei 112, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ciao-Ling Wu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiharu Motoyama
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
6
|
Samim M. Palladium nanoparticles as emerging pollutants from motor vehicles: An in-depth review on distribution, uptake and toxicological effects in occupational and living environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153787. [PMID: 35150667 DOI: 10.1016/j.scitotenv.2022.153787] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Palladium nanoparticles (PdNPs) play an integral role in motor vehicles as the primary vehicle exhaust catalyst (VEC) for tackling environmental pollution. Automobiles equipped with Pd-based catalytic converters were introduced in the mid-1970s and ever since the demand for Pd has steadily increased due to stringent emission standards imposed in many developed and developing countries. However, at the same time, the increasing usage of Pd in VECs has led to the release of nano-sized Pd particles in the environment, thus, emerging as a new source of environmental pollution. The present reports in the literature have shown gradual increasing levels of Pd particles in different urban environmental compartments and internalization of Pd particles in living organisms such as plants, aquatic species and animals. Occupational workers and the general population living in urban areas and near major highways are the most vulnerable as they may be chronically exposed to PdNPs. Risk assessment studies have shown acute and chronic toxicity exerted by PdNPs in both in-vitro and in-vivo models but the underlying mechanism of PdNPs toxicity is still not fully understood. The review intends to provide readers with an in-depth account on the demand and supply of Pd, global distribution of PdNPs in various environmental matrices, their migration and uptake by living species and lastly, their health risks, so as to serve as a useful reference to facilitate further research and development for safe and sustainable technology.
Collapse
Affiliation(s)
- M Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
7
|
Burketová L, Martinec J, Siegel J, Macůrková A, Maryška L, Valentová O. Noble metal nanoparticles in agriculture: impacts on plants, associated microorganisms, and biotechnological practices. Biotechnol Adv 2022; 58:107929. [DOI: 10.1016/j.biotechadv.2022.107929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
|
8
|
Chen Y, Chen Y. Difference in toxicity of Pd (II) and mechanism of action before and after reduction by Bacillus wiedmannii MSM. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1824-1835. [PMID: 34363160 DOI: 10.1007/s11356-021-15736-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
At present, there are many studies on microbial reduction of Pd (II), although few of these studies assess the bacterial toxicity of Pd (II) before and after reduction by microorganisms. In this study, the toxicity of Pd (II) to Bacillus wiedmannii MSM (B. wiedmannii MSM) was assessed before and after reduction by live B. wiedmannii MSM cells (referred to as "Pd (0)-loaded cells") and after biosorption by dead B. wiedmannii MSM cells (referred to as "Pd (II)-loaded cells"). B. wiedmannii MSM is a widely occurring, nonpathogenic aerobic bacterium. Compared with Pd (II), the EC20, EC50, and EC80 of Pd (0)-loaded cells increased by 77.73-, 112.75-, and 163.91-fold, respectively, while the EC20, EC50, and EC80 of Pd (II)-loaded cells increased by only 11.55-, 9.77-, and 8.29-fold, respectively. The sterilization contribution rates of the mechanisms of action of Pd (0)-loaded cells were ranked in the order of: remaining Pd (II) > oxidative stress > physical puncture. Pd (II) was found to increase cell membrane permeability, glutathione S-transferase (GST) enzyme activity, and reactive oxygen species levels in cells and decrease the cell membrane potential. XPS results indicated that Pd (II) increased the content of polysaccharides and peptides and decreased the content of hydrocarbons in cells. These findings reveal the bactericidal mechanism of toxicity of Pd (II) and Pd (0)-loaded cells on Bacillus wiedmannii MSM and provide an environmentally friendly and inexpensive method for Pd (II) detoxification.
Collapse
Affiliation(s)
- Yuan Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangdong University, Guangdong, Guangzhou, 510405, People's Republic of China
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangdong, 510006, Guangzhou, People's Republic of China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangdong, 510006, Guangzhou, People's Republic of China.
| |
Collapse
|
9
|
Trace element assessment in Neoechinorhynchus agilis (Rudolphi, 1918) (Acanthocephala: Neoechinorhynchidae) and its fish hosts, Mugil cephalus (Linnaeus, 1758) and Chelon ramada (Risso, 1827) from Ichkeul Lagoon, Tunisia. J Helminthol 2021; 95:e61. [PMID: 34725015 DOI: 10.1017/s0022149x21000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Acanthocephalans belonging to the species Neoechinorhynchus agilis were collected from two mullets, Mugil cephalus and Chelon ramada from Ichkeul Lagoon in northern Tunisia. Collected parasites, as well as tissues of their hosts (muscle, liver and intestine), were analysed for trace elements (silver, arsenic, cadmium, cobalt, copper, iron, manganese, nickel (Ni), lead (Pb), selenium, vanadium (V), zinc) using inductively coupled plasma mass spectrometry. Our results showed different accumulation patterns of trace elements in fish tissues and parasites. Among the host tissues, liver accumulated the highest metal amounts. Acanthocephalans showed Ni, Pb and V in significantly higher concentrations compared to their host's tissues. Further, the calculated bioconcentration factors demonstrated a 390-fold higher Pb accumulation in the parasite compared to fish muscle. This study is the first field survey in Tunisia dealing with elements' uptake in parasites and their hosts. Our results corroborate the usefulness of the acanthocephalans for biomonitoring of metal pollution in aquatic ecosystems and promote more research in order to understand host-parasite systems in brackish waters of the Mediterranean area.
Collapse
|
10
|
Anila PA, Keerthiga B, Ramesh M, Muralisankar T. Synthesis and characterization of palladium nanoparticles by chemical and green methods: A comparative study on hepatic toxicity using zebrafish as an animal model. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:108979. [PMID: 33548545 DOI: 10.1016/j.cbpc.2021.108979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
Nanoparticles synthesized by chemical methods are of a matter of concern, whereas, the green methods are said to be eco-friendly and environmentally safe. In this study, the toxicity of palladium nanoparticles (Pd NPs) synthesized through chemical co-precipitation and green route method using Annona squamosa seed kernels (As-Pd NPs) were evaluated using zebrafish as an animal model. The synthesized nanoparticles (NPs) were characterized using UV-Visible spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS) and Zeta potential. Zebrafish (Danio rerio) were exposed to 0.4 ng/L of Pd NPs and As-Pd NPs for 96-h, further oxidative stress parameters and histological changes were evaluated. The superoxide dismutase (SOD), catalase (CAT) activity and the lipid peroxidation (LPO) levels were elevated in the Pd NPs groups. But in the As-Pd NPs group, the SOD activity showed a biphasic nature while the CAT activity gradually declined till the 96-h compared to the control and Pd NPs groups. The LPO levels in the As-Pd NPs groups showed a measurable increase till 72-h and sudden decline at the end of 96-h. Anomalies in the histological changes such as ruptured hepatocytes, sinusoidal congestion, vacuolation and accumulation of erythrocytes were observed in both the NPs treated groups but As-Pd NPs exhibited lesser lesions than the control and Pd NPs groups. However, our present study reveals the possible reliability of the nanoparticles and the mechanism of scavenging activity suggesting that the As-Pd NPs synthesized by green route are less toxic comparing to the chemically synthesized Pd NPs.
Collapse
Affiliation(s)
- Pottanthara Ashokan Anila
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Balasubramaniyam Keerthiga
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Thirunavukkarasu Muralisankar
- Aquatic Ecology Lab, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
11
|
Anila PA, Sutha J, Nataraj D, Ramesh M. In vivo evaluation of Nano-palladium toxicity on larval stages and adult of zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144268. [PMID: 33418331 DOI: 10.1016/j.scitotenv.2020.144268] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The existence and usage of nano-sized palladium (nano-Pd) as catalytic promoters among industries and researchers have been laid a way to explore the release of nano-Pd particles into the aquatic environment, bio-accumulating in living organisms. However, the data on fate and toxicity in response to nano-Pd on aquatic organisms are very limited. Herein, we report the concentration-specific toxicity of nano-Pd in zebrafish (Danio rerio). Nano-Pd was synthesized and characterized by Field Emission Scanning Electron Microscopy (FE-SEM), Dynamic Light Scattering (DLS) and Zeta potential. To determine the in vivo toxicity of nano-Pd, the 96 hpf larvae and the adult zebrafish were treated with two (22 and 0.4 ng/L) environmental relevant concentrations. High doses of nano-Pd influenced the hatching rate, embryo survival, heartbeat and teratological anomalies in the 96 hpf larvae. Reactive oxygen species (ROS) and apoptosis were also influenced by nano-Pd exposure while the acetylcholinesterase (AChE) activity was declined in a dose dependent manner. In long-term exposure (42 days), the adult fish showed erratic movements in swimming pattern inhibiting the AChE activity in both the concentrations of brain and liver. The antioxidant enzyme activity such as superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and lipid peroxidation (LPO), showed a significant change (P < 0.05) indicating that oxidative stress was induced by nano-Pd. Similarly, nano-Pd also induced histopathological lesions in gill, liver and brain providing an insight of fate and toxicity of nano-Pd in the aquatic environment. Our study contributes a significant mechanism to understand the toxicity concern of nano-Pd in the aquatic environment.
Collapse
Affiliation(s)
- Pottanthara Ashokan Anila
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Jesudass Sutha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Devaraj Nataraj
- Low Dimensional Molecular Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
12
|
Aarzoo, Naqvi S, Agarwal NB, Singh MP, Samim M. Bio-engineered palladium nanoparticles: model for risk assessment study of automotive particulate pollution on macrophage cell lines. RSC Adv 2021; 11:1850-1861. [PMID: 35424083 PMCID: PMC8693606 DOI: 10.1039/d0ra09336j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/16/2020] [Indexed: 11/21/2022] Open
Abstract
The surge in vehicular activity in densely populated areas has led to an increased concentration of airborne palladium nanoparticles (PdNPs) in the environment. Recent toxicity data have indicated that PdNPs exhibit adverse effects in in vitro and in vivo models, however, their effect on the immune system is not fully understood. Therefore, in the present study, we aimed to evaluate possible toxic effects of bio-engineered palladium nanoparticles on the murine macrophage cell line (J774). Here we prepared palladium nanoparticles using aqueous leaf extract of Parthenium hysterophorus and characterized them by UV-Vis spectroscopy, XRD, FT-IR spectroscopy, HR-TEM, EDX, SEM and zeta potential. Toxicity parameters such as cell viability, cell membrane integrity, induction of apoptosis and ROS production were assessed on J774 cell lines. Spherical palladium nanoparticles of mean size ∼4 nm, when subjected to time and dose-dependent cytotoxicity assay, showed cell viability was >95% at lower doses (25, 200 μg mL-1) and <50% at higher doses of palladium nanoparticles (400, 500 μg mL-1) after 24 hours of incubation. We also observed cell membrane injury at higher doses by lactate dehydrogenase assay. The induction of apoptosis observed was moderate. H2DCFDA assay revealed visible cell damage which could be due to modest levels of ROS generation. The detection of Pd in the road-dust samples of New Delhi using inductively coupled plasma-mass spectroscopy (ICP-MS) technique was also investigated.
Collapse
Affiliation(s)
- Aarzoo
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard New Delhi-110062 India
| | - Saba Naqvi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Lucknow-226002 India
| | - Nidhi Bharal Agarwal
- Centre for Translational &Clinical Research, Jamia Hamdard New Delhi-110062 India
| | - Manoj P Singh
- Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University (JNU) New Delhi-110067 India
| | - M Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard New Delhi-110062 India
| |
Collapse
|
13
|
Ratnayake S, Mantilaka M, Sandaruwan C, Dahanayake D, Gunasekara YP, Jeyasakthy S, Gurusinghe N, Wanninayake U, Nalin de Silva K. Low-temperature thermocatalytic particulate carbon decomposition via urea solution-combustion derived CeO2 nanostructures. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Qu H, Ma R, Barrett H, Wang B, Han J, Wang F, Chen P, Wang W, Peng G, Yu G. How microplastics affect chiral illicit drug methamphetamine in aquatic food chain? From green alga (Chlorella pyrenoidosa) to freshwater snail (Cipangopaludian cathayensis). ENVIRONMENT INTERNATIONAL 2020; 136:105480. [PMID: 31962271 DOI: 10.1016/j.envint.2020.105480] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/24/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
The biological impacts of microplastics on many organisms have been well documented. However, the combined effects of microplastics and chiral chemicals on the aquatic food chain are less clear. In the present study, the enantioselective environmental behaviors of methamphetamine co-exposed with microplastics through an aquatic food chain (from Chlorella pyrenoidosa to Cipangopaludian cathayensis) have been investigated in a laboratory environment. It was found that the acute toxicity of methamphetamine against these two species was significantly increased in the presence of microplastics: Chlorella pyrenoidosa showed an EC50 shift from 0.77 to 0.32 mg L-1, while cipangopaludian cathayensis showed an LC50 shift from 4.15 to 1.48 mg L-1, upon the addition of microplastics as a co-contaminant with methamphetamine. Upon exposure to methamphetamine and microplastics, the oxidative damage of algae (19.9 to 36.8 nmol mgprot-1), apoptosis (increase about 2.17 times) and filtration rate (41.2 to 65.4 mL h-1) of snails were observably higher when compared to exposure to methamphetamine alone. After ingestion and accumulation of microplastics, the enantioselectivity, BCFs, BMFs, and distribution of methamphetamine were significantly altered. These results provide evidence that the co-occurrence of microplastics and the chiral drug methamphetamine may increase the burden on aquatic species, with potential further impacts throughout aquatic food chain.
Collapse
Affiliation(s)
- Han Qu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruixue Ma
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecological Environment, Guangzhou 510655, China
| | - Holly Barrett
- Department of Chemistry, University of Toronto. Toronto, ON M5S 3H6, Canada
| | - Bin Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiajun Han
- Department of Chemistry, University of Toronto. Toronto, ON M5S 3H6, Canada
| | - Fang Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Pin Chen
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guilong Peng
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Mao J, Lin S, Lu XJ, Wu XH, Zhou T, Yun YS. Ion-imprinted chitosan fiber for recovery of Pd(II): Obtaining high selectivity through selective adsorption and two-step desorption. ENVIRONMENTAL RESEARCH 2020; 182:108995. [PMID: 31851945 DOI: 10.1016/j.envres.2019.108995] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Selective separation of platinum group metals from acidic solutions is of great importance due to their cumulative supply risk and environmental concern. In this study, a Pd(II) ion-imprinted chitosan fiber (ICF) was prepared as the novel adsorbent, and a well-designed two-step desorption process was implemented for selectively recovering Pd(II) from acidic solution containing Pd(II) and interfering metals of Co(II), Ni(II), Cu(II) and Pt (IV). The ICF showed higher selectivity for Pd(II) adsorption, comparing the non-imprinted chitosan fiber (NICF) towards other metals adsorption. The first selective desorption was achieved by NaOH solution, since only Pt (IV) adsorbed on the ICF in a small amount could be eluted, without any acting on Pd(II) ions. The second desorption process was carried out using acidified thiourea solution for the exclusive Pd(II) ions desorption. Therefore, much higher selective recovery of Pd(II) was achieved through ICF with a good selective adsorption performance and a well-designed desorption process. Furthermore, the mechanisms of selective adsorption and desorption were investigated by X-ray photoelectron spectra (XPS) and X-ray diffraction (XRD) analyses. Finally, ICF-packed column system was conducted using synthetic multiple metals solution and a practical hydrometallurgy wastewater as influent, respectively, with a good adsorption capacity of 87.2 mg g-1 and 94.2 mg g-1, resulting quite high concentrated effluent consisted of 97.4% of Pd(II) and 99.5% of Pd(II), respectively. It was opened up a promising designed material and technique for selectively recovering Pd(II) in the further practical large-scale application.
Collapse
Affiliation(s)
- Juan Mao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Shuo Lin
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; School of Chemical Engineering, Chonbuk National University, Jeonbuk, 54896, Republic of Korea
| | - Xie Juan Lu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiao Hui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Chonbuk National University, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
16
|
Yen Le TT, García MR, Grabner D, Nachev M, Balsa-Canto E, Hendriks AJ, Zimmermann S, Sures B. Mechanistic simulation of bioconcentration kinetics of waterborne Cd, Ag, Pd, and Pt in the zebra mussel Dreissena polymorpha. CHEMOSPHERE 2020; 242:124967. [PMID: 31677506 DOI: 10.1016/j.chemosphere.2019.124967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 05/21/2023]
Abstract
Mechanistic models based on chemical properties of metals and body size have received substantial attention for their potential application to various metals and to different conditions without required calibration. This advantage has been demonstrated for a number of metals, such as Cd and Ag. However, the capacity of metal-specific chemical properties to explain variations in the accumulation for platinum-group elements (PGEs) has not been investigated yet, although emission of these metals is of increasing concern. Once being released, PGEs exist in the environment in mixtures with other metals. The present study attempted to model the accumulation of Pd and Pt in mixtures with Ag and Cd in the zebra mussel (Dreissena polymorpha) from the aqueous phase; and to investigate the potential application of mechanistic models to Pd and Pt. The present study showed statistically insignificant differences in metal accumulation among size groups in a narrow range of shell length (16-22 mm). Kinetic models could simulate well the accumulation of Cd, Ag, and Pt when metal-specific responses of zebra mussels are taken into consideration. These responses include enhanced immobilisation as a detoxifying mechanism and exchange between soft tissues and shells via the extrapallial fluid. Environmental conditions, e.g. the presence of abiotic ligands such as chloride, might also play an important role in metal accumulation. Significant relationships between the absorption efficiency and the covalent index indicate the potential application of mechanistic models based on this chemical property to Pt.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany.
| | - Míriam R García
- Process Engineering Group, Spanish Council for Scientific Research, IIM-CSIC, Vigo, 36208, Spain
| | - Daniel Grabner
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| | - Eva Balsa-Canto
- Process Engineering Group, Spanish Council for Scientific Research, IIM-CSIC, Vigo, 36208, Spain
| | - A Jan Hendriks
- Department of Environmental Science, Faculty of Science, Radboud University Nijmegen, Nijmegen, 6525, HP, the Netherlands
| | - Sonja Zimmermann
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| |
Collapse
|
17
|
Mathai PP, Magnone P, Dunn HM, Sadowsky MJ. Water and sediment act as reservoirs for microbial taxa associated with invasive dreissenid mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134915. [PMID: 31767301 DOI: 10.1016/j.scitotenv.2019.134915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Zebra mussels (Dreissena polymorpha) are invasive, filter-feeding, bivalves that have disrupted the ecology of thousands of freshwater biomes across North America. Due to their efficient filter-feeding activity, zebra mussels (ZMs) and other bivalves are extensively used to detect chemical contamination in waterways. In this study, we evaluated whether water and sediment serve as major sources of ZM tissue-associated microbiota, and whether ZMs serve as a reservoir for potentially pathogenic microbes in aquatic systems. High-throughput DNA sequencing of 16S rRNA gene was done to characterize the microbial community structure in 472 environmental samples, comprising ZMs, sediment, and the water column, collected from 15 lakes during the summer and fall months. Sequence analyses, done using the SourceTracker program, predicted that water and sediment contributed up to 91 and 86%, respectively, to the structure of microbiota within ZMs, and that mussels from the same site showed nearly identical source microbiota profiles. The relatively high local source contribution suggests that the microbiota in ZM tissue has the potential to reflect biological contamination and this phenomenon can be used to monitor microbial water quality. A preferential enrichment of several taxa was also observed in ZM tissues, including potential pathogenic groups such as Aeromonas, Enterobacteriaceae, and Pseudomonas. Taken together, our results contribute to an improved understanding of ZMs as a sentinel species in aquatic habitats and its potential impact to water quality management.
Collapse
Affiliation(s)
- Prince P Mathai
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Paolo Magnone
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Hannah M Dunn
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USA; Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
18
|
Zimmermann S, Sures B. Lessons learned from studies with the freshwater mussel Dreissena polymorpha exposed to platinum, palladium and rhodium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1396-1405. [PMID: 29751444 DOI: 10.1016/j.scitotenv.2017.09.204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 05/10/2023]
Abstract
The platinum group elements (PGE) platinum, palladium and rhodium gain increasing (eco-)toxicological interest due to their cumulative introduction into ecosystems. So far, most PGE exposure studies investigating biological availability, uptake and bioaccumulation of PGE as well as their effects on different toxicological endpoints were performed under non-standardized conditions which occasionally make an interpretation and comparison of the results difficult. Here we compare the results of different PGE exposure studies with zebra mussels (Dreissena polymorpha) showing influences due to the PGE source, the exposure medium, the exposure concentration and period as well as the test system. Problems associated to the performance and evaluation of these studies were identified and recommendations as well as needs for future studies are given. As nominal exposure concentrations often did not reflect real exposure conditions the reference for exposure concentration has to be chosen with caution, i.e. nominal versus quantified aqueous concentrations. The determination of bioaccumulation factors can be problematic when PGE concentrations in the exposure medium and in the test organism did not reach steady state even after several weeks of exposure. For future studies it would be advantageous to regularly correlating PGE bioaccumulation and biomarker responses to increase the knowledge on potential adverse effects of these metals, preferably using environmentally relevant PGE concentration scenarios. Many aspects discussed in the present study for zebra mussels and PGE can be transferred to other aquatic animals and other metals, respectively.
Collapse
Affiliation(s)
- Sonja Zimmermann
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstrasse 5, 45141 Essen, Germany.
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
19
|
Zimmermann S, Wolff C, Sures B. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:368-376. [PMID: 28222978 DOI: 10.1016/j.envpol.2017.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Mainly due to automobile traffic, but also due to other sources, the platinum group elements (PGE) platinum (Pt), palladium (Pd) and rhodium (Rh) are introduced into aquatic biotopes where they accumulate in sediments of lakes and rivers. However, the toxicity of these noble metals to aquatic organisms is not well understood and especially toxicity studies under standardized condition are lacking. Thus, the toxicity of Pt, Pd and Rh to Daphnia magna was tested in single metal exposure experiments according to OECD guideline 202. Immobility and lethality was recorded after 24 h and 48 h of exposure and EC50 and LC50, respectively, were determined. As the nominal exposure concentration of Pd differed significantly from the quantified concentration, the control of the real exposure concentration by chemical analysis is mandatory, especially for Pd. The toxicity decreased in the order Pd > Pt ≫ Rh with e.g. LC50(48 h) values of 14 μg/L for Pd, 157 μg/L for Pt and 56,800 μg/L for Rh. The exposure period had a clear effect on the toxicity of Pt, Pd and Rh. For Pt and Rh the endpoint immobility was more sensitive than the endpoint lethality whereas Pd toxicity was similar for both endpoints. The Hill slopes, which are a measure for the steepness of the concentration-response curves, showed no significant discrepancies between the different metals. The binary metal exposure to Pt and Pd revealed a more-than-additive, i.e. a synergistic toxicity using the toxic unit approach. The present study is a start to understand the toxicity of interacting PGE. The modes of action behind the synergistic effect are unclear.
Collapse
Affiliation(s)
- Sonja Zimmermann
- Aquatic Ecology, and Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitaetsstrasse 2, 45141 Essen, Germany.
| | - Carolina Wolff
- Aquatic Ecology, University of Duisburg-Essen, Universitaetsstrasse 2, 45141 Essen, Germany
| | - Bernd Sures
- Aquatic Ecology, and Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitaetsstrasse 2, 45141 Essen, Germany
| |
Collapse
|
20
|
Zimmermann S, Ruchter N, Loza K, Epple M, Sures B. Nanoparticulate versus ionic silver: Behavior in the tank water, bioaccumulation, elimination and subcellular distribution in the freshwater mussel Dreissena polymorpha. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:251-260. [PMID: 28034561 DOI: 10.1016/j.envpol.2016.12.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Zebra mussels (Dreissena polymorpha) were exposed to polyvinylpyrrolidone (PVP)-coated silver nanoparticles (AgNP; hydrodynamic diameter 80 nm; solid diameter 50 nm) to investigate the behavior of Ag in the tank water with respect to its uptake, bioaccumulation, elimination and subcellular distribution in the mussel soft tissue. Parallel experiments were performed with ionic Ag (AgNO3) to unravel possible differences between the metal forms. The recovery of the applied Ag concentration (500 μg/L) in the tank water was clearly affected by the metal source (AgNP < AgNO3) and water type (reconstituted water < tap water). Filtration (<0.45 μm) of water samples showed different effects on the quantified metal concentration depending on the water type and Ag form. Ag accumulation in the mussel soft tissue was neither influenced by the metal source nor by the water type. Ag concentrations in the mussel soft tissue did not decrease during 14 days of depuration. For both metal forms the Ag distribution within different subcellular fractions, i.e. metal-rich granules (MRG), cellular debris, organelles, heat-sensitive proteins (HSP) and metallothionein-like proteins (MTLP), revealed time-dependent changes which can be referred to intracellular Ag translocation processes. The results provide clear evidence for the uptake of Ag by the mussel soft tissue in nanoparticulate as well as in ionic form. Thus, zebra mussels could be used as effective accumulation indicators for environmental monitoring of both Ag forms.
Collapse
Affiliation(s)
- Sonja Zimmermann
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany.
| | - Nadine Ruchter
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| |
Collapse
|
21
|
Sures B, Nachev M, Selbach C, Marcogliese DJ. Parasite responses to pollution: what we know and where we go in 'Environmental Parasitology'. Parasit Vectors 2017; 10:65. [PMID: 28166838 PMCID: PMC5294906 DOI: 10.1186/s13071-017-2001-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/24/2017] [Indexed: 01/13/2023] Open
Abstract
Environmental parasitology deals with the interactions between parasites and pollutants in the environment. Their sensitivity to pollutants and environmental disturbances makes many parasite taxa useful indicators of environmental health and anthropogenic impact. Over the last 20 years, three main research directions have been shown to be highly promising and relevant, namely parasites as accumulation indicators for selected pollutants, parasites as effect indicators, and the role of parasites interacting with established bioindicators. The current paper focuses on the potential use of parasites as indicators of environmental pollution and the interactions with their hosts. By reviewing some of the most recent findings in the field of environmental parasitology, we summarize the current state of the art and try to identify promising ideas for future research directions. In detail, we address the suitability of parasites as accumulation indicators and their possible application to demonstrate biological availability of pollutants; the role of parasites as pollutant sinks; the interaction between parasites and biomarkers focusing on combined effects of parasitism and pollution on the health of their hosts; and the use of parasites as indicators of contaminants and ecosystem health. Therefore, this review highlights the application of parasites as indicators at different biological scales, from the organismal to the ecosystem.
Collapse
Affiliation(s)
- Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, D-45141, Essen, Germany.,Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Milen Nachev
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, D-45141, Essen, Germany.
| | - Christian Selbach
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - David J Marcogliese
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, St. Lawrence Centre, 105 McGill Street, 7th floor, Montreal, QC, H2Y 2E7, Canada.,St. Andrews Biological Station, Fisheries and Oceans Canada, 531 Brandy Cove Road, St, Andrews, NB, E5B 2 L9, Canada
| |
Collapse
|
22
|
|
23
|
Egorova KS, Ananikov VP. Welche Katalysatormetalle sind harmlos, welche giftig? Vergleich der Toxizitäten von Ni-, Cu-, Fe-, Pd-, Pt-, Rh- und Au-Salzen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603777] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ksenia S. Egorova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 Moscow 119991 Russland
| | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 Moscow 119991 Russland
- Department of Chemistry; Saint Petersburg State University; Stary Petergof 198504 Russland
| |
Collapse
|
24
|
Egorova KS, Ananikov VP. Which Metals are Green for Catalysis? Comparison of the Toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au Salts. Angew Chem Int Ed Engl 2016; 55:12150-62. [PMID: 27532248 DOI: 10.1002/anie.201603777] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 01/01/2023]
Abstract
Environmental profiles for the selected metals were compiled on the basis of available data on their biological activities. Analysis of the profiles suggests that the concept of toxic heavy metals and safe nontoxic alternatives based on lighter metals should be re-evaluated. Comparison of the toxicological data indicates that palladium, platinum, and gold compounds, often considered heavy and toxic, may in fact be not so dangerous, whereas complexes of nickel and copper, typically assumed to be green and sustainable alternatives, may possess significant toxicities, which is also greatly affected by the solubility in water and biological fluids. It appears that the development of new catalysts and novel applications should not rely on the existing assumptions concerning toxicity/nontoxicity. Overall, the available experimental data seem insufficient for accurate evaluation of biological activity of these metals and its modulation by the ligands. Without dedicated experimental measurements for particular metal/ligand frameworks, toxicity should not be used as a "selling point" when describing new catalysts.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia. .,Department of Chemistry, Saint Petersburg State University, Stary Petergof, 198504, Russia.
| |
Collapse
|
25
|
Schoch R, Bauer M. Pollution Control Meets Sustainability: Structure-Activity Studies on New Iron Oxide-Based CO Oxidation Catalysts. CHEMSUSCHEM 2016; 9:1996-2004. [PMID: 27440425 DOI: 10.1002/cssc.201600508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 06/06/2023]
Abstract
A new class of catalysts for the oxidation of CO based on iron oxide as a biocompatible, earth-abundant and non-toxic metal is presented. The catalytic activities achieved with these catalysts provide promising milestones towards the substitution of noble metals in CO oxidation catalysts. The catalysts can be obtained by using iron core-shell nanoparticle precursors. The metal used for the shell material determines whether the iron core is integrated in or isolated from the support. The active iron site is effectively integrated into the γ-Al2 O3 support if an aluminum shell is present in the core-shell precursor. When the metal used for the shell is different from the support, an isolated structure is formed. Using this directed synthesis approach, different iron oxide species can be obtained and their structural differences are linked to distinct catalytic activities, as demonstrated by combined in-depth analytical studies using XRD, X-ray absorption spectroscopy (XAS), UV/Vis, and Brunauer-Emmett-Teller (BET) analysis. The key species responsible for high catalytic activity is identified as isolated tetrahedrally coordinated Fe(III) centers, whereas aggregation leads to a reduction in activity.
Collapse
Affiliation(s)
- Roland Schoch
- Fakultät für Naturwissenschaften, Department Chemie, Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Matthias Bauer
- Fakultät für Naturwissenschaften, Department Chemie, Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Germany.
| |
Collapse
|
26
|
Neira P, Cobelo-García A, Besada V, Santos-Echeandía J, Bellas J. Evidence of increased anthropogenic emissions of platinum: time-series analysis of mussels (1991-2011) of an urban beach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 514:366-370. [PMID: 25679817 DOI: 10.1016/j.scitotenv.2015.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
The anthropogenic emissions of Pt to the environment have increased significantly over the past decades, especially after the introduction of the catalytic converters in motor vehicles. In order to check whether this is affecting the levels of this trace metal on living organisms, time-series analysis of freeze-dried soft tissue material of wild mussels (Mytilus galloprovincialis) covering the period from 1991 to 2001 and collected at an urban beach in the city of Vigo (NW Iberian Peninsula) was conducted. Concentrations ranged from 0.30 to 0.68 ng g(-1) with an average concentration of 0.47 ± 0.10 ng g(-1) (n=21); these concentrations were higher than those obtained for samples collected at a control location away from anthropogenic pressure (0.31 ± 0.10 ng g(-1); n=5). Platinum concentrations followed a statistically significant temporal trend (at the 0.020 level), and the excess of Pt in mussels over the 1991-2011 period compared to the control location were correlated with the European Pt autocatalyst demand (p=0.0006) and, especially, the car sales in Spain (p=0.0001). A bioaccumulation factor of ~5·10(3) was derived, which is greater than those previously calculated for Pt from exposure experiments, but 1-2 orders of magnitude lower than other trace elements (e.g. Zn, Cu, Pb, Cd).
Collapse
Affiliation(s)
- Patricia Neira
- Grupo de Bioxeoquímica Mariña, Instituto de Investigacións Mariñas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Galicia, Spain
| | - Antonio Cobelo-García
- Grupo de Bioxeoquímica Mariña, Instituto de Investigacións Mariñas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Galicia, Spain.
| | - Victoria Besada
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Galicia, Spain
| | - Juan Santos-Echeandía
- Grupo de Bioxeoquímica Mariña, Instituto de Investigacións Mariñas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Galicia, Spain
| | - Juan Bellas
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Galicia, Spain
| |
Collapse
|
27
|
Bonanno G, Pavone P. Leaves of Phragmites australis as potential atmospheric biomonitors of Platinum Group Elements. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:31-37. [PMID: 25596354 DOI: 10.1016/j.ecoenv.2015.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/29/2014] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
The increasing emissions of Platinum Group Elements (PGEs), namely Pt, Pd and Rh, may pose a significant risk to ecosystem processes and human health. A periodic assessment of PGEs distribution in the environment is thus of the utmost importance for the implementation of timely measures of mitigation. Although several studies have quantified PGEs in different life forms such as mammals, birds, fish, crustaceans, algae, mosses and even human beings, data about vascular plants need further surveys. This study aimed to test the suitability of the grass Phragmites australis (common reed) as a biomonitor of PGEs atmospheric pollution. The results showed that Pd and Pt concentrations in leaves are significantly higher in urban areas. In particular, Pd showed the highest range of values in line with current studies that consider palladium as the main element of traffic-related pollution. Overall, the leaves of Phragmites australis reflected the different gradient of PGEs emissions, and may thus be considered as potential biomonitors of atmospheric pollution.
Collapse
Affiliation(s)
- Giuseppe Bonanno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Longo 19, 95125 Catania, Italy.
| | - Pietro Pavone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Longo 19, 95125 Catania, Italy
| |
Collapse
|
28
|
Ruchter N, Sures B. Distribution of platinum and other traffic related metals in sediments and clams (Corbicula sp.). WATER RESEARCH 2015; 70:313-324. [PMID: 25543241 DOI: 10.1016/j.watres.2014.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/04/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Abstract
Platinum is part of traffic-emitted metals since the introduction of automotive catalyst converters. Still, automobile emissions are one of the major sources for metals in European river systems. However, field data on Pt is scarce and there is a lack of knowledge concerning the distribution and biological availability of Pt. Therefore, the distribution of traffic related metals (Cd, Cr, Cu, Ni, Pb, Pt, and Zn) was analyzed in sediment samples and in the Asian clam Corbicula sp. Samples were taken from three transects following road runoff inlets. Pt was introduced into the river by road runoff. The highest Pt concentrations in sediments were analyzed in the silt/clay fraction (45 ng/g), while the highest total Pt burden was obtained for the sand fraction, that makes up more than 60% of the sediment. Metal concentrations were related to the area of the drained street section as well as to their distance from the discharge point, and to grain size distribution within the sediment. Pt and other traffic related metals were accumulated by clams. Due to the feeding behavior of the freshwater mussel Corbicula sp. Pt concentrations in the soft tissue remain relatively low (max Pt concentration: 1.3 ng/g freeze dried soft tissue) and acute lethal or toxic effects therefore appear to be unlikely. Nonetheless, chronic exposure effects still have to be examined.
Collapse
Affiliation(s)
- Nadine Ruchter
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitaetsstr. 2, 45141 Essen, Germany.
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitaetsstr. 2, 45141 Essen, Germany.
| |
Collapse
|
29
|
Chen M, Chen S, Du M, Tang S, Chen M, Wang W, Yang H, Chen Q, Chen J. Toxic effect of palladium on embryonic development of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:208-16. [PMID: 25550166 DOI: 10.1016/j.aquatox.2014.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/13/2014] [Accepted: 12/17/2014] [Indexed: 05/12/2023]
Abstract
Since palladium (Pd) is now increasingly used in modern industry, it progressively accumulates in the environment, especially in aquatic ecosystem. The potential toxicity of Pd has therefore caused extensive concern worldwidely. In the present study, we investigated the toxic effect of Pd on zebrafish development. Acute Pd exposure significantly decreased both the survival rate (LC50: 292.6 μg/L, viz. 2.75 μM) and hatching rate (IC50: 181.5 μg/L, viz. 1.71 μM) of zebrafish during embryonic development. The most common developmental defect observed in Pd treated embryos is pericardiac edema, which occurs in a dose-dependent manner. Whole mount immunostaining and histological studies revealed that Pd exposure would produce the elongated, string-like heart. The heartbeat rate of zebrafish embryos was also decreased after Pd exposure. Consistently, mRNA expression levels of several cardiac-related genes were affected by Pd, suggesting a potential molecular mechanism of Pd-induced cardiac malformation of zebrafish embryo. Moreover, similar to other metals, Pd exposure resulted in the elevated expression of general metal-inducible genes. It was also found that the expression of several antioxidant enzymes was significantly down-regulated in the presence of Pd. Taken together, our study investigated the effects of Pd on zebrafish embryonic development and its potential molecular mechanisms, paving the way for the full understanding of Pd toxicity.
Collapse
Affiliation(s)
- Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen 361005, Fujian Province, China
| | - Sangxia Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen 361005, Fujian Province, China
| | - Mi Du
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen 361005, Fujian Province, China
| | - Shaoheng Tang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen 361005, Fujian Province, China
| | - Mei Chen
- College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen 361005, Fujian Province, China
| | - Wei Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen 361005, Fujian Province, China
| | - Hui Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen 361005, Fujian Province, China
| | - Qiaoyu Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen 361005, Fujian Province, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen 361005, Fujian Province, China.
| |
Collapse
|
30
|
Laboratory Studies on the Uptake and Bioaccumulation of PGE by Aquatic Plants and Animals. ENVIRONMENTAL SCIENCE AND ENGINEERING 2015. [DOI: 10.1007/978-3-662-44559-4_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
|
32
|
|
33
|
Schoch R, Huang H, Schünemann V, Bauer M. A New Iron-Based Carbon Monoxide Oxidation Catalyst: Structure-Activity Correlation. Chemphyschem 2014; 15:3768-75. [DOI: 10.1002/cphc.201402551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 11/11/2022]
|
34
|
Petrarca C, Clemente E, Di Giampaolo L, Mariani-Costantini R, Leopold K, Schindl R, Lotti LV, Mangifesta R, Sabbioni E, Niu Q, Bernardini G, Di Gioacchino M. Palladium nanoparticles induce disturbances in cell cycle entry and progression of peripheral blood mononuclear cells: paramount role of ions. J Immunol Res 2014; 2014:295092. [PMID: 25105151 PMCID: PMC4106057 DOI: 10.1155/2014/295092] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 11/29/2022] Open
Abstract
There is concern about the possible toxicity of palladium nanoparticles (Pd-NP), as they are released in the environment through many applications. We previously studied the toxicity of Pd-NP at high concentrations; here we address the possible toxicity of Pd-NP at low, subtoxic doses. In particular, we have exposed normal human PBMC entering into the first in vitro mitotic division to Pd-NP and to Pd(IV) ions to evaluate ROS generation and cell cycle progression. We have measured a statistically significant increase of intracellular ROS in Pd(IV) exposed cells, but not in Pd-NP exposed cells. TEM revealed accumulation of lipid droplets and autophagic and mitophagic vacuoles, which appeared more conspicuous in cells exposed to Pd(IV) ions than to Pd-NP. Pd-NP were visible in the cytoplasm of Pd-NP exposed cells. Pd-NP addition was associated with a significant increase of cells within the G0/G1-phase and a significant reduction in GS- and G2/M-phases. Cells exposed to Pd(IV) ions showed a significant amplification of these cell cycle alterations. These results suggest that ions, per se or released by NPs, are the true inducers of Pd toxicity. It will be essential to verify whether the observed disturbance represents a temporary response or might result in permanent alterations.
Collapse
Affiliation(s)
- Claudia Petrarca
- Immunotoxicology and Allergy Unit, Ce.S.I., “G. d'Annunzio” University Foundation, 66100 Chieti, Italy
| | - Emanuela Clemente
- Department of Medicine and Ageing Science, “G. d'Annunzio” University, 66100 Chieti, Italy
| | - Luca Di Giampaolo
- Department of Medicine and Ageing Science, “G. d'Annunzio” University, 66100 Chieti, Italy
| | - Renato Mariani-Costantini
- Unit of General Pathology, Ce.S.I., “G. d'Annunzio” University Foundation and Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University, 66100 Chieti, Italy
| | - Kerstin Leopold
- University of Ulm, Institute for Analytical and Bioanalytical Chemistry, 89081 Ulm, Germany
| | - Roland Schindl
- University of Ulm, Institute for Analytical and Bioanalytical Chemistry, 89081 Ulm, Germany
| | - Lavinia V. Lotti
- Laboratorio di Biopatologia Ultrastrutturale, Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Rocco Mangifesta
- Immunotoxicology and Allergy Unit, Ce.S.I., “G. d'Annunzio” University Foundation, 66100 Chieti, Italy
| | - Enrico Sabbioni
- Immunotoxicology and Allergy Unit, Ce.S.I., “G. d'Annunzio” University Foundation, 66100 Chieti, Italy
| | - Qiao Niu
- Shanxi Medical University, Taiyuan, China
| | - Giovanni Bernardini
- Department of Biotechnology and Molecular Sciences, University of Insubria, 21100 Varese, Italy
- The Protein Factory, Interuniversity Centre Politecnico di Milano, ICRM CNR Milano and University of Insubria, 20131 Milan, Italy
| | - Mario Di Gioacchino
- Immunotoxicology and Allergy Unit, Ce.S.I., “G. d'Annunzio” University Foundation, 66100 Chieti, Italy
- Department of Medicine and Ageing Science, “G. d'Annunzio” University, 66100 Chieti, Italy
| |
Collapse
|
35
|
Prichard HM, Fisher PC. Identification of platinum and palladium particles emitted from vehicles and dispersed into the surface environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3149-3154. [PMID: 22313190 DOI: 10.1021/es203666h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Platinum, palladium, and rhodium are emitted from vehicle catalytic converters. Until now, the form of precious metal particles in road dust and urban waste has not been identified. This study has located, imaged, and analyzed these particles in road dust and gully waste. Two fragments of catalytic converter have been observed in road dust. They are 40-80 μm in size and covered in many minute particles (<0.3 μm) of either platinum with minor rhodium or palladium. One fragment identified in gully sediment is smaller, 25 μm in diameter, hosting only one attached particle of palladium with minor rhodium. As fragments are washed off roads they begin to disintegrate and the precious metals become detached. Also precious metal-bearing particles have been located in incinerated sewage ash including a 20 μm diameter cluster of <3 μm sized platinum particles that may be the remains of a catalytic converter fragment that has survived incineration. The form of these precious metal-bearing particles described here reveals that as they are dispersed from roads they are likely to be present predominantly as two particle sizes. Either they are attached to larger fragments of catalytic converter or they are released as individual detached tiny <0.3 μm to nanoparticle sizes.
Collapse
Affiliation(s)
- Hazel M Prichard
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | | |
Collapse
|
36
|
|
37
|
Speranza A, Leopold K, Maier M, Taddei AR, Scoccianti V. Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd(II). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:873-882. [PMID: 19815321 DOI: 10.1016/j.envpol.2009.09.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/10/2009] [Accepted: 09/18/2009] [Indexed: 05/28/2023]
Abstract
In the present study, endpoints including in vitro pollen performance (i.e., germination and tube growth) and lethality were used as assessments of nanotoxicity. Pollen was treated with 5-10 nm-sized Pd particles, similar to those released into the environment by catalytic car exhaust converters. Results showed Pd-nanoparticles altered kiwifruit pollen morphology and entered the grains more rapidly and to a greater extent than soluble Pd(II). At particulate Pd concentrations well below those of soluble Pd(II), pollen grains experienced rapid losses in endogenous calcium and pollen plasma membrane damage was induced. This resulted in severe inhibition and subsequent cessation of pollen tube emergence and elongation at particulate Pd concentrations as low as 0.4 mg L(-1). Particulate Pd emissions related to automobile traffic have been increasing and are accumulating in the environment. This could seriously jeopardize in vivo pollen function, with impacts at an ecosystem level.
Collapse
Affiliation(s)
- Anna Speranza
- Dipartimento di Biologia, Università di Bologna, via Irnerio 42, 40126 Bologna, Italy.
| | | | | | | | | |
Collapse
|
38
|
Osterauer R, Haus N, Sures B, Köhler HR. Uptake of platinum by zebrafish (Danio rerio) and ramshorn snail (Marisa cornuarietis) and resulting effects on early embryogenesis. CHEMOSPHERE 2009; 77:975-982. [PMID: 19796790 DOI: 10.1016/j.chemosphere.2009.08.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 07/11/2009] [Accepted: 08/03/2009] [Indexed: 05/28/2023]
Abstract
Platinum group elements (PGEs), platinum, palladium and rhodium are widely used in automobile catalytic converters. PGEs are emitted into the environment and enter the aquatic ecosystem via runoff rainwater. The present study investigated the bioavailability of platinum chloride for the zebrafish (Danio rerio) and the ramshorn snail (Marisa cornuarietis) and determined the bioaccumulation rate of platinum. Applying the fish early life stage assay for D. rerio (DarT) and the Marisa embryo toxicity test ("Mariett") for M. cornuarietis, effects of platinum chloride on the embryonic development were investigated. Platinum concentrations tested in this study ranged from environmentally relevant concentrations of 38 ng L(-1) up to a concentration of 74.2 microg L(-1) for D. rerio and of 200 ngL(-1) up to 98.7 microg L(-1) for M. cornuarietis. Platinum was found to be accumulated in both organisms. Bioaccumulation factors (BAFs) were in the range of 5-55 for D. rerio and of 218.4-723.9 for M. cornuarietis, depending on the tested Pt concentrations. During the embryonic development, platinum was shown to alter the heart rate of both organisms already at the lowest tested concentration. At higher concentrations, platinum decelerated the hatching rate of the embryos of both species. Additionally, a retardation of the general development and a loss of weight due to platinum exposure was observed in M. cornuarietis. Results of this study contribute important data on the ecotoxicity of a rarely studied element.
Collapse
Affiliation(s)
- Raphaela Osterauer
- Animal Physiological Ecology Department, University of Tübingen, Konrad-Adenauer-Str. 20, 72072 Tübingen, Germany.
| | | | | | | |
Collapse
|
39
|
Szoboszlai N, Polgári Z, Mihucz VG, Záray G. Recent trends in total reflection X-ray fluorescence spectrometry for biological applications. Anal Chim Acta 2009; 633:1-18. [DOI: 10.1016/j.aca.2008.11.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/04/2008] [Accepted: 11/06/2008] [Indexed: 01/04/2023]
|
40
|
Kalbitz K, Schwesig D, Wang W. Effects of platinum from vehicle exhaust catalyst on carbon and nitrogen mineralization in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 405:239-245. [PMID: 18678396 DOI: 10.1016/j.scitotenv.2008.06.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 06/23/2008] [Accepted: 06/24/2008] [Indexed: 05/26/2023]
Abstract
There is strong evidence of continuously increasing contamination of soils with platinum group elements (PGE), in particular with platinum (Pt) from vehicle exhaust catalysts in roadside soils. However, knowledge about the effects of Pt contamination on soil processes is very limited. The objective of this study was to investigate whether the contamination of soils with Pt at realistic environmental levels leads to observable adverse effects on selected indicator parameters of the carbon and nitrogen turnover in soils. Incubation experiments with artificially contaminated soils and solutions containing dissolved organic matter (DOM) were carried out by the use of milled material from a Pt-containing vehicle exhaust catalyst. Interaction of the catalyst material with the soil resulted in a mobilization of Pt into the dissolved phase reaching up to 0.1% of the added Pt. The amount of Pt mobilization seemed to be mainly driven by the pH of the soil. Mineralization of carbon and nitrogen did not reveal any significant adverse effect of the Pt addition as compared to the control samples. Future studies dealing with Pt effects on soil processes should focus on environmental conditions favoring Pt mobilization, e.g. such as very low pH values or large concentrations of DOM.
Collapse
Affiliation(s)
- Karsten Kalbitz
- Department of Soil Ecology, University of Bayreuth, Bayreuth, Germany.
| | | | | |
Collapse
|
41
|
Frank SN, Singer C, Sures B. Metallothionein (MT) response after chronic palladium exposure in the zebra mussel, Dreissena polymorpha. ENVIRONMENTAL RESEARCH 2008; 108:309-314. [PMID: 18762294 DOI: 10.1016/j.envres.2008.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 07/17/2008] [Accepted: 07/24/2008] [Indexed: 05/26/2023]
Abstract
The effects of different exposure concentrations of palladium (Pd) on relative metallothionein (MT) response and bioaccumulation were investigated in zebra mussels (Dreissena polymorpha). The mussels were exposed to 0.05, 5, 50, and 500 microg/L Pd2+ for 10 weeks under controlled temperature and fasting conditions. Relative MT contents were assessed by a modified Ag-saturation method, which allows to discriminate between MT bound to Pd (Pd-MT) and MT bound to unidentified metals (Ag-MT). Determination of metal contents resulted from atomic absorption spectrometry following a microwave digestion. For unexposed mussels and mussels exposed to 0.05 microg/L Pd no metal accumulation could be detected. All other exposure concentrations resulted in detectable Pd accumulation in mussels with final tissue concentrations of 96 microg/g (500 microg/L), 45 microg/g (50 microg/L), and 9 microg/g (5 microg/L). Compared with initial levels Pd-MT concentrations at the end of the exposure period were 600 (500 microg/L), 160 (50 microg/L), and 27 (5 microg/L) times higher. These results show that an increase in MTs in D. polymorpha already occurs at relatively low aqueous Pd concentrations indicating that there is the need for detoxification of Pd in the mussel. Furthermore, correlations between Ag-MT and Pd accumulation indicate that higher exposure concentrations are associated with adverse effects on the mussels. Thus, harmful effects of chronic Pd exposure of organisms even in lowest concentrations cannot be excluded in the environment.
Collapse
Affiliation(s)
- Sabrina N Frank
- Department of Applied Zoology/Hydrobiology, University of Duisburg-Essen, Essen, Germany
| | | | | |
Collapse
|
42
|
Affecting of aquatic vascular plant Lemna minor by cisplatin revealed by voltammetry. Bioelectrochemistry 2008; 72:59-65. [DOI: 10.1016/j.bioelechem.2007.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 09/06/2007] [Accepted: 11/11/2007] [Indexed: 11/17/2022]
|
43
|
Kolodziej M, Baranowska I, Matyja A. Determination of Platinum in Plant Samples by Voltammetric Analysis. ELECTROANAL 2007. [DOI: 10.1002/elan.200703876] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Sures B, Zimmermann S. Impact of humic substances on the aqueous solubility, uptake and bioaccumulation of platinum, palladium and rhodium in exposure studies with Dreissena polymorpha. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 146:444-51. [PMID: 17018243 DOI: 10.1016/j.envpol.2006.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 06/29/2006] [Accepted: 07/03/2006] [Indexed: 05/12/2023]
Abstract
Zebra mussels (Dreissena polymorpha) were exposed to different types of water containing PGE salts (PtCl4, PdSO4, RhCl3) to investigate the influence of humic substances on the aqueous solubility, uptake and bioaccumulation of noble metals. The results showed a time dependent decrease of the aqueous PGE concentrations in tank water for all groups. This could mainly be related to non-biological processes. The aqueous solubility of Pd and Rh was higher in humic water compared with non-chlorinated tap water, whereas Pt showed opposing results. Highest metal uptake rates and highest bioaccumulation plateaus were found for Pd, followed by Pt and Rh. Pd uptake and bioaccumulation was significantly hampered by humic substances, whose presence appear to increase Pt uptake and bioaccumulation. No clear trend emerged for Rh. Differences in effects of humic matter among the PGE may be explained by formation of metal complexes with different fractions of humic substances.
Collapse
Affiliation(s)
- Bernd Sures
- Department of Applied Zoology/Hydrobiology, University of Duisburg-Essen, D-45177 Essen, Germany.
| | | |
Collapse
|
45
|
Haus N, Zimmermann S, Wiegand J, Sures B. Occurrence of platinum and additional traffic related heavy metals in sediments and biota. CHEMOSPHERE 2007; 66:619-29. [PMID: 16996105 DOI: 10.1016/j.chemosphere.2006.07.097] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 07/28/2006] [Accepted: 07/31/2006] [Indexed: 05/11/2023]
Abstract
Non-point sources play an important role in metal emissions into surface waters. One of the most important non-point sources is automobile traffic. Recent studies determining traffic related heavy metals in surface waters have concentrated mainly on worst case scenarios by analyzing heavy metal loads in waters and sediments close to storm-water overflow inlets. The present study aims at identifying traffic related heavy metals in moderately polluted sites, as they occur in highly urbanized regions. Therefore, the concentrations of eight traffic related metals (Pt, Sb, Mo, Cd, Pb, Cu, Cr and Zn) were determined in sediment and crustacean samples from eight different aquatic habitats in the Ruhr district, Germany. Traffic related heavy metals could be identified in sediment and biota samples as a combination of heavy metals (Pt, Sb, Cd, Pb for sediments and Pt and Sb for crustacean samples). Pt concentrations received special attention due to the relatively recent occurrence of anthropogenically emitted Pt in the environment. At six sampling sites, Pt was detected in sediment and/or biota samples. The uptake of Pt compared to other traffic related heavy metals by Asellus aquaticus and Gammarus pulex is relatively high and can be compared with the uptake rates of essential metals like Zn.
Collapse
Affiliation(s)
- N Haus
- University of Duisburg-Essen, Department of Applied Zoology/Hydrobiology, Universitätsstr. 5, D-45147 Essen, Germany.
| | | | | | | |
Collapse
|
46
|
Sutherland RA. Platinum-group element concentrations in BCR-723: A quantitative review of published analyses. Anal Chim Acta 2007; 582:201-7. [DOI: 10.1016/j.aca.2006.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/12/2006] [Accepted: 09/14/2006] [Indexed: 10/24/2022]
|
47
|
Singer C, Zimmermann S, Sures B. Induction of heat shock proteins (hsp70) in the zebra mussel (Dreissena polymorpha) following exposure to platinum group metals (platinum, palladium and rhodium): comparison with lead and cadmium exposures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2005; 75:65-75. [PMID: 16111776 DOI: 10.1016/j.aquatox.2005.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 06/22/2005] [Accepted: 07/12/2005] [Indexed: 05/04/2023]
Abstract
An increasing number of papers concentrate on the availability and uptake of platinum group elements (PGE) by different organisms. These metals are discharged into the environment from different anthropogenic sources, such as automobile catalytic converters, hospitals and other medical institutions. As the effects of these precious metals on organisms remain unclear, the induction of heat shock proteins (hsp70) in zebra mussels (Dreissena polymorpha) following exposure to soluble salts of platinum, palladium and rhodium was compared with the hsp70 induction in mussels following exposure to cadmium and lead. Mussels were sampled weekly during a period of 10 weeks and analyzed for their metal concentration and their hsp70 level. Highest metal uptake was found for Cd, followed by Pt, Pb and Pd. Rh demonstrated the lowest uptake rate. A clear time-dependent increase of hsp70 levels occurred in all exposed mussels. Concentrations of hsp70 started to rise between days 18 and 25, except for the Pt-exposed group, where the initial increase was between days 25 and 32. All groups reached maximal hsp70 concentrations at day 39. Subsequently, hsp70 levels decreased to initial levels for the remaining exposure period. Threshold metal levels for the hsp70 induction varied among the metals and increased in the order: Rh<Pd< or =Pb<Pt<Cd. Highest hsp70 values were found for mussels exposed to Pd, with a 25-fold higher level than in the controls, followed by Pt- and Rh-exposed mussels, which showed a 19-fold increase. The hsp70 levels of the mussels exposed to Cd and Pb were much lower, showing 6- and 12-fold higher values than the control, respectively. The clear induction of hsp70 due to exposure to Pt, Pd and Rh gives evidence for strong cellular effects of these metals, especially, when compared with lead and cadmium. Among the metals tested, Pd seems to have the highest potential as inducer for hsp70 production due to its low threshold level in combination with the strongest effect.
Collapse
Affiliation(s)
- Christoph Singer
- Zoologisches Institut I-Okologie, Universität Karlsruhe, Geb. 07.01, Kornblumenstrasse 13, D-76131 Karlsruhe, Germany
| | | | | |
Collapse
|