1
|
Feiteiro J, Mariana M, Cairrão E. Health toxicity effects of brominated flame retardants: From environmental to human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117475. [PMID: 34087639 DOI: 10.1016/j.envpol.2021.117475] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Hexabromocyclododecane (HBCD) and Tetrabromobisphenol A (TBBP-A) are brominated flame retardants widely used in variety of industrial and consumer products (e.g., automobiles, electronics, furniture, textiles and plastics) to reduce flammability. HBCD and TBBPA can also contaminate the environment, mainly water, dust, air and soil, from which human exposure occurs. This constant exposure has raised some concerns against human health. These compounds can act as endocrine disruptors, a property that gives them the ability to interfere with hormonal function and quantity, when HBCD and TBBPA bind target tissues in the body. Studies in human and animals suggest a correlation between HBCD and TBBPA exposure and adverse health outcomes, namely thyroid disorders, neurobehavior and development disorders, reproductive health, immunological, oncological and cardiovascular diseases. However, in humans these effects are still poorly understood, once only a few data evaluated the human health effects. Thus, the purpose of this review is to present the toxicity effects of HBCD and TBBPA and how these compounds affect the environment and health, resorting to data and knowledge of 255 published papers from 1979 to 2020.
Collapse
Affiliation(s)
- Joana Feiteiro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrão
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
2
|
Fernie KJ, Karouna-Renier NK, Letcher RJ, Schultz SL, Peters LE, Palace V, Henry PFP. Endocrine and physiological responses of hatchling American kestrels (Falco sparverius) following embryonic exposure to technical short-chain chlorinated paraffins (C 10-13). ENVIRONMENT INTERNATIONAL 2020; 145:106087. [PMID: 32950788 DOI: 10.1016/j.envint.2020.106087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are complex mixtures of polychlorinated n-alkanes, shown to bioaccumulate but with unknown effects in wild birds. The present study examined development-related effects of SCCPs on captive American kestrels (Falco sparverius) treated in ovo on embryonic day (ED) 5 by injection with technical Chloroparaffin® (C10-13, 55.5% Cl) at environmentally relevant nominal (measured) concentrations of 10 (10), 50 (29) or 100 (97) ng ΣSCCP/g egg ww, and artificially incubated until hatching (ED27-ED29). The SCCP concentrations measured in the yolk sacs of the hatchling kestrels bracketed concentrations reported in the eggs of wild birds. Uptake and deposition of these SCCPs differed between male and female hatchlings, with only males showing differences in SCCP concentrations, being highest in the high-dose males than each of the other male groups. Embryonic exposure to SCCPs suppressed glandular total thyroxine (TT4) (20-33%) and reduced circulating triiodothyronine (TT3) (37-40%) in male hatchlings only when compared to control males, but had no effect on glandular TT3 or circulating TT4 in male or female kestrels. Histological assessments of thyroid glands showed that both sexes experienced significant structural changes indicative of gland activation. These thyroid glandular changes and the variations in SCCP concentrations were related to circulating TT3 in female hatchlings. Hepatic deiodinase enzyme (D1, D2) activities were stable and no SCCP-related changes were observed in hatching success, hatchling size, or immune organ size. However, several of the thyroid function indicators were correlated with hatchling size and smaller bursas and spleens, possibly indirectly through SCCP-induced changes in thyroid function. Because changes in thyroid function were evident at concentrations measured in wild bird eggs, similar changes may occur in wild nestlings. The potential impact of these changes on thyroid-mediated growth and survival in wild birds requires further investigation.
Collapse
Affiliation(s)
- K J Fernie
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada.
| | - N K Karouna-Renier
- USGS Patuxent Wildlife Research Center, BARC, East Bldg 308, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - R J Letcher
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment Canada, 1125 Colonel By Drive, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - S L Schultz
- USGS Patuxent Wildlife Research Center, BARC, East Bldg 308, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - L E Peters
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - V Palace
- International Institute of Sustainable Development - Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
| | - P F P Henry
- USGS Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD 20708, USA
| |
Collapse
|
3
|
Simkins JW, Joseph AE, Bonier F, Benowitz-Fredericks ZM. Prenatal aromatase inhibition alters postnatal immunity in domestic chickens (Gallus gallus). Gen Comp Endocrinol 2020; 294:113497. [PMID: 32360542 DOI: 10.1016/j.ygcen.2020.113497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
In birds, exposure to exogenous testosterone during embryonic development can suppress measures of immune function; however, it is unclear whether these effects are due to direct or indirect action via aromatization. Estradiol (E2) is synthesized from testosterone by the enzyme aromatase, and this conversion is a necessary step in many signaling pathways that are ostensibly testosterone-dependent. Many lines of evidence in mammals indicate that E2 can affect immune function. We tested the hypothesis that some of the immunomodulatory effects observed in response to in ovo testosterone exposure in birds are mediated by conversion to E2 by aromatase, by using fadrozole to inhibit aromatization of endogenous testosterone during a crucial period of embryonic immune system development in domestic chickens (Gallus gallus). We then measured total IgY antibody count, response to PHA challenge, mass of thymus and bursa of Fabricius, and plasma testosterone post-hatch on days 3 and 18. Because testosterone has a reputation for immunosuppression, we predicted that if modulation of an immune measure by testosterone is dependent on aromatization, then inhibition of estrogen production by fadrozole treatment would lead to elevated measures of that parameter. Conversely, if testosterone inhibits an immune measure directly, then fadrozole treatment would likely not alter that parameter. Fadrozole treatment reduced circulating E2 in female embryos, but had no effect on males or on testosterone in either sex. Fadrozole-treated chicks had decreased day 3 plasma IgY antibody titers and a strong trend towards increased day 18 thymic mass. Furthermore, fadrozole treatment generated a positive relationship between testosterone and thymic mass in males, and tended to increase day 18 IgY levels for a given bursal mass in females. There was no effect on PHA response, bursal mass, or plasma testosterone at either age post-hatch. The alteration of several indicators of immune function in fadrozole-treated chicks implicates aromatization as a relevant pathway through which developmental exposure to testosterone can affect immunity in birds.
Collapse
Affiliation(s)
- J W Simkins
- Bucknell University, Department of Biology, 1 Dent Drive, Lewisburg, PA, USA.
| | - A E Joseph
- Bucknell University, Department of Biology, 1 Dent Drive, Lewisburg, PA, USA.
| | - F Bonier
- Queen's University, Department of Biology, 116 Barrie Street, Kingston, ON K7L 3N6, Canada.
| | | |
Collapse
|
4
|
Farhat A, Crump D, Bidinosti L, Boulanger E, Basu N, Hecker M, Head JA. An Early-Life Stage Alternative Testing Strategy for Assessing the Impacts of Environmental Chemicals in Birds. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:141-154. [PMID: 31449668 DOI: 10.1002/etc.4582] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/23/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Early-life stage (ELS) toxicity tests are recognized as an advancement over current testing methodologies in terms of cost, animal use, and biological relevance. However, standardized ELS tests are not presently available for some vertebrate taxa, including birds. The present study describes a Japanese quail (Coturnix japonica) ELS test that is a promising candidate for standardization and applies it to test 8 environmental chemicals (ethinylestradiol, benzo[a]pyrene, chlorpyrifos, fluoxetine, lead(II)nitrate, trenbolone, seleno-L-methionine, hexabromocyclododecane). Individual chemicals were injected into the air cell of unincubated Japanese quail eggs at 3 concentrations, all predicted to cause ≤20% mortality. Survival to embryonic day 16 was consistently high (>90%) among the vehicle-injected controls. All chemicals, except ethinylestradiol, were detected in liver tissue, most at concentrations suggestive of embryonic clearance. Adverse effects were observed for 5 of the 8 chemicals; chlorpyrifos (41.1 µg/g) significantly increased developmental abnormalities and decreased embryo and gallbladder mass. Ethinylestradiol (54.2 µg/g) and hexabromocyclododecane (0.02 µg/g) decreased embryo mass and tarsus length, respectively. Benzo[a]pyrene (0.83 µg/g) and fluoxetine hydrochloride (32.7 µg/g) exceeded the 20% mortality cutoff. No effects were observed following lead(II)nitrate, seleno-L-methionine, or trenbolone exposure up to 10.7, 0.07, and 4.4 µg/g, respectively. Overall, our ELS approach was time- and cost-effective, caused minimal mortality in controls, effectively delivered diverse chemicals to the embryo, and permitted identification of apical outcomes, all of which provide support toward standardization. Environ Toxicol Chem 2019;39:141-154. © 2019 SETAC.
Collapse
Affiliation(s)
- Amani Farhat
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Lisa Bidinosti
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Emily Boulanger
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Nil Basu
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Markus Hecker
- Toxicology Centre and School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jessica A Head
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Lü H, Ma XJ, Huang XJ, Lu S, Huang YH, Mo CH, Cai QY, Wong MH. Distribution, diastereomer-specific accumulation and associated health risks of hexabromocyclododecanes (HBCDs) in soil-vegetable system of the Pearl River Delta region, South China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109321. [PMID: 31394478 DOI: 10.1016/j.jenvman.2019.109321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/15/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The distribution and diastereomeric profiles of hexabromocyclododecanes (HBCDs, identified as persistent organic pollutants) in soil-vegetable system of open fields remain unknown. In this study, three main HBCD diastereoisomers (α-, β-, and γ-HBCDs) were analyzed in paired soil and vegetable samples from vegetable farms in four cities (Guangzhou, Jiangmen, Huizhou, Foshan) of the Pearl River Delta region, Southern China. The sum concentrations of the three diastereoisomers (∑HBCDs) in soils varied from 0.99 to 18.4 ng/g (dry weight) with a mean of 5.77 ng/g, decreasing in the order of Jiangmen > Guangzhou > Huizhou > Foshan. The distributions of HBCDs in both soil and vegetable were diastereomer-specific, with γ-HBCD being predominant. The ∑HBCDs in vegetables ranged from 0.87 to 32.7 ng/g (dry weight) with a mean of 16.6 ng/g, generally higher than those of the corresponding soils. Thus bioconcentration factors (BCFs, the ratio of contaminant concentration in vegetable to that in soil) of HBCDs were generally greater than 1.0, implying higher accumulation in vegetable. The estimated daily intake (EDI) of ΣHBCDs via consumption of vegetables varied from 0.26 to 9.35 ng/kg bw/day with a mean of 3.60 ng/kg bw/day for adults and from 0.32 to 11.5 ng/kg bw/day with a mean of 4.41 ng/kg bw/day for Children, far lower than the oral reference dose (RfD, 2 × 105 ng/kg bw/day) proposed by US National Research Council. These results suggest that HBCD in the vegetables posed low health risk for the local population. These data are the first report on HBCD occurrence and health risk in soil-vegetable system of open fields.
Collapse
Affiliation(s)
- Huixiong Lü
- College of Natural Resources and Environment, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Jing Ma
- College of Natural Resources and Environment, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Xue-Jing Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Shaoyou Lu
- POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Ming-Hung Wong
- College of Natural Resources and Environment, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
de Wit CA, Johansson AK, Sellström U, Lindberg P. Mass balance study of brominated flame retardants in female captive peregrine falcons. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1115-1131. [PMID: 31237594 DOI: 10.1039/c9em00177h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Little is known about brominated flame retardant (BFR) dynamics in birds, especially large molecules such as decabromodiphenyl ether (BDE-209). In particular, bioaccumulation from food and transfer dynamics to eggs are poorly understood. Therefore, an input-output mass balance study of tri-decaBDEs, DBDPE and HBCDD was performed in three female peregrine falcons from a captive breeding program by analyzing their naturally contaminated food (quail, chicken (cockerels)), plasma, feces and eggs. Predominant BFRs in cockerels and quail were BDE-209 and DBDPE, as well as HBCDD in quail. The predominant BFRs found in falcon plasma were BDE-209, -153 and -183, in eggs, HBCDD, BDE-209 and -153 and in feces, BDE-209. Mean absorption efficiencies (AE) for the tetra-octabrominated BDEs ranged from 84-100% and 70% for HBCDD. The AEs for BDE-206, -207, -208 and -209 varied due to the large variability seen for feces fluxes. All egg/plasma ratios for BDEs were similar and greater than one (range 1.1-2.7), including for BDE-209, indicating efficient transfer from females to the eggs. Excretion via egg-laying was approximately 6.0-29% of the initial, pre-breeding body burden of individual penta-decaBDE congeners, (15-45% for BDE-206). HBCDD was not detected in plasma but was found in eggs, also indicating efficient transfer and excretion via eggs. Input fluxes from food exceeded the output fluxes (feces, eggs) indicating considerable metabolism for tetra-octaBDEs, possibly also for the nona-decaBDEs and HBCDD. Bioaccumulation factors calculated from lipid weight concentrations in plasma and food (BAFp) were highest for BDE-208 (31), -153 (23), -209 (19) and -207 (16) and from eggs and food (BAFe), were highest for HBCDD (140), BDE-153 (41), -208 (42), BDE-207 (24) and BDE-209 (21). BAFe and BAFp values were below 10 for BDE-47, -99 and -100. For one falcon, egg results were available from three different years and estimated half-lives were 65 d (BDE-99), 624 d (BDE-153), 31 d (BDE-154), 349 d (BDE-183), 77 d (BDE-196) and 89 d (BDE-197).
Collapse
Affiliation(s)
- Cynthia A de Wit
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Anna-Karin Johansson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Ulla Sellström
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Peter Lindberg
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Göteborg, Sweden
| |
Collapse
|
7
|
Tongue ADW, Reynolds SJ, Fernie KJ, Harrad S. Flame retardant concentrations and profiles in wild birds associated with landfill: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:646-658. [PMID: 30844700 DOI: 10.1016/j.envpol.2019.01.103] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 05/26/2023]
Abstract
Given factors such as their persistence and toxicity, legacy brominated flame retardants (BFRs) like polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD), are designated as persistent organic pollutants (POPs) and are subject to regulation. Waste streams likely represent a substantial reservoir of legacy BFRs given that they were once widely applied to goods which are increasingly likely to be obsolete. Waste streams are also increasingly likely to be a source of emerging flame retardants, in particular, novel BFRs (NBFRs), the halogenated norbornene flame retardant Dechlorane Plus (DDC-CO) and the brominated, chlorinated or non-halogenated organophosphate triester flame retardants (PFRs). Many bird populations rely on landfill and its surrounding land-use for inter alia the opportunities it provides for activities such as foraging and resting. However, studies on captive and wild (free-living) birds have demonstrated deleterious effects of several FRs. Globally, approximately 250 bird species, including many of conservation concern, are reported to use landfill and surrounding habitat (including wastewater treatment operations), thus putting birds potentially at risk of exposure to such chemicals. We synthesise and critically evaluate a total of 18 studies covering eight avian species published between 2008 and 2018 (inclusive) across four continents that report flame retardant (FR) burdens in birds utilising landfill. Several such studies found FRs at among the highest concentrations detected in wild biota to date. We recommend that ongoing research be focused on landfill-associated birds, given that landfill is an important source of FRs and other anthropogenic chemicals, and particularly at sites where species are of conservation concern. We suggest ways in which the comparative power of studies could be enhanced in the future, the reporting of a minimum common suite of key chemicals, and where feasible, standardisation of the tissue compartments (i.e., eggs) to be studied. We conclude by identifying future research directions.
Collapse
Affiliation(s)
- Andrew D W Tongue
- Centre for Ornithology, School of Biosciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - S James Reynolds
- Centre for Ornithology, School of Biosciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; The Army Ornithological Society (AOS), c/o Prince Consort Library, Knollys Road, Aldershot, Hampshire, GU11 1PS, UK
| | - Kim J Fernie
- School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment & Climate Change Canada (ECCC), Burlington, ON, L7S 1A1, Canada
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Marteinson SC, Fernie KJ. Is the current-use flame retardant, DBE-DBCH, a potential obesogen? Effects on body mass, fat content and associated behaviors in American kestrels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:770-777. [PMID: 30597775 DOI: 10.1016/j.ecoenv.2018.11.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
The current-use brominated flame retardant, 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (DBE-DBCH), is capable of perturbing sex steroid and thyroid hormone pathways in vitro and in vivo. Chemicals with this capability may also disrupt metabolic processes and are candidate obesogens, but this potential has not yet been determined for DBE-DBCH. Our objective was to examine gross biomarkers of metabolic disruption in captive American kestrels. Birds were exposed by diet to the β isomer at the environmentally relevant dose of 0.239 ng β-DBE-DBCH/g kestrel/day, from 30 days (d) prior to pairing through until chicks hatched (82 d) (n = 30 breeding pairs) or for 28 d (n = 16 pre-breeding pairs), and were compared with vehicle-only exposed controls. Body mass was assessed throughout the breeding season at biologically relevant time points, flight and feeding behavior was measured in 5-min samples daily, and plasma triglycerides and cholesterol were assessed at d10 of brood rearing. Treated males were heavier than controls at pairing (p = 0.051), the final week of courtship (p = 0.061), and at d10 (p = 0.012) and d20 of brood rearing (p = 0.051); β-DBE-DBCH-exposed breeding females were similar in weight to control females. Treated birds tended to have higher plasma triglycerides (p = 0.078), which for females, was positively associated with body mass (p = 0.019). Heavier breeding males had higher plasma concentrations of testosterone and total thyroxine (p ≤ 0.046). Overall, both sexes exposed to β-DBE-DBCH demonstrated reduced flight behavior and increased feeding behavior during courtship. In the pre-breeding pairs, treated male and female kestrels had a higher percentage of body fat than respective controls (p = 0.045). These results demonstrate that β-DBE-DBCH elicited inappropriate fat and weight gain in adult American kestrels, consistent with their increased feeding, reduced flight activity and endocrine changes, and suggests that DBE-DBCH may be an obesogen warranting further research to test this hypothesis.
Collapse
Affiliation(s)
- Sarah C Marteinson
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Kim J Fernie
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment and Climate Change Canada, Burlington, Ontario, Canada.
| |
Collapse
|
9
|
Fernie KJ, Marteinson SC, Chen D, Palace V, Peters L, Soos C, Smits JEG. Changes in thyroid function of nestling tree swallows (Tachycineta bicolor) in relation to polycyclic aromatic compounds and other environmental stressors in the Athabasca Oil Sands Region. ENVIRONMENTAL RESEARCH 2019; 169:464-475. [PMID: 30530086 DOI: 10.1016/j.envres.2018.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 05/05/2023]
Abstract
In the Canadian Athabasca Oil Sands Region (AOSR), nestling tree swallows (Tachycineta bicolor) raised near mining-related activities accumulated greater concentrations of polycyclic aromatic compounds (PACs) that contributed to their poorer condition, growth, and reproductive success. Here, we report changes in thyroid function of the same 14 day old (do) nestlings (N ≤ 68) at these mining-related sites (OS1, OS2) compared to reference nestlings (REF1), and in relation to multiple environmental stressors that influence avian thyroid function. Thyroid function was compromised for OS1 nestlings but generally comparable between OS2 and REF1 chicks. In 2012, circulating total triiodothyronine (TT3) and thyroxine (TT4) were similar among all nestlings. The OS1 chicks had more active thyroid glands based on histological endpoints. Hepatic T4 outer-ring deiodinase (T4-ORD) activity was suppressed in OS1 and OS2 chicks. Despite inter-annual differences, OS1 chicks continued experiencing compromised thyroid function with significantly higher circulating TT4 and more active thyroid glands in 2013. The OS2 chicks had less active thyroid glands, which conceivably contributed to their suppressed growth (previously reported) relative to the heavier OS1 nestlings with more active thyroid glands. Thyroid gland activity was more influenced by the chicks' accumulation of (muscle), than exposure (feces) to naphthalene, C2-naphthalenes, and C1-fluorenes. Of four major volatile organic contaminants, sulfur dioxide (SO2) primarily influenced thyroid gland activity and structure, supporting previous findings with captive birds. When collectively considering environmental-thyroidal stressors, chicks had a greater thyroidal response when they experienced colder temperatures, accumulated more C2-naphthalenes, and consumed aquatic-emerging insects with higher PAC burdens than terrestrial insects (carbon (δ13C)). We hypothesize that the more active thyroid glands and higher circulating TT4 of the OS1 chicks supported their growth and survival despite having the highest PAC burdens, whereas the lack of thyroid response in the OS2 chicks combined with high PAC burdens, contributed to their smaller size, poorer condition and poorer survival.
Collapse
Affiliation(s)
- K J Fernie
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment and Climate Change Canada, Burlington, Ontario, Canada L7R 1A2.
| | - S C Marteinson
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment and Climate Change Canada, Burlington, Ontario, Canada L7R 1A2
| | - D Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - V Palace
- International Institute for Sustainable Development - Experimental Lakes Area, 111 Lombard Avenue, Suite 325, Winnipeg, Manitoba, Canada R3B 0T4
| | - L Peters
- Riddell Faculty of Earth Environment and Resources, University of Manitoba, 125 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2
| | - C Soos
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment and Climate Change Canada, 115 Perimeter Rd, Saskatoon, Saskatchewan, Canada S7N 0X4
| | - J E G Smits
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, Canada T2N 4Z6
| |
Collapse
|
10
|
Vorkamp K, Falk K, Møller S, Rigét FF, Sørensen PB. Regulated and Unregulated Halogenated Flame Retardants in Peregrine Falcon Eggs from Greenland. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:474-483. [PMID: 29192494 DOI: 10.1021/acs.est.7b04866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Median levels of regulated flame retardants, i.e., polybrominated diphenyl ethers (PBDEs), brominated biphenyl (BB)-153, and hexabromocyclododecane (HBCD), in 33-48 eggs of peregrine falcons (Falco peregrinus) from Greenland were 1909, 359, and 5.98 ng/g lipid weight (lw), respectively, and generally intermediate to levels in North America and Europe. Unregulated flame retardants had lower median concentrations of 1.06 (2-ethylhexyl-2,3,4,5-tetrabromobenzoate, EH-TBB), 2.42 (1,2-bis(2,4,6-tribromophenoxy)-ethane, BTBPE), 0.52 (2,4,6-tribromophenyl 2,3-dibromopropyl ether, DPTE), and 4.78 (dechlorane plus) ng/g lw. Although these compounds are often described as recent replacements for PBDEs, they were also present in eggs from the 1980s. BDE-209 was the only compound with a significant increase (+7.2% annual change) between 1986 and 2014, while BB-153 and DPTE decreased significantly (-8.0% and -2.8% annual change, respectively). Dechlorane plus showed a nonsignificant increase. Individual birds, equipped with light-logging geolocators, confirmed the contaminant exposure over a large geographical area as the birds spent nearly equal time periods in their breeding and wintering grounds in Greenland and Central/South America, respectively, interrupted by 5-6 weeks of migration through North America.
Collapse
Affiliation(s)
- Katrin Vorkamp
- Department of Environmental Science, Arctic Research Centre, Aarhus University , Roskilde 4000, Denmark
| | - Knud Falk
- Department of Environmental Science, Arctic Research Centre, Aarhus University , Roskilde 4000, Denmark
| | - Søren Møller
- Roskilde University Library , Roskilde 4000, Denmark
| | - Frank F Rigét
- Department of Bioscience, Arctic Research Centre, Aarhus University , Roskilde 4000, Denmark
- Greenland Institute of Natural Resources , Nuuk 3900, Greenland
| | - Peter B Sørensen
- Department of Bioscience, Aarhus University , Silkeborg 8600, Denmark
| |
Collapse
|
11
|
North MA, Rodriguez-Estival J, Smits JEG. Biomarker Sensitivity to Vehicle Exhaust in Experimentally Exposed European Starlings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13427-13435. [PMID: 28981271 DOI: 10.1021/acs.est.7b03836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of vehicle-related emissions on health has been a long-standing question in human health sciences; however, the toxicology of chronic exposure to environmentally relevant concentrations of these complex mixtures has not been characterized in wild birds. Adult European starlings (Sturnus vulgaris) were exposed to vehicle emissions, with combined benzene, toluene, ethylbenzene, and xylenes (BTEX) concentrations totaling 13.3 μg/m3 over 20 days of exposure for 5 h per day. Exposed birds had significantly lower cell-mediated immunity (measured using phytohaemagglutinin skin test, p < 0.0001), thyroxine (T4, p = 0.042), and glutathione (GSH, p = 0.034) concentrations than control birds. There was no difference in body condition, antibody response to vaccination, triiodothyronine (T3), hepatic biotransformation (7-ethoxyresorufin-O-deethylase activity), or oxidative stress (thiobarbituric acid-reactive substances and ratios of reduced to oxidized GSH) or organ masses between exposed and control birds. This study supports findings of previous studies examining wild birds exposed to these air contaminants and raises concern that environmentally relevant concentrations of common urban volatile pollutants may have measurable effects on health.
Collapse
Affiliation(s)
- Michelle A North
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary , 3280 Hospital Drive NW, Calgary, Alberta, Canada , T2N 4Z6
| | - Jaime Rodriguez-Estival
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary , 3280 Hospital Drive NW, Calgary, Alberta, Canada , T2N 4Z6
| | - Judit E G Smits
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary , 3280 Hospital Drive NW, Calgary, Alberta, Canada , T2N 4Z6
| |
Collapse
|
12
|
Guigueno MF, Fernie KJ. Birds and flame retardants: A review of the toxic effects on birds of historical and novel flame retardants. ENVIRONMENTAL RESEARCH 2017; 154:398-424. [PMID: 28193557 DOI: 10.1016/j.envres.2016.12.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/17/2016] [Accepted: 12/20/2016] [Indexed: 05/28/2023]
Abstract
Flame retardants (FRs) are a diverse group of chemicals, many of which persist in the environment and bioaccumulate in biota. Although some FRs have been withdrawn from manufacturing and commerce (e.g., legacy FRs), many continue to be detected in the environment; moreover, their replacements and/or other novel FRs are also detected in biota. Here, we review and summarize the literature on the toxic effects of various FRs on birds. Birds integrate chemical information (exposure, effects) across space and time, making them ideal sentinels of environmental contamination. Following an adverse outcome pathway (AOP) approach, we synthesized information on 8 of the most commonly reported endpoints in avian FR toxicity research: molecular measures, thyroid-related measures, steroids, retinol, brain anatomy, behaviour, growth and development, and reproduction. We then identified which of these endpoints appear more/most sensitive to FR exposure, as determined by the frequency of significant effects across avian studies. The avian thyroid system, largely characterized by inconsistent changes in circulating thyroid hormones that were the only measure in many such studies, appears to be moderately sensitive to FR exposure relative to the other endpoints; circulating thyroid hormones, after reproductive measures, being the most frequently examined endpoint. A more comprehensive examination with concurrent measurements of multiple thyroid endpoints (e.g., thyroid gland, deiodinase enzymes) is recommended for future studies to more fully understand potential avian thyroid toxicity of FRs. More research is required to determine the effects of various FRs on avian retinol concentrations, inconsistently sensitive across species, and to concurrently assess multiple steroid hormones. Behaviour related to courtship and reproduction was the most sensitive of all selected endpoints, with significant effects recorded in every study. Among domesticated species (Galliformes), raptors (Accipitriformes and Falconiformes), songbirds (Passeriformes), and other species of birds (e.g. gulls), raptors seem to be the most sensitive to FR exposure across these measurements. We recommend that future avian research connect biochemical disruptions and changes in the brain to ecologically relevant endpoints, such as behaviour and reproduction. Moreover, connecting in vivo endpoints with molecular endpoints for non-domesticated avian species is also highly important, and essential to linking FR exposure with reduced fitness and population-level effects.
Collapse
Affiliation(s)
- Mélanie F Guigueno
- Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario, Canada L7S 1A1; Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, Canada H9X 3V9
| | - Kim J Fernie
- Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario, Canada L7S 1A1.
| |
Collapse
|
13
|
Marteinson SC, Palace V, Letcher RJ, Fernie KJ. Disruption of thyroxine and sex hormones by 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (DBE-DBCH) in American kestrels (Falco sparverius) and associations with reproductive and behavioral changes. ENVIRONMENTAL RESEARCH 2017; 154:389-397. [PMID: 28189029 DOI: 10.1016/j.envres.2017.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (DBE-DBCH - formerly TBECH) is an emerging brominated flame retardant (BFR) pollutant with androgen potentiating ability and other endocrine disrupting effects in birds and fish. The objectives of this study were to determine the effects of exposure to environmentally-relevant levels of DBE-DBCH on circulating levels of thyroid and sex steroid hormones in American kestrels, and if hormonal concentrations were related to previously reported changes in reproductive success and courtship behaviors. Sixteen kestrel pairs were exposed to 0.239ng β-DBE-DBCH/g kestrel/day by diet, based on concentrations in wild bird eggs, from 4 weeks before pairing until the chicks hatched (mean 82 d), and were compared with vehicle-only-exposed control pairs (n=15). As previously reported, DBE-DBCH concentrations were not detected in tissue or eggs of these birds, nor were any potential metabolites, despite the low method limits of detection (≤0.4ng/g wet weight), suggesting it may be rapidly metabolized and/or eliminated by the kestrels. Nevertheless, exposed kestrels demonstrated changes in reproduction and behavior, indicating an effect from exposure. During early breeding, males were sampled at multiple time points at pairing and during courtship and incubation; females were blood sampled at pairing only; both sexes were sampled at the end of the season. All comparisons are made to control males or control females, and the relative differences in hormone concentrations between treatment and control birds, calculated separately for each sex, are presented for each time point. Males exposed to β-DBE-DBCH demonstrated significantly (p=0.05) lower concentrations of total thyroxine (TT4) overall, that were 11-28% lower than those of control males at the individual sampling points, yet significantly higher (p=0.03) concentrations of free thyroxine (FT4), that were 5-13% higher than those of control males at the individual sampling points; females had similar concentrations of TT4 and FT4 at the time of pairing, and T4 was similar in both sexes at the end of the breeding season. Testosterone (T) concentrations in the treatment males were significantly higher during early (85%) and mid-courtship (30%) (time*treatment p=0.001), whereas females demonstrated a reduction in T at the time of pairing (17%, p=0.05). In the treatment females, concentrations of 17β-estradiol (E2) showed a non-significant decrease (20%) and were positively correlated with T concentrations (p=0.03); E2 concentrations were below quantification limits in males. For males, some variation in T was also significantly associated with their sexual behavior (p<0.001) and FT4 concentrations (p=0.01). For females, there was no relationship between hormones measured at pairing and subsequent sexual behaviors or reproductive measures. This study demonstrates that exposure to β-DBE-DBCH at levels that are likely below those experienced by wild birds, affects the thyroid and sex steroid axes in birds and thus may be a contaminant of concern for wildlife warranting further research.
Collapse
Affiliation(s)
- Sarah C Marteinson
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Vince Palace
- International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA), 111 Lombard, Suite 325, Winnipeg, Manitoba R3B 0T4, Canada
| | - Robert J Letcher
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Kim J Fernie
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment and Climate Change Canada, Burlington, Ontario, Canada.
| |
Collapse
|
14
|
Zhu H, Zhang K, Sun H, Wang F, Yao Y. Spatial and temporal distributions of hexabromocyclododecanes in the vicinity of an expanded polystyrene material manufacturing plant in Tianjin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:338-347. [PMID: 28069369 DOI: 10.1016/j.envpol.2016.12.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/28/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
To investigate the environmental fate of 3 main hexabromocyclododecane diastereoisomers (α-, β-, and γ-HBCDs), samples from various environmental media, including outdoor settled dust, soil, sediment, plant tissues (holly, cypress and pine) and marine species (shrimp, crab and fish) were obtained around an expanded polystyrene material manufacturing plant in Tianjin, China. The 3 main HBCD diastereoisomers were detected with the total concentrations ranging from 328 to 31,752 ng/g dry weight (dw), 2.91-1730 ng/g dw, 23.5-716 ng/g dw, 3.45-2494 ng/g dw, and 0.878-44.8 ng/g dw in the dust, soil, sediment, plant tissues, and marine species, respectively. This indicated that a point source of HBCDs could bring wide impact on its vicinal environment. A significant increasing trend of HBCDs concentrations was noted, as indicated by 12.9-41.6% of increasing rates in total concentrations of HBCDs at four sediment sites in the past five years. The diastereoisomer profiles were sorted into 3 groups: dust, soil and sediment, which had no statistical difference from commercial EPS-products (p > 0.05); plant tissues, which showed a moderate increase of α-isomer (22.9 ± 3.3%); and marine species, which were dominated by α-isomer (62.6 ± 2.8%). For α- and β-isomers, the results of enantiomeric analysis showed a preferential accumulation of the (+)-enantiomer in part of plant tissues and all marine organisms (p < 0.05). However, there was no enantioselectivity of the 3 isomers in dust, soil, and sediment samples (p > 0.05). Besides, marine food web magnification is observed for HBCDs, with trophic magnification factors close to 2. The daily intakes of HBCDs were estimated to be 0.058-5.84 ng/kg-bw/day for local residents through dust and soil ingestion and 0.048-8.43 ng/kg-bw/day for Tianjin citizens through seafood consumption.
Collapse
Affiliation(s)
- Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Kai Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Fei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Pollack L, Ondrasek NR, Calisi R. Urban health and ecology: the promise of an avian biomonitoring tool. Curr Zool 2017; 63:205-212. [PMID: 29491978 PMCID: PMC5804165 DOI: 10.1093/cz/zox011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Urban-dwelling birds have the potential to serve as powerful biomonitors that reveal the impact of environmental change due to urbanization. Specifically, urban bird populations can be used to survey cities for factors that may pose both public and wildlife health concerns. Here, we review evidence supporting the use of avian biomonitors to identify threats associated with urbanization, including bioaccumulation of toxicants and the dysregulation of behavior and physiology by related stressors. In addition, we consider the use of birds to examine how factors in the urban environment can impact immunity against communicable pathogens. By studying the behavior, physiology, and ecology of urban bird populations, we can elucidate not only how avian populations are responding to environmental change, but also how unintended consequences of urbanization affect the well-being of human and non-human inhabitants.
Collapse
Affiliation(s)
- Lea Pollack
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Naomi R Ondrasek
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| | - Rebecca Calisi
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| |
Collapse
|
16
|
Marteinson SC, Eulaers I, Jaspers VLB, Covaci A, Eens M, Letcher RJ, Fernie KJ. Transfer of hexabromocyclododecane flame retardant isomers from captive American kestrel eggs to feathers and their association with thyroid hormones and growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:441-451. [PMID: 27707600 DOI: 10.1016/j.envpol.2016.09.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
Feathers are useful for monitoring contaminants in wild birds and are increasingly used to determine persistent organic pollutants. However, few studies have been conducted on birds with known exposure levels. We aimed to determine how well nestling feather concentrations reflect in ovo exposure to hexabromocyclododecane (α-, β- and γ-HBCDD), and to determine if feather concentrations are related to physiological biomarkers. Captive kestrels (n = 11) were exposed in ovo to maternally transferred HBCDD-isomers at concentrations of 127, 12 and 2 ng/g wet weight of α-, β- and γ-HBCDD (measured in sibling eggs), respectively, and compared to controls (n = 6). Nestling growth was monitored at 5 d intervals and circulating thyroid hormone concentrations assessed at d 20. Tail feathers were collected prior to the first molt and analyzed for HBCDD isomers. The mean ΣHBCDD concentration in feathers was 2405 pg/g dry weight (in exposed birds) and α-, β- and γ-HBCDD made up 32%, 13%, and 55%, respectively of the ΣHBCDD concentrations. This isomer distribution deviated from the typical dominance of α-HBCDD reported in vertebrate samples. Exposed chicks had significantly higher feather concentrations of β- and γ-HBCDD compared with controls (p = 0.007 and p = 0.001 respectively), while α-HBCDD concentrations did not differ between the two groups. Feather concentrations of α-HBCDD were best explained by egg concentrations of β- or γ-HBCDD concentrations (wi = 0.50, 0.30 respectively), while feather concentrations of β- and γ-HBCDD were influenced by growth parameters (rectrix length: wi = 0.61; tibiotarsus length: wi = 0.28). These results suggest that feather α-HBCDD concentrations may reflect internal body burdens, whereas β- and γ-HBCDD may be subject to selective uptake. The α-HBCDD concentrations in the feathers were negatively associated with the ratio of plasma free triiodothyronine to free thyroxine (T3:T4; p = 0.020), demonstrating for the first time that feather concentrations may be used to model the effect of body burdens on physiological endpoints.
Collapse
Affiliation(s)
- Sarah C Marteinson
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Igor Eulaers
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Veerle L B Jaspers
- Environmental Toxicology, Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Robert J Letcher
- National Wildlife Research Centre, Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Carleton University, Ottawa, Ontario, Canada
| | - Kim J Fernie
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada.
| |
Collapse
|
17
|
Fernie KJ, Cruz-Martinez L, Peters L, Palace V, Smits JEG. Inhaling Benzene, Toluene, Nitrogen Dioxide, and Sulfur Dioxide, Disrupts Thyroid Function in Captive American Kestrels (Falco sparverius). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11311-11318. [PMID: 27646166 DOI: 10.1021/acs.est.6b03026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research investigating the effects of air contaminants on biota has been limited to date. Captive adult female American kestrels (Falco sparverius) were exposed to a mixture of benzene (0.6 ppm), toluene (1 ppm), nitrogen dioxide (NO2; 2 ppm) and sulfur dioxide (SO2; 5.6 ppm), in a whole-body inhalation chamber. Thyroid axis responses to meet metabolic demands were examined through thyroid histology, plasma thyroxine (T4), and triiodothyronine (T3), and hepatic outer ring deiodination (T4-ORD). Plasma free (F) T3 and T4 were measured at baseline, and at 9 days and 18 days of exposure, whereas total (T) T3 and TT4, thyroid histology and hepatic T4-ORD were determined at the final 18 day exposure. Inhalation of these contaminants significantly suppressed plasma FT4 and TT4, and depleted follicular colloid and increased epithelial cell height at 18 days, and significantly altered the temporal pattern of plasma FT4. Significant histological changes in the follicular colloid:epithelial cell height ratio indicated sustained T4 production and release by the thyroid glands. There was no effect on plasma FT3, TT3, or hepatic T4-ORD. We hypothesize that contaminant-related activation of the hypothalamus-pituitary-thyroid axis in the kestrels increased elimination of plasma T4 through Phase II enzymes. Further research is required to test this hypothesis in wild birds.
Collapse
Affiliation(s)
- Kim J Fernie
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, Ontario Canada , L7R 4A6
| | - Luis Cruz-Martinez
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary , 3280 Hospital Drive NW, Calgary, Alberta Canada , T2N4Z6
- Ross University , School of Veterinarian Medicine, Box 334, Basseterre, St. Kitts West Indies
| | - Lisa Peters
- Stantec Consulting Ltd., 500-311 Portage Ave., Winnipeg, MB Canada R3B 2B9
| | - Vince Palace
- IISD-Experimental Lakes Area, 111 Lombard Ave., Suite 325 Winnipeg, MB Canada R3B 0T4
| | - Judit E G Smits
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary , 3280 Hospital Drive NW, Calgary, Alberta Canada , T2N4Z6
| |
Collapse
|
18
|
Kim JT, Son MH, Kang JH, Kim JH, Jung JW, Chang YS. Occurrence of Legacy and New Persistent Organic Pollutants in Avian Tissues from King George Island, Antarctica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13628-13638. [PMID: 26502059 DOI: 10.1021/acs.est.5b03181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Legacy and new persistent organic pollutants (POPs), including polychlorinated naphthalenes (PCNs), Dechlorane Plus (DPs) and related compounds (Dechloranes), hexabromocyclododecanes (HBCDs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs), were analyzed in avian tissue samples from King George Island, Antarctica. The avian species consisted of the Gentoo penguin (Pygoscelis papua), the Adelie penguin (Pygoscelis adeliae), the South polar skua (Stercorarius maccormicki), and the Brown skua (Stercorarius antarcticus). HBCDs were detected in all samples and ranged from 1.67-713 pg/g-lipid. In the penguin samples, the concentrations of PCNs ranged from 0.69-2.07 ng/g-lipid, whereas those in the skua samples ranged from 7.41-175 ng/g-lipid. The levels of Dechloranes ranged from 0.60-1.30 ng/g-lipid in the penguin samples and from 6.57-47.4 ng/g-lipid in the skua samples. The concentrations and congener distributions of OCPs and PCBs were similar to the results of previous reports. The three new POPs were detected in all samples, and this study was one of the first reports on the occurrence of these pollutants in the Antarctic biota. Because Antarctica is one of the most pristine places on Earth, the detection of new POPs in the Antarctic birds, especially penguins, is direct evidence of the long-range transport of pollutants. Furthermore, the concentration ratios of the penguin to the skua samples (BMFs-p) were greater than 1 in most legacy and new POPs, and the BMFs-p values of the new POPs were comparable to those of some OCPs, suggesting a possibility of biomagnification. Despite the small sample size, the results of this study identified POP contamination of the Antarctic avian species and long-range transport and biomagnification of HBCDs, Dechloranes, and PCNs.
Collapse
Affiliation(s)
- Jun-Tae Kim
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH) , Nam-gu, Pohang 790-784, Republic of Korea
| | - Min-Hui Son
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH) , Nam-gu, Pohang 790-784, Republic of Korea
| | - Jung-Ho Kang
- Korea Polar Research Institute , Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Jeong-Hoon Kim
- Korea Polar Research Institute , Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Jin-Woo Jung
- Korea Polar Research Institute , Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Yoon-Seok Chang
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH) , Nam-gu, Pohang 790-784, Republic of Korea
| |
Collapse
|
19
|
Zheng X, Erratico C, Abdallah MAE, Negreira N, Luo X, Mai B, Covaci A. In vitro metabolism of BDE-47, BDE-99, and α-, β-, γ-HBCD isomers by chicken liver microsomes. ENVIRONMENTAL RESEARCH 2015; 143:221-228. [PMID: 26505652 DOI: 10.1016/j.envres.2015.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/04/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
The in vitro oxidative metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), and the individual α-, β- and γ-hexabromocyclododecane (HBCD) isomers catalyzed by cytochrome P450 (CYP) enzymes was studied using chicken liver microsomes (CLMs). Metabolites were identified using a liquid chromatography-tandem mass spectrometry method and authentic standards for the oxidative metabolites of BDE-47 and BDE-99. Six hydroxylated tetra-BDEs, namely 4-hydroxy-2,2',3,4'-tetrabromodiphenyl ether (4-OH-BDE-42), 3-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (3-OH-BDE-47), 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (5-OH-BDE-47), 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47), 4'-hydroxy-2,2',4,5'- tetrabromodiphenyl ether (4'-OH-BDE-49), and 2'-hydroxy-2,3',4,4'-tetrabromodiphenyl ether (2'-OH-BDE-66), were identified and quantified after incubation of BDE-47 with CLMs. 4'-OH-BDE-49 was the major metabolite formed. Three hydroxylated penta-BDEs (5'-hydroxy-2,2',4,4',5-pentabromodiphenyl ether (5'-OH-BDE-99), 6'-hydroxy-2,2',4,4',5- pentabromodiphenyl ether (6'-OH-BDE-99), and 4'-hydroxy-2,2',4,5,5'-pentabromodiphenyl ether, 4'-OH-BDE-101, were formed incubating BDE-99 with CLMs. Concentrations of BDE-99 metabolites were lower than those of BDE-47. More than four mono-hydroxylated HBCD (OH-HBCD), more than four di-hydroxylated HBCD (di-OH-HBCD), more than five mono-hydroxylated pentabromocyclododecenes (OH-PBCD), and more than five di-hydroxylated pentabromocyclododecenes (di-OH-PBCD) were detected when α-, β-, or γ-HBCD were individually incubated with CLMs. Response values (the ratio between the peak areas of the target compound and its internal standard) for OH-HBCD were 1-3 orders of magnitude higher than those for OH-PBCD, di-OH-HBCD, and di-OH-PBCD, suggesting that OH-HBCD might be the major metabolites of α-, β- and γ-HBCD produced by CLMs. No diastereoisomeric or enantiomeric bioisomerisation was observed incubating α-, β- or γ-HBCD with CLMs. Collectively, our data suggest that (i) BDE-47 is metabolized at a faster rate than BDE-99 by CLMs, (ii) OH-HBCD are the major hydroxylated metabolites of α-, β- and γ-HBCD produced by CLMs and (iii) the diastereoisomeric or enantiomeric bioisomerisation of α-, β- and γ-HBCD is not mediated by chicken CYP enzymes.
Collapse
Affiliation(s)
- Xiaobo Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Claudio Erratico
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Mohamed Abou-Elwafa Abdallah
- Division of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Noelia Negreira
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
20
|
Lazarus RS, Rattner BA, McGowan PC, Hale RC, Schultz SL, Karouna-Renier NK, Ottinger MA. Decadal re-evaluation of contaminant exposure and productivity of ospreys (Pandion haliaetus) nesting in Chesapeake Bay Regions of Concern. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 205:278-90. [PMID: 26114899 DOI: 10.1016/j.envpol.2015.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/19/2015] [Accepted: 05/28/2015] [Indexed: 05/14/2023]
Abstract
The last large-scale ecotoxicological study of ospreys (Pandion haliaetus) in Chesapeake Bay was conducted in 2000-2001 and focused on U.S. EPA-designated Regions of Concern (ROCs; Baltimore Harbor/Patapsco, Anacostia/middle Potomac, and Elizabeth Rivers). In 2011-2012, ROCs were re-evaluated to determine spatial and temporal trends in productivity and contaminants. Concentrations of p,p'-DDE were low in eggs and below the threshold associated with eggshell thinning. Eggs from the Anacostia/middle Potomac Rivers had lower total PCB concentrations in 2011 than in 2000; however, concentrations remained unchanged in Baltimore Harbor. Polybrominated diphenyl ether flame retardants declined by 40%, and five alternative brominated flame retardants were detected at low levels. Osprey productivity was adequate to sustain local populations, and there was no relation between productivity and halogenated contaminants. Our findings document continued recovery of the osprey population, declining levels of many persistent halogenated compounds, and modest evidence of genetic damage in nestlings from industrialized regions.
Collapse
Affiliation(s)
- Rebecca S Lazarus
- U.S. Geological Survey, Patuxent Wildlife Research Center, Beltsville, MD 20705, USA; Marine-Estuarine Environmental Sciences Program and Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Barnett A Rattner
- U.S. Geological Survey, Patuxent Wildlife Research Center, Beltsville, MD 20705, USA.
| | - Peter C McGowan
- U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD 21401, USA
| | - Robert C Hale
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA
| | - Sandra L Schultz
- U.S. Geological Survey, Patuxent Wildlife Research Center, Beltsville, MD 20705, USA
| | | | - Mary Ann Ottinger
- Marine-Estuarine Environmental Sciences Program and Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
21
|
Fernie KJ, Palace V, Peters LE, Basu N, Letcher RJ, Karouna-Renier NK, Schultz SL, Lazarus RS, Rattner BA. Investigating endocrine and physiological parameters of captive American kestrels exposed by diet to selected organophosphate flame retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7448-55. [PMID: 25988605 DOI: 10.1021/acs.est.5b00857] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organophosphate triesters are high production volume additive flame retardants (OPFRs) and plasticizers. Shown to accumulate in abiotic and biotic environmental compartments, little is known about the risks they pose. Captive adult male American kestrels (Falco sparverius) were fed the same dose (22 ng OPFR/g kestrel/d) daily (21 d) of tris(2-butoxyethyl) phosphate (TBOEP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP), or tris(1,2-dichloro-2-propyl) phosphate (TDCIPP). Concentrations were undetected in tissues (renal, hepatic), suggesting rapid metabolism. There were no changes in glutathione status, indicators of hepatic oxidative status, or the cholinergic system (i.e., cerebrum, plasma cholinesterases; cerebrum muscarinic, nicotinic receptors). Modest changes occurred in hepatocyte integrity and function (clinical chemistry). Significant effects on plasma free triiodothyronine (FT3) concentrations occurred with exposure to TBOEP, TCEP, TCIPP, and TDCIPP; TBOEP and TCEP had additional overall effects on free thyroxine (FT4), whereas TDCIPP also influenced total thyroxine (TT4). Relative increases (32%-96%) in circulating FT3, TT3, FT4, and/or TT4 were variable with each OPFR at 7 d exposure, but limited thereafter, which was likely maintained through decreased thyroid gland activity and increased hepatic deiodinase activity. The observed physiological and endocrine effects occurred at environmentally relevant concentrations and suggest parent OPFRs or metabolites may have been present despite rapid degradation.
Collapse
Affiliation(s)
| | - Vince Palace
- ‡Stantec Consulting Ltd., 386 Broadway Avenue, Winnipeg, MB, Canada R3C 3R6
| | - Lisa E Peters
- ‡Stantec Consulting Ltd., 386 Broadway Avenue, Winnipeg, MB, Canada R3C 3R6
| | - Nil Basu
- §McGill University, 21,111 Lakeshore Road, Ste Anne de Bellevue, PQ, Canada H9X 3V9
| | | | - Natalie K Karouna-Renier
- ⊥U.S. Geological Survey, Patuxent Wildlife Research Center, BARC East Building 308, 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| | - Sandra L Schultz
- ⊥U.S. Geological Survey, Patuxent Wildlife Research Center, BARC East Building 308, 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| | - Rebecca S Lazarus
- ⊥U.S. Geological Survey, Patuxent Wildlife Research Center, BARC East Building 308, 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| | - Barnett A Rattner
- ⊥U.S. Geological Survey, Patuxent Wildlife Research Center, BARC East Building 308, 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| |
Collapse
|
22
|
Letcher RJ, Mattioli LC, Marteinson SC, Bird D, Ritchie IJ, Fernie KJ. Uptake, distribution, depletion, and in ovo transfer of isomers of hexabromocyclododecane flame retardant in diet-exposed American kestrels (Falco sparverius). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1103-1112. [PMID: 25703155 DOI: 10.1002/etc.2903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/22/2014] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Hexabromocyclododecane (HBCDD) is a flame retardant and a global contaminant, yet the toxicokinetics of HBCDD diastereoisomers remains unknown in wildlife species. The present study examined in captive American kestrels (Falco sparverius) (diastereo) isomer-specific HBCDD uptake, depletion, tissue distribution, and transfer to eggs in a dietary dosing study with an HBCDD technical mixture (HBCDD-TM). Adult tissue and plasma collections were from separate cohorts of unpaired individual males (n = 10) and females (n = 10) exposed for 21 d to 800 ng/g wet weight of HBCDD-TM (in safflower oil and injected into their cockerel [brain] diet), followed by a 25-d depuration period. A separate cohort of 12 males only was used for control adult tissue and plasma collections. For egg collections, separate cohorts of 11 control pairs (n = 22 birds) and 20 HBCDD-exposed pairs (n = 40 birds) were allowed to breed, and their eggs were collected (n = 19 exposed eggs and n = 10 control eggs). The sum (Σ) HBCDD concentrations were near or below detection (<0.01-0.1 ng/g wet wt) in all control samples but quantifiable in all samples from exposed birds (no differences [p > 0.05] between males and females). Arithmetic mean ΣHBCDD concentrations were highest in fat >> eggs > liver > plasma. The mean ΣHBCDD depletion rate in plasma between the uptake and depuration periods was estimated to be 0.22 ng/g/d with a half-life of approximately 15 d. The γ-HBCDD diastereoisomer was >60% of the ΣHBCDD in plasma after the uptake period and similar to the HBCDD-TM (∼80%). After the depuration period, α-HBCDD was >70% of the HBCDD in plasma, fat, liver, and eggs; and this α-HBCDD domination indicated isomer-specific accumulation as a result of selective metabolism, uptake, protein binding, and/or in ovo transport.
Collapse
Affiliation(s)
- Robert J Letcher
- National Wildlife Research Centre, Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment Canada, Carleton University, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Koch C, Schmidt-Kötters T, Rupp R, Sures B. Review of hexabromocyclododecane (HBCD) with a focus on legislation and recent publications concerning toxicokinetics and -dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:26-34. [PMID: 25618363 DOI: 10.1016/j.envpol.2015.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
In this paper, we review recent publications regarding the toxicokinetics and -dynamics of the flame retardant Hexabromocyclododecane (HBCD). HBCD has recently been listed as a persistent organic pollutant, which therefore influenced the legislation concerning its manufacturing and formulation. However, under specific circumstances it may still be used until 2024. Early toxicity studies have only focussed on HBCD itself, which is a mixture of different isomers with different physical and toxicological characteristics. Here we take a more differentiated look at the three diastereomers α-, β- and γ-HBCD. We also address the different enantiomers to give an overview of the toxicity of HBCD to identify present gaps in our knowledge about this chemical, especially with respect to its possible formulation until 2024.
Collapse
Affiliation(s)
- Christoph Koch
- Aquatische Ökologie und Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, 45141, Essen, Germany; Deutsche Rockwool Mineralwoll GmbH & Co. OHG, 45966, Gladbeck, Germany.
| | | | - Roman Rupp
- Deutsche Rockwool Mineralwoll GmbH & Co. OHG, 45966, Gladbeck, Germany
| | - Bernd Sures
- Aquatische Ökologie und Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
24
|
Pandey SP, Mohanty B. The neonicotinoid pesticide imidacloprid and the dithiocarbamate fungicide mancozeb disrupt the pituitary-thyroid axis of a wildlife bird. CHEMOSPHERE 2015; 122:227-234. [PMID: 25496744 DOI: 10.1016/j.chemosphere.2014.11.061] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 05/08/2023]
Abstract
Thyroid is an important homeostatic regulator of metabolic activities as well as endocrine mechanisms including those of reproduction. Present investigation elucidated the thyroid disrupting potential of a neonicotinoid imidacloprid and a dithiocarbamate mancozeb in a seasonally breeding wildlife bird, Red Munia (Amandava amandava) who is vulnerable to these two pesticides through diet (seed grains and small insects). Adult male birds were exposed to 0.5% LD50 mgkg(-1)bwd(-1) of both the pesticides through food for 30days during the preparatory and breeding phases. Weight, volume and histopathology of thyroid gland were distinctly altered. Disruption of thyroid follicles reflected in nucleus-to-cytoplasm ratio (N/C) in epithelial and stromal cells, epithelial cell hypertrophy and altered colloid volume. Impairment of thyroid axis was pesticide and phase specific as evident from the plasma levels of thyroid (T4 and T3) and pituitary (TSH) hormones. In preparatory phase, plasma TSH was increased in response to decrease of T4 on mancozeb exposure showing responsiveness of the hypothalamic-pituitary-thyroid (HPT) axis to feedback regulation. On imidacloprid exposure, however, plasma levels of both T4 and TSH were decreased indicating non-functioning of negative feedback mechanism. Increased plasma T3 in response to both the pesticides exposure might be due to synthesis from non-thyroidal source(s) in a compensatory response to decrease level of T4. In breeding phase, impairment of HPT axis was more pronounced as plasma T4, T3 and TSH were significantly decreased in response to both mancozeb and imidacloprid. Thus, low dose pesticide exposure could affect the thyroid homeostasis and reproduction.
Collapse
Affiliation(s)
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
25
|
Fa S, Pogrmic-Majkic K, Samardzija D, Hrubik J, Glisic B, Kovacevic R, Andric N. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells. Toxicol Appl Pharmacol 2014; 282:20-9. [PMID: 25447410 DOI: 10.1016/j.taap.2014.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/14/2014] [Accepted: 11/02/2014] [Indexed: 12/01/2022]
Abstract
Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24h and then treated with HBCDD+hCG for additional 2h. Results showed that HBCDD caused a sustained reduction in ATP level after 24h of exposure, which persisted after additional 2-hour treatment with HBCDD+hCG. cAMP and androgen accumulations measured after 2h of HBCDD+hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30kDa steroidogenic acute regulatory protein (StAR) after HBCDD+hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells.
Collapse
Affiliation(s)
- Svetlana Fa
- Molecular and Reproductive Toxicology Unit, Laboratory for Ecotoxicology, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Kristina Pogrmic-Majkic
- Molecular and Reproductive Toxicology Unit, Laboratory for Ecotoxicology, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana Samardzija
- Molecular and Reproductive Toxicology Unit, Laboratory for Ecotoxicology, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jelena Hrubik
- Molecular and Reproductive Toxicology Unit, Laboratory for Ecotoxicology, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Branka Glisic
- Molecular and Reproductive Toxicology Unit, Laboratory for Ecotoxicology, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Radmila Kovacevic
- Molecular and Reproductive Toxicology Unit, Laboratory for Ecotoxicology, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nebojsa Andric
- Molecular and Reproductive Toxicology Unit, Laboratory for Ecotoxicology, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia.
| |
Collapse
|
26
|
Asnake S, Pradhan A, Banjop-Kharlyngdoh J, Modig C, Olsson PE. 1,2-Dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH)-mediated steroid hormone receptor activation and gene regulation in chicken LMH cells. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:891-899. [PMID: 24375616 DOI: 10.1002/etc.2509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/28/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
The incorporation of brominated flame retardants into industrial and household appliances has increased their occurrence in the environment, resulting in deleterious effects on wildlife. With the increasing restraints on available compounds, there has been a shift to using brominated flame retardants that has seen the production of alternative brominated flame retardants such as 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH), which has been detected in the environment. In previous in silico and in vitro studies the authors have shown that TBECH can activate both the human androgen receptor (hAR) and the zebrafish AR (zAR) suggesting that it is a potential endocrine disruptor. The present study was aimed at determining the interaction of TBECH with the chicken AR (cAR). In the present study, TBECH bound to cAR, but in vitro activation assay studies using the chicken LMH cell line showed it had a potency of only 15% compared with testosterone. Sequence difference between ARs from different species may contribute to the different responses to TBECH. Further quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) analysis showed that TBECH interacted with and altered the expression of both thyroid receptors and estrogen receptors. In addition, the qRT-PCR analysis showed that TBECH altered the transcription pattern of genes involved in inflammatory, apoptotic, proliferative, DNA methylation, and drug-metabolizing pathways. This demonstrates that TBECH, apart from activating cAR, can also influence multiple biological pathways in the chicken.
Collapse
Affiliation(s)
- Solomon Asnake
- Örebro Life Science Center, Academy of Science, Technology, Örebro University, Örebro, Sweden
| | | | | | | | | |
Collapse
|
27
|
Eulaers I, Jaspers VLB, Pinxten R, Covaci A, Eens M. Legacy and current-use brominated flame retardants in the Barn Owl. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:454-462. [PMID: 24300457 DOI: 10.1016/j.scitotenv.2013.11.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 06/02/2023]
Abstract
The present study investigated the current-use brominated flame retardants (BFRs) tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD), simultaneously with legacy polybrominated diphenyl ethers (PBDEs), in Barn Owls (Tyto alba) collected from two regions with a contrasting degree of urbanisation and vicinity to point sources (Flanders in Belgium versus Normandy in France). Both tissues (muscle, liver, adipose and preen gland) and feathers (primary, tail and body feathers) showed elevated HBCD concentrations in Flanders, close to Europe's sole HBCD production plant in the Netherlands, and identified Normandy as a historical source region for PBDEs. In sharp contrast, the reactive BFR TBBPA bioaccumulated poorly (2.3%) in tissue samples, but was present in 96% of all body feather samples (0.36-7.07ngg(-1)dw), equally in both regions. PBDE concentrations in tissues (7.46-903 ng g(-1)lw) were considerably lower in the investigated Flemish Barn Owls, collected in 2008/2009, compared to specimens collected in 2003/2004 (46-11,000 ng g(-1)lw), possibly suggesting the effectiveness of the 2004 European ban of Penta- and Octa-BDE mixtures. Feathers showed a similar trend and additionally exhibited HBCD concentrations (0.02-333 ng g(-1)dw) surpassing those of PBDEs (0.50-10.4 ng g(-1)dw). While body feathers were a reliable matrix to predict both internal PBDE (0.21 ≤ R(2)≤ 0.67) and HBCD body burdens (0.20 ≤ R(2) ≤ 0.37), the suitability of primary and tail feathers appeared to be confounded by external contamination and moult. In conclusion, the present study clearly showed that the reactive versus additive use of BFRs results in contrasting exposure scenarios in a species higher up the food chain, and therefore may have profound implications for environmental health. In addition, the presented results extend the promising use of feathers as a non-destructive sampling strategy for current-use BFRs, and show that birds of prey are valid early-warning systems for environmental contamination.
Collapse
Affiliation(s)
- Igor Eulaers
- Ethology Group, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Veerle L B Jaspers
- Ethology Group, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Rianne Pinxten
- Ethology Group, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Marcel Eens
- Ethology Group, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
28
|
Sanders JM, Knudsen GA, Birnbaum LS. The fate of β-hexabromocyclododecane in female C57BL/6 mice. Toxicol Sci 2013; 134:251-7. [PMID: 23733921 DOI: 10.1093/toxsci/kft121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
1,2,5,6,9,10-Hexabromocyclododecane (HBCD) is a high production volume cycloaliphatic used as an additive flame retardant primarily in polystyrene foam building materials. HBCD mixtures contain three major stereoisomers, alpha (α), beta (β), and gamma (γ), at a typical ratio of 1.2:0.6:8.2. The toxicokinetic properties of the α and γ isomers differ. For instance, α-HBCD has greater bioavailability and potential for accumulation in mice than γ-HBCD. The present study reports comparative kinetics data for β-HBCD needed to support toxicological evaluations of HBCD mixtures. Results indicated that a single oral dose of 3mg/kg of [(14)C]-labeled β-HBCD was absorbed rapidly (≥ 85% total dose) in the female C57BL/6 mouse. The C max for β-HBCD-derived radioactivity in tissues, except adipose, was observed 3h following gavage. Approximately 90% of the administered dose was excreted in urine and feces within 24h, primarily as β-HBCD-derived metabolites. A portion of the dose (circa 9%) was excreted in feces as γ-HBCD. Oral administration of 30 or 100mg/kg of β-HBCD resulted initially in slower rates of [(14)C] elimination; however, cumulative excretion data were similar across the dosing range 4 days postdosing. Residual concentrations of [(14)C] in tissues were highest in adipose and liver. β-HBCD-derived radioactivity accumulated in most tissues following four consecutive daily oral doses of 3mg/kg. The extent of metabolism and excretion of β-HBCD in female C57BL/6 mice was similar to that for γ-HBCD. The potential for accumulation of β-HBCD-derived material in most tissues appeared to be less than for α-HBCD.
Collapse
Affiliation(s)
- J Michael Sanders
- Toxicology and Toxicokinetics Group, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
29
|
Avian wildlife as sentinels of ecosystem health. Comp Immunol Microbiol Infect Dis 2013; 36:333-42. [DOI: 10.1016/j.cimid.2012.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 11/19/2012] [Accepted: 11/24/2012] [Indexed: 11/18/2022]
|
30
|
Marteinson SC, Bird DM, Letcher RJ, Sullivan KM, Ritchie IJ, Fernie KJ. Dietary exposure to technical hexabromocyclododecane (HBCD) alters courtship, incubation and parental behaviors in American kestrels (Falco sparverius). CHEMOSPHERE 2012; 89:1077-1083. [PMID: 22743184 DOI: 10.1016/j.chemosphere.2012.05.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/09/2012] [Accepted: 05/16/2012] [Indexed: 06/01/2023]
Abstract
Hexabromocyclododecane (HBCD) is a high production volume brominated flame retardant that has been detected in the environment and wildlife at increasing concentrations. This study was designed to determine potential effects of dietary exposure to environmentally relevant levels of HBCD on behavior during reproduction in captive American kestrels. Twenty kestrel pairs were exposed to 0.51 μg technical HBCD g(-1) kestrel d(-1) from 4 weeks prior to pairing until chicks hatched (~75 d). Ten pairs of controls received the safflower oil vehicle only and were used for comparison. During the courtship period the chitter-calls were reduced in both sexes (p=0.038) and females performed fewer bonding displays (p=0.053). Both sexes showed a propensity to be less active than controls during courtship. The reduction in male courtship behavior was correlated with reduced courtship behaviors of females (p=0.008) as well as reduced egg mass (p=0.019). During incubation, nest temperatures of treatment pairs were lower at mid-incubation (p=0.038). HBCD-exposed males performed fewer key parental behaviors when rearing nestlings, including entering the nest-box, pair-bonding displays and food-retrievals. HBCD-exposed females appeared to compensate for the reduced parental behavior of their mates by performing these same behaviors more frequently than controls (p=0.004, p=0.027, p=0.025, respectively). This study demonstrates that HBCD affects breeding behavior in American kestrels throughout the reproductive season and behavioral alterations were linked to reproductive changes (egg size). This is the first study to report HBCD effects on reproductive behavior in any animal model.
Collapse
Affiliation(s)
- Sarah C Marteinson
- Avian Science and Conservation Centre, McGill University, 21-111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | | | | | | | | | | |
Collapse
|
31
|
Marteinson SC, Letcher RJ, Graham L, Kimmins S, Tomy G, Palace VP, Ritchie IJ, Gauthier LT, Bird DM, Fernie KJ. The flame retardant β-1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane: fate, fertility, and reproductive success in American kestrels (Falco sparverius). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8440-8447. [PMID: 22775271 DOI: 10.1021/es301032a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Captive American kestrels (Falco sparverius) were exposed via diet during reproduction to an environmentally relevant concentration of β-1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (β-TBECH). The β-TBECH isomer was injected into the food source at a daily dosing concentration of 0.239 ng/g kestrel/day (22 pairs); control birds were exposed via diet to the safflower oil vehicle only (24 pairs). Eight pairs in each group were exposed for four weeks and sacrificed for tissue analysis; the remaining pairs completed their breeding cycle, with exposure ceasing at the end of incubation (82 days). α- and β-TBECH appeared to be rapidly metabolized and/or eliminated from fat, liver, and plasma; both isomers and potential hydroxylated metabolites of β-TBECH (plasma) were undetected. Notwithstanding, compared to controls, pairs exposed to β-TBECH laid fewer eggs (p = 0.019) and laid lighter eggs (successful eggs: p = 0.009). Exposed pairs also demonstrated poorer egg fertility (p = 0.035) although testis mass and histology were similar among males. Reductions in egg production and fertility resulted in decreased hatchling success (p = 0.023). The β-TBECH-exposed pairs also produced fewer males overall (p = 0.009), which occurred concurrently with increased estradiols maternally deposited in eggs (p = 0.039). These findings demonstrate that β-TBECH may be detrimental for breeding in wild birds receiving similar exposure levels.
Collapse
Affiliation(s)
- Sarah C Marteinson
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment Canada, Burlington, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fernie KJ, Marteinson SC, Bird DM, Ritchie IJ, Letcher RJ. Reproductive changes in American kestrels (Falco sparverius) in relation to exposure to technical hexabromocyclododecane flame retardant. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2570-2575. [PMID: 21898552 DOI: 10.1002/etc.652] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/06/2011] [Accepted: 07/28/2011] [Indexed: 05/31/2023]
Abstract
Recently, the ban of hexabromocyclododecane (HBCD), a high-production-volume flame retardant, was announced in Europe and North America. However, the effects of HCBD remain understudied in birds. The objectives of the present comparative effects study were to determine whether exposure to an HBCD technical mixture (HBCD-TM) altered avian reproductive measures at an environmentally relevant concentration. American kestrels were exposed daily by food to HBCD-TM, i.e., 0.51 µg HBCD/g kestrel/d; exposed kestrels laid eggs that had α-HBCD concentrations (163.5 ± 75.1 ng/g wet wt) tenfold greater than β- and γ-HBCD isomers, an isomer profile and concentrations similar to those of eggs of wild peregrine falcons (Falco peregrinus). Concentrations of HBCD were not detected in the control kestrel eggs. In comparison with controls, the kestrels exposed to HBCD began to lay their eggs 6 d earlier and laid larger clutches of smaller eggs. The size of the eggs was inversely correlated with the in ovo α-HBCD concentrations. The smaller eggs of the HBCD exposed kestrels also lost more weight by midincubation, suggesting increased eggshell porosity since eggshell thickness was comparable. Generally birds that lay more eggs and lay earlier in the breeding season gain the advantage of better hatching and fledging success, yet the kestrels exposed to HBCD failed to have better reproductive success than the control birds. These reproductive changes were a function of HBCD exposure, likely through changes in food consumption, with possible impacts on, for example, reproductive behavior and/or alterations in thyroid hormones.
Collapse
Affiliation(s)
- Kim J Fernie
- Wildlife and Landscape Science Directorate, Environment Canada, Burlington, Ontario, Canada.
| | | | | | | | | |
Collapse
|