1
|
Junaid M, Sultan M, Liu S, Hamid N, Yue Q, Pei DS, Wang J, Appenzeller BMR. A meta-analysis highlighting the increasing relevance of the hair matrix in exposure assessment to organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170535. [PMID: 38307287 DOI: 10.1016/j.scitotenv.2024.170535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Owing to a wide range of advantages, such as stability, non-invasiveness, and ease of sampling, hair has been used progressively for comprehensive biomonitoring of organic pollutants for the last three decades. This has led to the development of new analytical and multi-class analysis methods for the assessment of a broad range of organic pollutants in various population groups, ranging from small-scale studies to advanced studies with a large number of participants based on different exposure settings. This meta-analysis summarizes the existing literature on the assessment of organic pollutants in hair in terms of residue levels, the correlation of hair residue levels with those of other biological matrices and socio-demographic factors, the reliability of hair versus other biomatrices for exposure assessment, the use of segmental hair analysis for chronic exposure evaluation and the effect of external contamination on hair residue levels. Significantly high concentrations of organic pollutants such as pesticides, flame retardants, polychlorinated biphenyls and polycyclic aromatic hydrocarbon were reported in human hair samples from different regions and under different exposure settings. Similarly, high concentrations of pesticides (from agricultural activities), flame retardants (E-waste dismantling activities), dioxins and furans were observed in various occupational settings. Moreover, significant correlations (p < 0.05) for hair and blood concentrations were observed in majority of studies featuring pesticides and flame retardants. While among sociodemographic factors, gender and age significantly affected the hair concentrations in females and children in general exposure settings, whereas adult workers in occupational settings. Furthermore, the assessment of the hair burden of persistent organic pollutants in domestic and wild animals showed high concentrations for pesticides such as HCHs and DDTs whereas the laboratory-based studies using animals demonstrated strong correlations between exposure dose, exposure duration, and measured organic pollutant levels, mainly for chlorpyrifos, diazinon, terbuthylazine, aldrin, dieldrin and pyrethroid metabolites. Considering the critical analysis of the results obtained from literature review, hair is regarded as a reliable matrix for organic pollutant assessment; however, some limitations, as discussed in this review, need to be overcome to reinforce the status of hair as a suitable matrix for exposure assessment.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| |
Collapse
|
2
|
Sanguos CL, García LG, Suárez OL, Picáns-Leis R, Martínez-Carballo E, Couce ML. Non-invasive biomonitoring of infant exposure to environmental organic pollutants in north-western Spain based on hair analysis. Identification of potential sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122705. [PMID: 37827353 DOI: 10.1016/j.envpol.2023.122705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/03/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Recent years have seen growing interest in hair sample analysis to detect organic pollutants (OPs). This biological matrix can be analysed non-invasively for biomonitoring of OPs over a wide exposure window. Obtaining hair sample amounts that meet the needs of the analytical methodology required for the determination of the POs of interest can be challenging, especially in infants. As a result, studies assessing organic pollutants in infant hair have been very scarce. We quantified levels of about 60 OPs, including persistent organic pollutants (POPs), in 110 hair samples from a patient cohort (60 mothers and 50 infants) from Santiago de Compostela (north-western Spain). For each participant we examined relationship between OP levels and corresponding epidemiological parameters using correlations, principal component analysis (PCA), hierarchical cluster analysis, and Multivariate analysis of variance (MANOVA). For many OPs we observed significant correlations with place of residence, parity, and maternal age, as well as pet ownership. Evaluation of dietary habits showed significant associations between levels some OPs and the consumption of fish, molluscs, and cereal. There were significant associations between chlorpyrifos and deltamethrin levels and infant birth characteristics such as birthweight and head circumference. Relations between OP levels in the hair of mothers and their infants were also examined, revealing common sources of exposure for dioxin-like polychlorinated biphenyls (DLPCBs), non-dioxin-like polychlorinated biphenyls (NDLPCBs), polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs). Levels of fluoranthene (F), pyrene (P), endrin, and some PBDEs in maternal hair were significantly correlated with those in infant hair. Our findings identified common sources of exposure to OPs of distinct chemical classes.
Collapse
Affiliation(s)
- Carolina López Sanguos
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura Gallego García
- IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Olalla López Suárez
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Rosaura Picáns-Leis
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Elena Martínez-Carballo
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain; Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain.
| | - María Luz Couce
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Cocco P, Satta G, Cancedda V, Meloni F, Milia S, Pilia I, Zucca M, De Matteis S. Is a Good Sleep on Mosquito-Free Nights Worth the Risk of Lymphoma Associated with the Use of Household Insecticides? A Case-Control Study of Lymphoma Subtypes in Adults. TOXICS 2023; 11:752. [PMID: 37755762 PMCID: PMC10537294 DOI: 10.3390/toxics11090752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND The evidence linking the use of household pesticides and the risk of lymphoma is scanty. METHODS We explored the hypothesis in a population-based case-control study on lymphoma conducted in Sardinia, Italy, in 1998-2004, including 325 cases and 465 population controls and data on lifetime frequency, seasonality, and years of use of household insecticides and potential confounders. We calculated the risk of lymphoma (all subtypes) and its major subtypes associated with using household insecticides in three time windows (up to 1978, from 1979-2001, and 2002 onwards) with unconditional logistic regression adjusting by age, sex, education, and occupational exposure to pesticides. RESULTS Household insecticides did not increase risk of lymphoma (all subtypes), Hodgkin's lymphoma, B-cell lymphoma, and the major B-cell lymphoma subtypes. The risk of multiple myeloma (MM) but not the other subtypes showed a non-significant upward trend (p = 0.203) with increasing quartiles of days of use in the time window when propoxur was the most popular household insecticide. CONCLUSIONS Our results suggest no association between the household use of insecticides and the risk of lymphoma. Further studies are warranted to confirm or discard an association between MM risk and the use of propoxur.
Collapse
Affiliation(s)
- Pierluigi Cocco
- Centre for Occupational and Environmental Health, Division of Population Studies, Healthcare Research & Primary Care, Faculty of Health Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Giannina Satta
- Department of Medical Sciences and Public Health, University of Cagliari, 09131 Cagliari, Italy; (G.S.); (V.C.); (F.M.); (S.M.); (I.P.); (S.D.M.)
| | - Valerio Cancedda
- Department of Medical Sciences and Public Health, University of Cagliari, 09131 Cagliari, Italy; (G.S.); (V.C.); (F.M.); (S.M.); (I.P.); (S.D.M.)
| | - Federico Meloni
- Department of Medical Sciences and Public Health, University of Cagliari, 09131 Cagliari, Italy; (G.S.); (V.C.); (F.M.); (S.M.); (I.P.); (S.D.M.)
| | - Simone Milia
- Department of Medical Sciences and Public Health, University of Cagliari, 09131 Cagliari, Italy; (G.S.); (V.C.); (F.M.); (S.M.); (I.P.); (S.D.M.)
| | - Ilaria Pilia
- Department of Medical Sciences and Public Health, University of Cagliari, 09131 Cagliari, Italy; (G.S.); (V.C.); (F.M.); (S.M.); (I.P.); (S.D.M.)
| | - Mariagrazia Zucca
- Unit of Laboratory Medicine, Sulcis Local Health Unit, 09013 Carbonia, Italy;
| | - Sara De Matteis
- Department of Medical Sciences and Public Health, University of Cagliari, 09131 Cagliari, Italy; (G.S.); (V.C.); (F.M.); (S.M.); (I.P.); (S.D.M.)
| |
Collapse
|
4
|
Elser BA, Hing B, Stevens HE. A narrative review of converging evidence addressing developmental toxicity of pyrethroid insecticides. Crit Rev Toxicol 2022; 52:371-388. [PMID: 36345971 PMCID: PMC9930199 DOI: 10.1080/10408444.2022.2122769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/11/2022]
Abstract
Pyrethroid insecticides are broadly used in agriculture and household products throughout the world. Exposure to this class of insecticides is widespread, and while generally believed to be safe for use, there is increasing concern regarding their effects on neurodevelopment. Due to the critical roles that molecular targets of pyrethroids play in the regulation of neurodevelopment, particular focus has been placed on evaluating the effects of in utero and childhood pyrethroid exposure on child cognition and behavior. As such, this narrative review synthesizes an assessment of converging study types; we review reports of neonatal pyrethroid levels together with current epidemiological literature that convergently address the risk for developmental toxicity linked to exposure to pyrethroid insecticides. We first address studies that assess the degree of direct fetal exposure to pyrethroids in utero through measurements in cord blood, meconium, and amniotic fluid. We then focus on the links between prenatal exposure to these insecticides and child neurodevelopment, fetal growth, and other adverse birth outcomes. Furthermore, we assess the effects of postnatal exposure on child neurodevelopment through a review of the data on pediatric exposures and child cognitive and behavioral outcomes. Study quality was evaluated individually, and the weight of evidence was assessed broadly to characterize these effects. Overall, while definitive conclusions cannot be reached from the currently available literature, the available data suggest that the potential links between pyrethroid exposure and child neurodevelopmental effects deserve further investigation.
Collapse
Affiliation(s)
- Benjamin A Elser
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Benjamin Hing
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Hanna E Stevens
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Park E, Lee J, Lee J, Lee J, Lee HS, Shin Y, Kim JH. Method for the simultaneous analysis of 300 pesticide residues in hair by LC-MS/MS and GC-MS/MS, and its application to biomonitoring of agricultural workers. CHEMOSPHERE 2021; 277:130215. [PMID: 33774252 DOI: 10.1016/j.chemosphere.2021.130215] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Multiresidual pesticide analysis in hair can provide useful perspectives on the relationship between pesticides and human health. To establish a rapid and simultaneous analytical method using LC-MS/MS and GC-MS/MS, optimization of hair pulverization, extraction solvent and purification with dispersive SPE was performed for 300 pesticides. Hair pulverization was standardized with a ball mill, at 30 Hz for 20 min (10 min twice), using 3-mm diameter beads. For extraction, 0.1% formic acid in acetonitrile was selected, and PSA d-SPE was chosen for clean-up among three different types of solid phase extraction. The limits of quantitation (LOQs) in this method were between 2.5 and 7.5 pg mg-1. In recovery test, fifty milligrams of hair powder were extracted with 0.1% formic acid in acetonitrile, and incubated for three h at 40 ℃. The crude extract was treated using PSA-dSPE, dried under nitrogen gas, and reconstructed with acetonitrile. An aliquot was analyzed with LC- and GC-MS/MS. Recovery ranges were 22.7-131.1%, in LC-MS/MS analysis, and 81.1-151.8% in GC-MS/MS analysis. The validated analysis systems were applied to biomonitoring of ten agricultural workers, and residues of 28 target pesticides were detected in their hair.
Collapse
Affiliation(s)
- Eunyoung Park
- Pesticide Chemistry and Toxicology Laboratory, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jiho Lee
- Pesticide Chemistry and Toxicology Laboratory, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Junghak Lee
- Pesticide Chemistry and Toxicology Laboratory, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jonghwa Lee
- Pesticide Chemistry and Toxicology Laboratory, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hye Suk Lee
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yongho Shin
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea.
| | - Jeong-Han Kim
- Pesticide Chemistry and Toxicology Laboratory, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
6
|
Polledri E, Mercadante R, Nijssen R, Consonni D, Mol H, Fustinoni S. Hair as a matrix to evaluate cumulative and aggregate exposure to pesticides in winegrowers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:808-816. [PMID: 31412484 DOI: 10.1016/j.scitotenv.2019.06.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Vineyard is a crop where a large number of pesticides are applied; exposure to pesticides may occur in farmers and the general population living close to the treated area. This work aimed to investigate hair as a matrix for the assessment of cumulative and aggregate exposure to pesticides in potentially exposed individuals. METHODS Twenty agricultural workers (AW), 4 agricultural worker relatives (AR), and 5 research staff members (RS) were involved in the study. Hair samples were collected before and after the application season (PRE- and POST-EXP samples) to obtain 18 paired samples. Records with the name and the quantity of applied pesticides were obtained; twenty-seven pesticides were measured in hair by solvent extraction and LC-MS/MS. RESULTS During the study season, AW applied 14 different pesticides with median amount ranging from 12 to 7200 g. The most popular pesticides were dimethomorph, penconazole, cyazofamid, fenamidone and quinoxyfen, applied from 94 to 69% of AW. In AW, in PRE-EXP samples the majority of used pesticides was detectable (with detection rates from 6 to 88%), with median concentrations of few pg/mg hair; in the POST-EXP samples the frequency of detected values increased (from 25 to 100%), with median concentrations up to two orders of magnitude higher. In AR, most pesticides were quantifiable only in POST-EXP samples and with lower concentration in comparison with AW; in RS, in both PRE- and POST-EXP samples only a few pesticides were quantifiable with very low levels. In AW, a linear correlation (r = 0.682 on log-transformed data, p < 0.01) was found between the total amounts of applied pesticides during the season and their concentration in hair. CONCLUSION The study shows that the majority of assessed pesticides was incorporated into hair of AW and AR. The increased frequency of detection and level at the end of the season and the correlation between pesticide in hair and the amount of applied pesticides, reinforce the use of hair for quantitative biomonitoring of cumulative exposure to pesticides.
Collapse
Affiliation(s)
- E Polledri
- EPIGET - Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and Università degli Studi di Milano, Italy
| | - R Mercadante
- EPIGET - Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and Università degli Studi di Milano, Italy
| | - R Nijssen
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - D Consonni
- Epidemiology Unit, Dipartimento dei Servizi e di Medicina Preventiva, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - H Mol
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - S Fustinoni
- EPIGET - Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and Università degli Studi di Milano, Italy.
| |
Collapse
|
7
|
Mercadante R, Polledri E, Moretto A, Fustinoni S. Long-term occupational and environmental exposure to penconazole and tebuconazole by hair biomonitoring. Toxicol Lett 2018; 298:19-24. [DOI: 10.1016/j.toxlet.2018.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/18/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
|
8
|
Abstract
Pyrethroids are commonly used around the home and in agricultural production to control insects. Human contact to one or more pyrethroid insecticides is likely. Numerous epidemiology studies have evaluated the association between health outcomes in humans and pyrethroid exposure. The purpose of this review was to identify and evaluate the quality of pyrethroid-related epidemiology studies that addressed chronic health effects, and compare findings with animal toxicology studies. We evaluated the quality of 61 studies published between 2000 and 2016 by using elements of outcome, exposure metric, exposure level, and study design. None of the 61 publications demonstrated strong quality for all elements. A few of the outcome measures were strong, particularly those relying upon medical diagnoses. Most of the pyrethroid epidemiology studies used a poor exposure metric, relying upon a single sample of pyrethroid urinary metabolites, which is subject to misclassification of past exposures. In addition, many studies were a cross-sectional design, preventing an evaluation of the temporality of the exposure-disease association. Furthermore, none of the effects observed in the epidemiological literature was concordant with toxicological effects noted in extensive testing of pyrethroids in animals. In order to provide more robust data on potential health outcomes from low dose exposure to pyrethroid insecticides, future epidemiological studies should fully characterize an adverse outcome, include exposure validation components, and quantify exposure over time.
Collapse
Affiliation(s)
- Carol J Burns
- a Burns Epidemiology Consulting, LLC , Sanford , MI , USA
| | | |
Collapse
|
9
|
Lehmann E, Oltramare C, de Alencastro LF. Development of a modified QuEChERS method for multi-class pesticide analysis in human hair by GC-MS and UPLC-MS/MS. Anal Chim Acta 2018; 999:87-98. [DOI: 10.1016/j.aca.2017.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/01/2017] [Indexed: 11/15/2022]
|
10
|
Lam S, Pham G, Nguyen-Viet H. Emerging health risks from agricultural intensification in Southeast Asia: a systematic review. INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH 2017; 23:250-260. [PMID: 29560804 PMCID: PMC6060873 DOI: 10.1080/10773525.2018.1450923] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/07/2018] [Indexed: 11/04/2022]
Abstract
Background Agricultural intensification is having profound impacts on food security and rural livelihoods; however, concerns remain about the potential implications on public health. Objectives We aim to examine and synthesize the evidence for human health risks of agricultural intensification in Southeast Asia. Methods We conducted a systematic review of peer-reviewed articles published between January 2000 and December 2015 from two electronic databases (PubMed, CAB Direct). Results A total of 73 relevant studies were included and evaluated. More than half of the studies used epidemiological methods while others applied alternative methods to quantify or estimate risks. Studies mainly focused on occupational and consumer exposure to pesticides, without often specifying the actual health risk. Conclusion Overall, the current knowledge on health risks appears to be limited. More research on long-term health implications and a wider range of contaminants are needed if sustainable benefits are to be obtained from agricultural intensification.
Collapse
Affiliation(s)
- Steven Lam
- Hanoi University of Public Health, Center for Public Health and Ecosystem Research, Hanoi, Vietnam
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | - Giang Pham
- Hanoi University of Public Health, Center for Public Health and Ecosystem Research, Hanoi, Vietnam
- Vietnam Public Health Association, Hanoi, Vietnam
| | - Hung Nguyen-Viet
- Hanoi University of Public Health, Center for Public Health and Ecosystem Research, Hanoi, Vietnam
- International Livestock Research Institute, Hanoi, Vietnam
| |
Collapse
|
11
|
Ahmed T, Goel V, Banerjee BD. Propoxur-induced oxidative DNA damage in human peripheral blood mononuclear cells: protective effects of curcumin and α-tocopherol. Drug Chem Toxicol 2017; 41:128-134. [DOI: 10.1080/01480545.2017.1321010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tanzeel Ahmed
- Department of Biotechnology, School of Engineering and Technology, IFTM University, Lodhipur Rajput, Moradabad, India
| | - Vasu Goel
- Department of Biotechnology, School of Engineering and Technology, IFTM University, Lodhipur Rajput, Moradabad, India
| | - B. D. Banerjee
- Enivironmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Delhi, India
| |
Collapse
|
12
|
Vester A, Caudle WM. The Synapse as a Central Target for Neurodevelopmental Susceptibility to Pesticides. TOXICS 2016; 4:toxics4030018. [PMID: 29051423 PMCID: PMC5606656 DOI: 10.3390/toxics4030018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/07/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
The developmental period of the nervous system is carefully orchestrated and highly vulnerable to alterations. One crucial factor of a properly-functioning nervous system is the synapse, as synaptic signaling is critical for the formation and maturation of neural circuits. Studies show that genetic and environmental impacts can affect diverse components of synaptic function. Importantly, synaptic dysfunction is known to be associated with neurologic and psychiatric disorders, as well as more subtle cognitive, psychomotor, and sensory defects. Given the importance of the synapse in numerous domains, we wanted to delineate the effects of pesticide exposure on synaptic function. In this review, we summarize current epidemiologic and molecular studies that demonstrate organochlorine, organophosphate, and pyrethroid pesticide exposures target the developing synapse. We postulate that the synapse plays a central role in synaptic vulnerability to pesticide exposure during neurodevelopment, and the synapse is a worthy candidate for investigating more subtle effects of chronic pesticide exposure in future studies.
Collapse
Affiliation(s)
- Aimee Vester
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | - W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
- Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Phillips MB, Leonard JA, Grulke CM, Chang DT, Edwards SW, Brooks R, Goldsmith MR, El-Masri H, Tan YM. A Workflow to Investigate Exposure and Pharmacokinetic Influences on High-Throughput in Vitro Chemical Screening Based on Adverse Outcome Pathways. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:53-60. [PMID: 25978103 PMCID: PMC4710605 DOI: 10.1289/ehp.1409450] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/13/2015] [Indexed: 05/28/2023]
Abstract
BACKGROUND Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowledge on exposure, along with absorption, distribution, metabolism, and excretion (ADME) properties of chemicals. OBJECTIVES We developed a conceptual workflow to examine exposure and ADME properties in relation to an MIE. The utility of this workflow was evaluated using a previously established AOP, acetylcholinesterase (AChE) inhibition. METHODS Thirty chemicals found to inhibit human AChE in the ToxCast™ assay were examined with respect to their exposure, absorption potential, and ability to cross the blood-brain barrier (BBB). Structures of active chemicals were compared against structures of 1,029 inactive chemicals to detect possible parent compounds that might have active metabolites. RESULTS Application of the workflow screened 10 "low-priority" chemicals of 30 active chemicals. Fifty-two of the 1,029 inactive chemicals exhibited a similarity threshold of ≥ 75% with their nearest active neighbors. Of these 52 compounds, 30 were excluded due to poor absorption or distribution. The remaining 22 compounds may inhibit AChE in vivo either directly or as a result of metabolic activation. CONCLUSIONS The incorporation of exposure and ADME properties into the conceptual workflow eliminated 10 "low-priority" chemicals that may otherwise have undergone additional, resource-consuming analyses. Our workflow also increased confidence in interpretation of in vitro results by identifying possible "false negatives." CITATION Phillips MB, Leonard JA, Grulke CM, Chang DT, Edwards SW, Brooks R, Goldsmith MR, El-Masri H, Tan YM. 2016. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways. Environ Health Perspect 124:53-60; http://dx.doi.org/10.1289/ehp.1409450.
Collapse
Affiliation(s)
- Martin B. Phillips
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Jeremy A. Leonard
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | | | | | - Stephen W. Edwards
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Raina Brooks
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Hisham El-Masri
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Yu-Mei Tan
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
14
|
Yusa V, Millet M, Coscolla C, Pardo O, Roca M. Occurrence of biomarkers of pesticide exposure in non-invasive human specimens. CHEMOSPHERE 2015; 139:91-108. [PMID: 26070147 DOI: 10.1016/j.chemosphere.2015.05.082] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/15/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
Biomonitoring has been used in many types of investigations, including national programmes and epidemiological studies, to explore the occurrence of biomarkers of pesticide exposure in the general population or relevant groups. This review discusses recent studies that measure levels of biomarkers of pesticide exposure in non-invasive human specimens such as urine, breast milk, meconium and hair. Specific and non-specific metabolites of organophosphate and pyrethroid insecticides have been widely investigated in urine, where some of the suitable biomarkers present rates of detection higher than 80%, which stand for an ongoing chronic exposure to traces of these chemicals. Hair is a promising emerging matrix, but some issues on its suitability and the biological relevance needs further research. Breast milk was used in research investigations focused mainly on legacy pesticides, which provide useful information about time trends.
Collapse
Affiliation(s)
- Vicent Yusa
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, 21, Avenida Catalunya, 46020, Valencia, Spain; Public Health Laboratory of Valencia, Spain; Analytical Chemistry Department, University of Valencia, Spain.
| | - Maurice Millet
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé ICPEES UMR 7515 Groupe de Physico-Chimie de ĺAtmosphère, Université de Strasbourg/CNRS, France
| | - Clara Coscolla
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, 21, Avenida Catalunya, 46020, Valencia, Spain
| | - Olga Pardo
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, 21, Avenida Catalunya, 46020, Valencia, Spain; Analytical Chemistry Department, University of Valencia, Spain
| | - Marta Roca
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, 21, Avenida Catalunya, 46020, Valencia, Spain
| |
Collapse
|
15
|
Saillenfait AM, Ndiaye D, Sabaté JP. Pyrethroids: Exposure and health effects – An update. Int J Hyg Environ Health 2015; 218:281-92. [DOI: 10.1016/j.ijheh.2015.01.002] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 11/29/2022]
|