1
|
AlMaghrabi RS, Al-Musawi T, Albaksami O, Subhi AL, Fakih RE, Stone NR. Challenges in the Management of Invasive Fungal Infections in the Middle East: Expert Opinion to Optimize Management Using a Multidisciplinary Approach. Cureus 2023; 15:e44356. [PMID: 37779746 PMCID: PMC10539715 DOI: 10.7759/cureus.44356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2023] [Indexed: 10/03/2023] Open
Abstract
Invasive fungal infection (IFI) is a significant global healthcare concern among critically ill and immunocompromised patients. In Middle Eastern countries, IFI has been steadily increasing among hospitalized patients in the past two decades. Diagnosis of IFI at an early stage is crucial for efficient management. Invasive fungal infection management is complex and requires the involvement of physicians from different specialties. There are several challenges associated with IFI management in the countries in the Middle East. This review aims to understand the key challenges associated with IFI management in the Middle East, encompassing epidemiology, diagnosis, therapeutic options, and optimizing a multidisciplinary approach. In addition, this review aims to incorporate expert opinions from multidisciplinary fields for optimizing IFI management in different Middle Eastern countries by addressing key decision points throughout the patient's journey. Lack of epidemiological data on fungal infections, slow and poorly sensitive conventional culture-based diagnostic tests, limited availability of biomarker testing, lack of awareness of clinical symptoms of the disease, limited knowledge on fungal infections, lack of local practice guidelines, and complicated disease management are the major challenges associated with IFI diagnosis and management in the Middle Eastern countries. Implementation of a multidisciplinary approach, antifungal stewardship, improved knowledge of fungal infections, the use of rapid diagnostic tests, and enhanced epidemiological research are warranted to lower the IFI burden in the Middle East.
Collapse
Affiliation(s)
- Reem S AlMaghrabi
- Department of Medicine, Organ Transplant Center, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | - Tariq Al-Musawi
- Department of Critical Care Medicine, Al Salam Hospital, Al-Khobar, SAU
- Department of Medicine, Royal College of Surgeons in Ireland - Bahrain, Busaiteen, BHR
| | - Osama Albaksami
- Department of Infectious Diseases, Infectious Disease Hospital, Kuwait City, KWT
| | - Ahmad L Subhi
- Department of Infectious Diseases, Al-Qassimi Hospital, Sharjah, ARE
| | - Riad E Fakih
- Department of Hematology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
- Department of Clinical Research, Alfaisal University, Riyadh, SAU
| | - Neil R Stone
- Department of Microbiology, Hospital for Tropical Diseases, London, GBR
- Department of Microbiology, University College London Hospitals, London, GBR
| |
Collapse
|
2
|
Asadzadeh M, Alobaid K, Ahmad S, Mazloum S. First Report of Azole-Resistant Aspergillus fumigatus with TR 46/Y121F/T289A Mutations in Kuwait and an Update on Their Occurrence in the Middle East. J Fungi (Basel) 2023; 9:784. [PMID: 37623555 PMCID: PMC10455753 DOI: 10.3390/jof9080784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Pulmonary aspergillosis is a common fungal infection with several clinical manifestations including invasive, allergic and chronic chest diseases. Invasive pulmonary aspergillosis (IPA) is a leading cause of death in immunocompromised patients, particularly those receiving chemotherapy and among bone marrow transplant recipients. Aspergillus fumigatus is the most prevalent causative agent and voriconazole is the first-line therapy for IPA. In this study, we report the first isolation of voriconazole-resistant A. fumigatus carrying TR46/Y121F/T289A mutations from an immunocompromised pregnant lady in Kuwait. The patient was successfully treated for a probable respiratory infection with caspofungin and voriconazole. The literature review from PubMed has identified itraconazole-resistant clinical and environmental A. fumigatus isolates with TR34/L98H mutations in the cyp51A from several Middle Eastern countries including Kuwait. However, clinical A. fumigatus isolates with cyp51A TR46/Y121F/T289A mutations have not been reported previously from any country in the region while environmental isolates have been reported only from Iran. The source of voriconazole-resistant A. fumigatus CYP51A TR46/Y121F/T289A mutant in our patient remained unknown. Surveillance for azole resistance among clinical and environmental isolates of A. fumigatus is warranted in Kuwait.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Khaled Alobaid
- Mycology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya 46300, Kuwait;
| | - Suhail Ahmad
- Department of Microbiology, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Sara Mazloum
- Microbiology Laboratory, Jaber Al-Ahmad Hospital, Ministry of Health, South Surra 91711, Kuwait;
| |
Collapse
|
3
|
Ni Z, Chen Z, Zhang X, Yang X, Zhou L. Photolysis of Fungicide Triadimefon: A Combined Experimental and Theoretical Investigation on Homolytic C-O and C-N Bonds Dissociation Mechanisms. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Daloh M, Wisessombat S, Pinchai N, Santajit S, Bhoopong P, Soaart A, Chueajeen K, Jitlang A, Sama‐ae I. High prevalence and genetic diversity of a single ancestral origin Azole‐resistant
Aspergillus fumigatus
in indoor environments at Walailak University, Southern Thailand. Environ Microbiol 2022; 24:4641-4651. [DOI: 10.1111/1462-2920.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/31/2022] [Indexed: 12/01/2022]
Affiliation(s)
| | - Sueptrakool Wisessombat
- Department of Medical Technology, School of Allied Health Sciences Walailak University, Thasala District, Nakhonsithammarat Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM) Walailak University, Thasala District, Nakhonsithammarat Thailand
| | - Nadthanan Pinchai
- Department of Microbiology, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkoknoi Bangkok Thailand
| | - Sirijan Santajit
- Department of Medical Technology, School of Allied Health Sciences Walailak University, Thasala District, Nakhonsithammarat Thailand
- Research Center in Tropical Pathobiology Walailak University, Thasala District, Nakhonsithammarat Thailand
| | - Phuangthip Bhoopong
- Department of Medical Technology, School of Allied Health Sciences Walailak University, Thasala District, Nakhonsithammarat Thailand
| | - Areeya Soaart
- Department of Medical Technology, School of Allied Health Sciences Walailak University, Thasala District, Nakhonsithammarat Thailand
| | - Kuntida Chueajeen
- Department of Medical Technology, School of Allied Health Sciences Walailak University, Thasala District, Nakhonsithammarat Thailand
| | - Anucha Jitlang
- Department of Medical Technology, School of Allied Health Sciences Walailak University, Thasala District, Nakhonsithammarat Thailand
| | - Imran Sama‐ae
- Department of Medical Technology, School of Allied Health Sciences Walailak University, Thasala District, Nakhonsithammarat Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM) Walailak University, Thasala District, Nakhonsithammarat Thailand
| |
Collapse
|
5
|
Khalife S, Resendiz-Sharpe A, Lagrou K, Fréalle E. Molecular identification and azole susceptibility testing of Aspergillus section Fumigati isolated from soil samples in Lebanon. J Mycol Med 2021; 32:101242. [PMID: 35030518 DOI: 10.1016/j.mycmed.2021.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/27/2021] [Accepted: 12/24/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Sara Khalife
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Tripoli, Lebanon.
| | - Agustin Resendiz-Sharpe
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine and National Reference Center for Mycosis, Excellence Center for Medical Mycology (ECMM), University Hospitals Leuven, Leuven, Belgium
| | - Emilie Fréalle
- Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL, Lille F-59000, France; CHU Lille, Laboratoire de Parasitologie-Mycologie, Lille F-59000, France
| |
Collapse
|
6
|
Rivelli Zea SM, Toyotome T. Azole-resistant Aspergillus fumigatus as an emerging worldwide pathogen. Microbiol Immunol 2021; 66:135-144. [PMID: 34870333 DOI: 10.1111/1348-0421.12957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022]
Abstract
Aspergillus fumigatus, a ubiquitous pathogen, causes aspergillosis in humans, especially in immunodeficient patients. Azoles are frontline antifungal drugs for treating aspergillosis. The recent global emergence of azole resistance in A. fumigatus has become a serious problem worldwide. It has arisen through two routes: long-term azole medical therapy, called the patient route, and the use of azole fungicides in its habitats especially for agricultural activities, called the environmental route. Resistant strains developed through the latter route show cross-resistance to medical azoles because of the identical molecular target Cyp51A between azole compounds used for medical treatment and agricultural disease control. In azole-resistant strains arising through the environmental route, A. fumigatus is observed frequently possessing mutations in the cyp51A gene linked to tandem repeats in the promoter region such as TR34 /L98H and TR46 /Y121F/T289A. Results of microsatellite genotyping analyses of resistant A. fumigatus strains have suggested a transboundary spread of this microorganism in many countries. Diverse actors are involved in the global highway of transmission. Therefore, the matter must be addressed as a "One Health" issue. This review presents a background of azole resistance in A. fumigatus and introduces newly discovered difficulties generated as this pathogen spreads worldwide. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Takahito Toyotome
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine.,Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine.,Medical Mycology Research Center, Chiba University
| |
Collapse
|
7
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
8
|
Epidemiology of Candidemia in Kuwait: A Nationwide, Population-Based Study. J Fungi (Basel) 2021; 7:jof7080673. [PMID: 34436212 PMCID: PMC8399751 DOI: 10.3390/jof7080673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
The Candida species cause a majority of invasive fungal infections. In this article, we describe the nationwide epidemiology of candidemia in Kuwait in 2018. Yeast bloodstream isolates submitted from all major hospitals and identified by phenotypic MALDI-TOF MS and/or by molecular methods were studied. Susceptibility testing was performed by Etest. Out of 313 bloodstream yeasts, 239 Candida spp. isolates (excluding duplicate isolates) were obtained during 234 candidemic episodes among 223 patients. Mixed-species candidemia and re-infection occurred in 5 and 11 patients, respectively. C. albicans (n = 74), C. parapsilosis (n = 54), C. tropicalis (n = 35), C. auris (n = 33), C. glabrata (n = 32), other Candida spp. (n = 11), and other yeasts (n = 9) caused fungemia. Nearly 50% of patients were in intensive care units. Candida spp. isolates (except C. glabrata) were susceptible to caspofungin and 27% of C. auris were amphotericin B-resistant. Resistance to fluconazole was 100% in C. auris, 17% in C. parapsilosis, 12% in C. glabrata, and 1% in C. albicans. Mortality was 47% for other Candida/yeast infections. Nationwide candidemia incidence in 2018 was 5.29 cases/100,000 inhabitants. Changes in species spectrum, increasing fluconazole resistance in C. parapsilosis, and the emergence of C. auris as a major pathogen in Kuwait are noteworthy findings. The data could be of help in informing decisions regarding planning, in the allocation of resources, and in antimicrobial stewardship.
Collapse
|
9
|
Duong TMN, Le TV, Tran KLH, Nguyen PT, Nguyen BPT, Nguyen TA, Nguyen HLP, Nguyen BNT, Fisher MC, Rhodes J, Marks G, Fox GJ, Chen SCA, Walsh MG, Barrs VR, Talbot J, Halliday CL, Sorrell TC, Day JN, Beardsley J. Azole-resistant Aspergillus fumigatus is highly prevalent in the environment of Vietnam, with marked variability by land use type. Environ Microbiol 2021; 23:7632-7642. [PMID: 34232541 DOI: 10.1111/1462-2920.15660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/16/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022]
Abstract
Azole-resistant environmental Aspergillus fumigatus presents a threat to public health but the extent of this threat in Southeast Asia is poorly described. We conducted environmental surveillance in the Mekong Delta region of Vietnam, collecting air and ground samples across key land-use types, and determined antifungal susceptibilities of Aspergillus section Fumigati (ASF) isolates and azole concentrations in soils. Of 119 ASF isolates, 55% were resistant (or non-wild type) to itraconazole, 65% to posaconazole and 50% to voriconazole. Azole resistance was more frequent in A. fumigatus sensu stricto isolates (95%) than other ASF species (32%). Resistant isolates and agricultural azole residues were overrepresented in samples from cultivated land. cyp51A gene sequence analysis showed 38/56 resistant A. fumigatus sensu stricto isolates carried known resistance mutations, with TR34 /L98H most frequent (34/38).
Collapse
Affiliation(s)
- Tra-My N Duong
- Faculty of Medicine and Health, The University of Sydney, Sydney, 2145, Australia.,Oxford University Clinical Research Unit, Ho Chi Minh City, 70000, Vietnam
| | - Thanh-Van Le
- Oxford University Clinical Research Unit, Ho Chi Minh City, 70000, Vietnam
| | - Khanh-Linh H Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, 70000, Vietnam
| | | | | | - Thu-Anh Nguyen
- Woolcock Institute of Medical Research, Hanoi, 10000, Vietnam
| | | | - Bich-Ngoc T Nguyen
- National Lung Hospital, Hanoi, 10000, Vietnam.,Hanoi Medical University, Hanoi, 10000, Vietnam
| | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, W2 1NY, UK
| | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, W2 1NY, UK
| | - Guy Marks
- Woolcock Institute of Medical Research, Hanoi, 10000, Vietnam
| | - Greg J Fox
- Faculty of Medicine and Health, The University of Sydney, Sydney, 2145, Australia.,Woolcock Institute of Medical Research, Hanoi, 10000, Vietnam
| | - Sharon C-A Chen
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, 2145, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Sydney, 2145, Australia
| | - Michael G Walsh
- Faculty of Medicine and Health, The University of Sydney, Sydney, 2145, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, 2145, Australia
| | - Vanessa R Barrs
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, 2145, Australia.,Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Jessica Talbot
- Faculty of Veterinary Science, The University of Sydney, Sydney, 2145, Australia
| | - Catriona L Halliday
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, 2145, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Sydney, 2145, Australia
| | - Tania C Sorrell
- Faculty of Medicine and Health, The University of Sydney, Sydney, 2145, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, 2145, Australia.,Westmead Institute for Medical Research, Westmead, Sydney, 2145, Australia
| | - Jeremy N Day
- Oxford University Clinical Research Unit, Ho Chi Minh City, 70000, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Justin Beardsley
- Faculty of Medicine and Health, The University of Sydney, Sydney, 2145, Australia.,Oxford University Clinical Research Unit, Ho Chi Minh City, 70000, Vietnam.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, 2145, Australia.,Westmead Institute for Medical Research, Westmead, Sydney, 2145, Australia
| |
Collapse
|
10
|
Burks C, Darby A, Gómez Londoño L, Momany M, Brewer MT. Azole-resistant Aspergillus fumigatus in the environment: Identifying key reservoirs and hotspots of antifungal resistance. PLoS Pathog 2021; 17:e1009711. [PMID: 34324607 PMCID: PMC8321103 DOI: 10.1371/journal.ppat.1009711] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic human pathogen that causes aspergillosis, a spectrum of environmentally acquired respiratory illnesses. It has a cosmopolitan distribution and exists in the environment as a saprotroph on decaying plant matter. Azoles, which target Cyp51A in the ergosterol synthesis pathway, are the primary class of drugs used to treat aspergillosis. Azoles are also used to combat plant pathogenic fungi. Recently, an increasing number of azole-naive patients have presented with pan-azole-resistant strains of A. fumigatus. The TR34/L98H and TR46/Y121F/T289A alleles in the cyp51A gene are the most common ones conferring pan-azole resistance. There is evidence that these mutations arose in agricultural settings; therefore, numerous studies have been conducted to identify azole resistance in environmental A. fumigatus and to determine where resistance is developing in the environment. Here, we summarize the global occurrence of azole-resistant A. fumigatus in the environment based on available literature. Additionally, we have created an interactive world map showing where resistant isolates have been detected and include information on the specific alleles identified, environmental settings, and azole fungicide use. Azole-resistant A. fumigatus has been found on every continent, except for Antarctica, with the highest number of reports from Europe. Developed environments, specifically hospitals and gardens, were the most common settings where azole-resistant A. fumigatus was detected, followed by soils sampled from agricultural settings. The TR34/L98H resistance allele was the most common in all regions except South America where the TR46/Y121F/T289A allele was the most common. A major consideration in interpreting this survey of the literature is sampling bias; regions and environments that have been extensively sampled are more likely to show greater azole resistance even though resistance could be more prevalent in areas that are under-sampled or not sampled at all. Increased surveillance to pinpoint reservoirs, as well as antifungal stewardship, is needed to preserve this class of antifungals for crop protection and human health.
Collapse
Affiliation(s)
- Caroline Burks
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Alexandria Darby
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Luisa Gómez Londoño
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Michelle Momany
- Plant Biology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Marin T. Brewer
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
11
|
A Large Case Series of Neurocysticercosis in Kuwait, a Nonendemic Arabian Gulf Country in the Middle East Region. Microorganisms 2021; 9:microorganisms9061221. [PMID: 34199952 PMCID: PMC8226849 DOI: 10.3390/microorganisms9061221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
Neurocysticercosis (NCC), a leading global cause of severe progressive headache and epilepsy, in developed or affluent countries is mostly diagnosed among immigrants from poor or developing Taenia solium taeniasis-endemic countries. Taeniasis carriers in Kuwait are routinely screened by insensitive stool microscopy. In this study, enzyme-linked immunoelectrotransfer blot (EITB) was used as a confirmatory test for NCC. Screening was performed on 970 patients referred for suspected NCC on the basis of relevant history and/or ring-enhancing lesions on computed tomography and/or magnetic resonance imaging during a 14-year period in Kuwait. Demographic data and clinical details were retrieved from laboratory or hospital records. EITB was positive in 150 subjects (15.5%), including 98 expatriates mostly originating from taeniasis-endemic countries and, surprisingly, 52 Kuwaiti nationals. The clinical details of 48 of 50 NCC cases diagnosed during 2014–2019 were available. Most common symptoms included seizures, persistent headache with/without fever, and fits or loss of consciousness. Cysticercal lesions were located at various brain regions in 39 of 48 patients. Multiple members of 3 families with NCC were identified; infection was linked to domestic workers from taeniasis-endemic countries and confirmed in at least 1 family. Our data show that NCC is predominantly imported in Kuwait by expatriates originating from taeniasis-endemic countries who transmit the infection to Kuwaiti citizens.
Collapse
|
12
|
Potency of olorofim (F901318) compared to contemporary antifungal agents against clinical Aspergillus fumigatus isolates, and review of azole resistance phenotype and genotype epidemiology in China. Antimicrob Agents Chemother 2021; 65:AAC.02546-20. [PMID: 33685896 PMCID: PMC8092882 DOI: 10.1128/aac.02546-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triazole resistance in A. fumigatus is an increasing worldwide problem that causes major challenges in the management of aspergillosis. New antifungal drugs are needed with novel targets, that are effective in triazole-resistant infection. In this study, we retrospectively evaluated potency of the novel drug olorofim compared to contemporary antifungal agents against 111 clinical A. fumigatus isolates collected from Huashan Hospital, Shanghai, China, using EUCAST methodology, and reviewed the literature on triazole resistant A. fumigatus published between 1966 and 2020 in China. Olorofim was active in vitro against all tested A. fumigatus isolates with MIC90 of 0.031mg/L (range 0.008-0.062 mg/L). For 4 triazole-resistant A. fumigatus (TRAF) isolates, the olorofim MIC ranged between 0.016-0.062mg/L. The reported rates of TRAF in China is 2.5% - 5.56% for clinical isolates, and 0-1.4% for environmental isolates.TR34/L98H/S297T/F495I is the predominant resistance mechanism, followed by TR34/L98H. Non TR-mediated TRAF isolates, mostly harboring a cyp51A single point mutation, showed greater genetic diversity than TR-mediated resistant isolates. Resistance due toTR34/L98H and TR34/L98H/S297T/F495I mutations among TRAF isolates might have evolved from separate local isolates in China. Continuous isolation of TRAF in China underscores the need for systematic resistance surveillance as well as the need for novel drug targets such as olorofim.
Collapse
|
13
|
Cao D, Wang F, Yu S, Dong S, Wu R, Cui N, Ren J, Xu T, Wang S, Wang M, Fang H, Yu Y. Prevalence of Azole-Resistant Aspergillus fumigatus is Highly Associated with Azole Fungicide Residues in the Fields. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3041-3049. [PMID: 33544588 DOI: 10.1021/acs.est.0c03958] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Triazole resistance in Aspergillus fumigatus is a growing public health concern. In addition to its emergence in the therapy of invasive aspergillosis by triazole medicines, it has been frequently detected in agricultural fields all over the world. Here, we explore the potential link between residues of azole fungicides with similar chemical structure to triazole medicines in soil and the emergence of resistant A. fumigatus (RAF) through 855 500 km2 monitoring survey in Eastern China covering 6 provinces. In total, 67.3%, 15.2%, 12.3%, 2.9%, 1.5%, 0.4%, and 0.3% of the soil samples contained these five fungicides (tebuconazole, difenoconazole, propiconazole, hexaconazole, and prochloraz) of 0-100, 100-200, 200-400, 400-600, 600-800, 800-1000, and >1000 ng/g, respectively. The fractions of samples containing RAF isolates were 2.4%, 5.2%, 6.4%, 7.7%, 7.4%, 14.3%, and 20.0% of the samples with total azole fungicide residues of 0-100, 100-200, 200-400, 400-600, 600-800, 800-1000, and >1000 ng/g, respectively. We find that the prevalence of RAFs is positively (P < 0.0001) correlated with residual levels of azole fungicides in soils. Our results suggest that the use of azole fungicides in agriculture should be minimized and the intervals between treatments expanded to reduce the selective pressure toward the development of resistance in A. fumigatus in agricultural fields.
Collapse
|
14
|
van der Torre MH, Shen H, Rautemaa-Richardson R, Richardson MD, Novak-Frazer L. Molecular Epidemiology of Aspergillus fumigatus in Chronic Pulmonary Aspergillosis Patients. J Fungi (Basel) 2021; 7:jof7020152. [PMID: 33672698 PMCID: PMC7924367 DOI: 10.3390/jof7020152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular fungal genotyping techniques developed and employed for epidemiological studies have understandably concentrated on establishing the genetic diversity of Aspergillus fumigatus in invasive aspergillosis due to its severity, the urgency for treatment, and the need to demonstrate possible sources. Some early studies suggested that these strains were phenotypically, if not genotypically, different from others. However, with improved discrimination and evaluations, incorporating environmental as well as clinical isolates from other Aspergillus conditions (e.g., chronic pulmonary aspergillosis and cystic fibrosis), this premise is no longer upheld. Moreover, with the onset of increased global triazole resistance, there has been a concerted effort to incorporate resistance profiling into genotyping studies and the realisation that the wider population of non-immunocompromised aspergillosis patients are at risk. This review summarises the developments in molecular genotyping studies that incorporate resistance profiling with attention to chronic pulmonary aspergillosis and an example of our UK experience.
Collapse
Affiliation(s)
- Mireille H. van der Torre
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (R.R.-R.); (M.D.R.)
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Hongwei Shen
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (R.R.-R.); (M.D.R.)
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Department of Infectious Diseases, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK
| | - Malcolm D. Richardson
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (R.R.-R.); (M.D.R.)
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Lilyann Novak-Frazer
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (R.R.-R.); (M.D.R.)
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Correspondence: ; Tel.: +44-161-2915856
| |
Collapse
|
15
|
Assress HA, Selvarajan R, Nyoni H, Ogola HJO, Mamba BB, Msagati TAM. Azole antifungal resistance in fungal isolates from wastewater treatment plant effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3217-3229. [PMID: 32914303 DOI: 10.1007/s11356-020-10688-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants (WWTPs) can be significant sources of antifungal resistant fungi, which can disseminate further in the environment by getting into rivers together with effluents discharged from WWTPs and pose a risk for human health. In this study, the presence of azole resistance was determined in fungal isolates from treated effluents of two WWTPs using the standard microdilution method from Clinical and Laboratory Standards Institute (CLSI). A total of 41 fungal isolates representing 23 fungal species and 16 fungal genera were obtained. Fungal genera related to the known human and/or plant pathogens such as Aspergillus, Fusarium, and Candida were detected. Among the observed species, the susceptibility of Aspergillus fumigatus and Fusarium oxysporum was tested against fluconazole (FCZ), ketoconazole (KTZ), itraconazole (ITZ), and voriconazole (VCZ). The isolate A. fumigatus was susceptible to KTZ, ITZ, and VCZ, while it showed resistance against FCZ. On the contrast, the isolate F. oxysporum showed resistance to KTZ, ITZ, and VCZ. Comparatively, VCZ showed highest activity against both A. fumigatus and F. oxysporum. Analysis of the gene Cyp51A for the A. fumigatus isolate showed no evidence of drug resistance that could be related to point mutations and/or tandem repeats in the gene. To the best of our knowledge, this is the first susceptibility test study on A. fumigatus and F. oxysporum isolates from the WWTPs of South Africa. In conclusion, this study indicated an urgent need for thorough investigation with larger group of fungal isolates from different regions of South Africa to broadly understand the role of WWTPs in the dissemination of azole antifungal drug resistance.
Collapse
Affiliation(s)
- Hailemariam Abrha Assress
- College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida-Park, Roodepoort, Johannesburg, 1709, South Africa
| | - Ramganesh Selvarajan
- College of Agriculture and Environmental Sciences, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida, Johannesburg, 1709, South Africa
| | - Hlengilizwe Nyoni
- College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida-Park, Roodepoort, Johannesburg, 1709, South Africa
| | - Henry Joseph Oduor Ogola
- College of Agriculture and Environmental Sciences, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida, Johannesburg, 1709, South Africa
| | - Bhekie B Mamba
- College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida-Park, Roodepoort, Johannesburg, 1709, South Africa
- State Key Laboratory of Separation Membranes and Membrane Process/National Center for International Joint Research on Membrane Science and Technology, Tianjin, 300387, People's Republic of China
| | - Titus A M Msagati
- College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida-Park, Roodepoort, Johannesburg, 1709, South Africa.
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P O Box 447, Tengeru, Arusha, United Republic of Tanzania.
| |
Collapse
|
16
|
Campbell CA, Osaigbovo II, Oladele RO. Triazole susceptibility of Aspergillus species: environmental survey in Lagos, Nigeria and review of the rest of Africa. Ther Adv Infect Dis 2021; 8:20499361211044330. [PMID: 34532039 PMCID: PMC8438939 DOI: 10.1177/20499361211044330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/18/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Triazole resistance is an emerging problem in the management of human aspergillosis globally and can arise in Aspergillus species which have been exposed to azole fungicides in the environment. We surveyed local government and council development areas in Lagos, Nigeria, to determine the distribution of Aspergillus species in the environment and their susceptibility to locally available triazole antifungal agents. We also reviewed the literature on the subject from the rest of Africa. METHODS A total of 168 soil samples from six locations in Lagos, Nigeria were processed and cultured on Saboraud dextrose agar impregnated with chloramphenicol to isolate Aspergillus species. Isolates were tested for susceptibility to itraconazole and voriconazole by microbroth dilution according to the European Committee on Antimicrobial Susceptibility Testing reference method. Relevant databases were searched to identify published work pertaining to triazole susceptibility of Aspergillus species in Africa. RESULTS A total of 117 Aspergillus species were isolated. Aspergillus niger was the most frequently isolated species (42.7%). Other species isolated were Aspergillus flavus, 37 (31.6%), Aspergillus terreus, 20 (17.1%), Aspergillus fumigatus, 5 (4.3%) and Aspergillus nidulans, 5 (4.3%). All isolates were susceptible to itraconazole and voriconazole. The literature review showed documented evidence of triazole-resistant Aspergillus species from East and West Africa. CONCLUSIONS We found no triazole resistance in environmental isolates of Aspergillus in Lagos, Nigeria. Nevertheless, regular surveillance in clinical and environmental isolates is necessary in the light of findings from other African studies.
Collapse
Affiliation(s)
- Cynthia Abosede Campbell
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Iriagbonse Iyabo Osaigbovo
- Department of Medical Microbiology, School of Medicine, College of Medical Sciences, University of Benin, Benin City, Nigeria
- Department of Medical Microbiology, University of Benin Teaching Hospital, Benin City, Nigeria
| | - Rita Okeoghene Oladele
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Medical Microbiology and Parasitology, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria
| |
Collapse
|
17
|
Duong TMN, Nguyen PT, Le TV, Nguyen HLP, Nguyen BNT, Nguyen BPT, Nguyen TA, Chen SCA, Barrs VR, Halliday CL, Sorrell TC, Day JN, Beardsley J. Drug-Resistant Aspergillus flavus Is Highly Prevalent in the Environment of Vietnam: A New Challenge for the Management of Aspergillosis? J Fungi (Basel) 2020; 6:jof6040296. [PMID: 33217930 PMCID: PMC7711995 DOI: 10.3390/jof6040296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 01/10/2023] Open
Abstract
The burden of aspergillosis, especially Chronic Pulmonary Aspergillosis, is increasingly recognized, and the increasing presence of azole-resistant environmental Aspergillus fumigatus has been highlighted as a health risk. However, a sizable minority of aspergillosis is caused by Aspergillus flavus, which is assumed to be sensitive to azoles but is infrequently included in surveillance. We conducted environmental sampling at 150 locations in a rural province of southern Vietnam. A. flavus isolates were identified morphologically, their identity was confirmed by sequencing of the beta-tubulin gene, and then they were tested for susceptibility to azoles and amphotericin B according to EUCAST methodologies. We found that over 85% of A. flavus isolates were resistant to at least one azole, and half of them were resistant to itraconazole. This unexpectedly high prevalence of resistance demands further investigation to determine whether it is linked to agricultural azole use, as has been described for A. fumigatus. Clinical correlation is required, so that guidelines can be adjusted to take this information into account.
Collapse
Affiliation(s)
- Tra My N. Duong
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia; (T.M.N.D.); (T.A.N.); (S.C.-A.C.); (V.R.B.); (C.L.H.); (T.C.S.)
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam; (P.T.N.); (T.V.L.); (J.N.D.)
| | - Phuong Tuyen Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam; (P.T.N.); (T.V.L.); (J.N.D.)
| | - Thanh Van Le
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam; (P.T.N.); (T.V.L.); (J.N.D.)
| | | | - Bich Ngoc T. Nguyen
- National Lung Hospital, Hanoi 10000, Vietnam;
- Tuberculosis and Lung Diseases Department, Hanoi Medical University, Hanoi 10000, Vietnam
| | | | - Thu Anh Nguyen
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia; (T.M.N.D.); (T.A.N.); (S.C.-A.C.); (V.R.B.); (C.L.H.); (T.C.S.)
- Woolcock Institute of Medical Research, Hanoi 10000, Vietnam;
| | - Sharon C.-A. Chen
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia; (T.M.N.D.); (T.A.N.); (S.C.-A.C.); (V.R.B.); (C.L.H.); (T.C.S.)
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Sydney 2145, Australia
| | - Vanessa R. Barrs
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia; (T.M.N.D.); (T.A.N.); (S.C.-A.C.); (V.R.B.); (C.L.H.); (T.C.S.)
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Catriona L. Halliday
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia; (T.M.N.D.); (T.A.N.); (S.C.-A.C.); (V.R.B.); (C.L.H.); (T.C.S.)
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Sydney 2145, Australia
| | - Tania C. Sorrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia; (T.M.N.D.); (T.A.N.); (S.C.-A.C.); (V.R.B.); (C.L.H.); (T.C.S.)
- Westmead Institute for Medical Research, Westmead, Sydney 2145, Australia
| | - Jeremy N. Day
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam; (P.T.N.); (T.V.L.); (J.N.D.)
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Justin Beardsley
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia; (T.M.N.D.); (T.A.N.); (S.C.-A.C.); (V.R.B.); (C.L.H.); (T.C.S.)
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam; (P.T.N.); (T.V.L.); (J.N.D.)
- Westmead Institute for Medical Research, Westmead, Sydney 2145, Australia
- Correspondence: ; Tel.: +61-8627-3402
| |
Collapse
|
18
|
Five-Year Survey (2014 to 2018) of Azole Resistance in Environmental Aspergillus fumigatus Isolates from China. Antimicrob Agents Chemother 2020; 64:AAC.00904-20. [PMID: 32718960 DOI: 10.1128/aac.00904-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/19/2020] [Indexed: 01/05/2023] Open
Abstract
A total of 191 soil samples from Hangzhou, China, were submitted to detect non-wild-type (non-WT) Aspergillus fumigatus and its associated mechanisms. There were 2 (4.7%), 13 (12.4%), and 31 (23.1%) isolates identified as non-WT in 2014, 2016, and 2018, respectively. The resistant mutations of TR34/L98H, TR46/Y121F/T289A, and TR34/L98H/S297T/F495I were found in 3, 5, and 5 non-WT isolates. The G448S mutation, previously only found in clinical settings, was detected in A. fumigatus from soil samples.
Collapse
|
19
|
Assessment of Children’s Potential Exposure to Bioburden in Indoor Environments. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The exposure to particles and bioaerosols has been associated with the increase in health effects in children. The objective of this study was to assess the indoor exposure to bioburden in the indoor microenvironments more frequented by children. Air particulate matter (PM) and settled dust were sampled in 33 dwellings and four schools with a medium volume sampler and with a passive method using electrostatic dust collectors (EDC), respectively. Settled dust collected by EDC was analyzed by culture-based methods (including azole resistance profile) and using qPCR. Results showed that the PM2.5 and PM10 concentrations in classrooms (31.15 μg/m3 and 57.83 μg/m3, respectively) were higher than in homes (15.26 μg/m3 and 18.95 μg/m3, respectively) and highly exceeded the limit values established by the Portuguese legislation for indoor air quality. The fungal species most commonly found in bedrooms was Penicillium sp. (91.79%), whereas, in living rooms, it was Rhizopus sp. (37.95%). Aspergillus sections with toxigenic potential were found in bedrooms and living rooms and were able to grow on VOR. Although not correlated with PM, EDC provided information regarding the bioburden. Future studies, applying EDC coupled with PM assessment, should be implemented to allow for a long-term integrated sample of organic dust.
Collapse
|
20
|
Mixed infection with itraconazole-susceptible and-resistant strains of Aspergillus fumigatus: Diagnostic and therapeutic implications. J Infect Public Health 2020; 13:664-666. [DOI: 10.1016/j.jiph.2020.01.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/15/2020] [Indexed: 11/23/2022] Open
|
21
|
Tsuchido Y, Tanaka M, Nakano S, Yamamoto M, Matsumura Y, Nagao M. Prospective multicenter surveillance of clinically isolated Aspergillus species revealed azole-resistant Aspergillus fumigatus isolates with TR34/L98H mutation in the Kyoto and Shiga regions of Japan. Med Mycol 2020; 57:997-1003. [PMID: 30690480 DOI: 10.1093/mmy/myz003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 11/14/2022] Open
Abstract
The prevalence of azole-resistant Aspergillus fumigatus (ARAF) in Japan is unclear. We aimed to investigate the epidemiology of clinically isolated Aspergillus species and the frequency of azole resistance in Aspergillus species, particularly Aspergillus fumigatus, in the Kyoto and Shiga regions of Japan. Strains of clinically isolated Aspergillus species were prospectively collected from nine acute care hospitals. Species identification was performed by DNA sequence analysis, and all strains were subjected to antifungal susceptibility testing. Sequencing of the Aspergillus cyp51A gene and promoter region and genotyping by short tandem repeats were performed for ARAF isolates. A total of 149 strains were collected, and 130 strains were included for the subsequent analysis after the exclusion of duplicate isolates. The most commonly isolated species was Aspergillus fumigatus, accounting for 43.1% (56 isolates) overall, and seven (12.7%) of 55 strains of A. fumigatus were azole-resistant. Azole-resistance of other Aspergillus species were also found that two (22.2%) of nine strains of A. tubingensis and two (28.6%) of seven strains of A. flavus were azole-resistant. DNA sequence analysis of the ARAF strains revealed that two carried the cyp51A TR34/L98H mutation, one carried G448S, one carried M220I, and three had no relevant mutations (wild type). Genotyping and phylogenetic analyses showed that the TR34/L98H strains were clustered with the strains from the Netherlands and France. These data suggest the emergence of ARAF with TR34/L98H in Japan, and continuous surveillance will be important to identify trends in resistance.
Collapse
Affiliation(s)
- Yasuhiro Tsuchido
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michio Tanaka
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Nakano
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
22
|
Elevated Prevalence of Azole-Resistant Aspergillus fumigatus in Urban versus Rural Environments in the United Kingdom. Antimicrob Agents Chemother 2019; 63:AAC.00548-19. [PMID: 31235621 DOI: 10.1128/aac.00548-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
Azole resistance in the opportunistic pathogen Aspergillus fumigatus is increasing, dominated primarily by the following two environmentally associated resistance alleles: TR34/L98H and TR46/Y121F/T289A. By sampling soils across the South of England, we assess the prevalence of azole-resistant A. fumigatus (ARAf) in samples collected in both urban and rural locations. We characterize the susceptibility profiles of the resistant isolates to three medical azoles, identify the underlying genetic basis of resistance, and investigate their genetic relationships. ARAf was detected in 6.7% of the soil samples, with a higher prevalence in urban (13.8%) than rural (1.1%) locations. Twenty isolates were confirmed to exhibit clinical breakpoints for resistance to at least one of three medical azoles, with 18 isolates exhibiting resistance to itraconazole, 6 to voriconazole, and 2 showing elevated minimum inhibitory concentrations to posaconazole. Thirteen of the resistant isolates harbored the TR34/L98H resistance allele, and six isolates carried the TR46/Y121F/T289A allele. The 20 azole-resistant isolates were spread across five csp1 genetic subtypes, t01, t02, t04B, t09, and t18 with t02 being the predominant subtype. Our study demonstrates that ARAf can be easily isolated in the South of England, especially in urban city centers, which appear to play an important role in the epidemiology of environmentally linked drug-resistant A. fumigatus.
Collapse
|
23
|
Salah H, Lackner M, Houbraken J, Theelen B, Lass-Flörl C, Boekhout T, Almaslamani M, Taj-Aldeen SJ. The Emergence of Rare Clinical Aspergillus Species in Qatar: Molecular Characterization and Antifungal Susceptibility Profiles. Front Microbiol 2019; 10:1677. [PMID: 31447794 PMCID: PMC6697061 DOI: 10.3389/fmicb.2019.01677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022] Open
Abstract
Aspergillus are ubiquitous mold species that infect immunocompetent and immunocompromised patients. The symptoms are diverse and range from allergic reactions, bronchopulmonary infection, and bronchitis, to invasive aspergillosis. The aim of this study was to characterize 70 Aspergillus isolates recovered from clinical specimens of patients with various clinical conditions presented at Hamad general hospital in Doha, Qatar, by using molecular methods and to determine their in vitro antifungal susceptibility patterns using the Clinical and Laboratory Standards Institute (CLSI) M38-A2 reference method. Fourteen Aspergillus species were identified by sequencing β-tubulin and calmodulin genes, including 10 rare and cryptic species not commonly recovered from human clinical specimens. Aspergillus welwitschiae is reported in this study for the first time in patients with fungal rhinosinusitis (n = 6) and one patient with a lower respiratory infection. Moreover, Aspergillus pseudonomius is reported in a patient with fungal rhinosinusitis which is considered as the first report ever from clinical specimens. In addition, Aspergillus sublatus is reported for the first time in a patient with cystic fibrosis. In general, our Aspergillus strains exhibited low MIC values for most of the antifungal drugs tested. One strain of Aspergillus fumigatus showed high MECs for echinocandins and low MICs for the rest of the drugs tested. Another strain of A. fumigatus exhibited high MIC for itraconazole and categorized as non-wild type. These findings require further analysis of their molecular basis of resistance. In conclusion, reliable identification of Aspergillus species is achieved by using molecular sequencing, especially for the emerging rare and cryptic species. They are mostly indistinguishable by conventional methods and might exhibit variable antifungal susceptibility profiles. Moreover, investigation of the antifungal susceptibility patterns is necessary for improved antifungal therapy against aspergillosis.
Collapse
Affiliation(s)
- Husam Salah
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar.,Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jos Houbraken
- Applied and Industrial Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Bart Theelen
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Teun Boekhout
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Netherlands
| | - Muna Almaslamani
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Netherlands
| | - Saad J Taj-Aldeen
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
24
|
Emerging Fungal Infections: New Patients, New Patterns, and New Pathogens. J Fungi (Basel) 2019; 5:jof5030067. [PMID: 31330862 PMCID: PMC6787706 DOI: 10.3390/jof5030067] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/13/2023] Open
Abstract
The landscape of clinical mycology is constantly changing. New therapies for malignant and autoimmune diseases have led to new risk factors for unusual mycoses. Invasive candidiasis is increasingly caused by non-albicans Candida spp., including C. auris, a multidrug-resistant yeast with the potential for nosocomial transmission that has rapidly spread globally. The use of mould-active antifungal prophylaxis in patients with cancer or transplantation has decreased the incidence of invasive fungal disease, but shifted the balance of mould disease in these patients to those from non-fumigatus Aspergillus species, Mucorales, and Scedosporium/Lomentospora spp. The agricultural application of triazole pesticides has driven an emergence of azole-resistant A. fumigatus in environmental and clinical isolates. The widespread use of topical antifungals with corticosteroids in India has resulted in Trichophyton mentagrophytes causing recalcitrant dermatophytosis. New dimorphic fungal pathogens have emerged, including Emergomyces, which cause disseminated mycoses globally, primarily in HIV infected patients, and Blastomyceshelicus and B. percursus, causes of atypical blastomycosis in western parts of North America and in Africa, respectively. In North America, regions of geographic risk for coccidioidomycosis, histoplasmosis, and blastomycosis have expanded, possibly related to climate change. In Brazil, zoonotic sporotrichosis caused by Sporothrix brasiliensis has emerged as an important disease of felines and people.
Collapse
|
25
|
Triazole resistance in Aspergillus fumigatus: recent insights and challenges for patient management. Clin Microbiol Infect 2019; 25:799-806. [DOI: 10.1016/j.cmi.2018.11.027] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 01/18/2023]
|
26
|
Thammahong A, Dhingra S, Bultman KM, Kerkaert JD, Cramer RA. An Ssd1 Homolog Impacts Trehalose and Chitin Biosynthesis and Contributes to Virulence in Aspergillus fumigatus. mSphere 2019; 4:e00244-19. [PMID: 31068436 PMCID: PMC6506620 DOI: 10.1128/msphere.00244-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022] Open
Abstract
Regulation of fungal cell wall biosynthesis is critical to maintain cell wall integrity in dynamic fungal infection microenvironments. Genes involved in this response that impact fungal fitness and host immune responses remain to be fully defined. In this study, we observed that a yeast ssd1 homolog, ssdA, in the filamentous fungus Aspergillus fumigatus is involved in trehalose and cell wall homeostasis. An ssdA null mutant strain exhibited an increase in trehalose levels and a reduction in fungal colony growth rate. In contrast, overexpression of ssdA perturbed trehalose biosynthesis and reduced germination of conidia. The ssdA null mutant strain was more resistant to cell wall-perturbing agents, while overexpression of ssdA increased sensitivity. Overexpression of ssdA significantly increased chitin levels, and both loss and overexpression of ssdA altered subcellular localization of the class V chitin synthase CsmA. Strikingly, overexpression of ssdA abolished adherence to abiotic surfaces and severely attenuated the virulence of A. fumigatus in a murine model of invasive pulmonary aspergillosis. Despite the severe in vitro fitness defects observed upon loss of ssdA, neither surface adherence nor murine survival was impacted. In conclusion, A. fumigatus SsdA plays a critical role in cell wall homeostasis impacting A. fumigatus-host interactions.IMPORTANCE The incidence of life-threatening infections caused by the filamentous fungus Aspergillus fumigatus is increasing along with an increase in the number of fungal strains resistant to contemporary antifungal therapies. The fungal cell wall and the associated carbohydrates required for its synthesis and maintenance are attractive drug targets given that many genes encoding proteins involved in cell wall biosynthesis and integrity are absent in humans. Importantly, genes and associated cell wall biosynthesis and homeostasis regulatory pathways remain to be fully defined in A. fumigatus In this report, we identify SsdA as an important component of trehalose and fungal cell wall biosynthesis in A. fumigatus that consequently impacts the host immune response and fungal virulence in animal models of infection.
Collapse
Affiliation(s)
- Arsa Thammahong
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Katherine M Bultman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joshua D Kerkaert
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
27
|
Kemoi EK, Nyerere A, Bii CC. Triazole-Resistant Aspergillus fumigatus from Fungicide-Experienced Soils in Naivasha Subcounty and Nairobi County, Kenya. Int J Microbiol 2018; 2018:7147938. [PMID: 30046310 PMCID: PMC6038473 DOI: 10.1155/2018/7147938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/06/2017] [Accepted: 05/03/2018] [Indexed: 11/18/2022] Open
Abstract
The mainstay in prevention and treatment of aspergillosis is the use triazole drugs. In Kenya, the use of agricultural azole is one of the predisposing factors in development of resistance. One hundred fifty-six (156) experienced soils were collected from agricultural farms and cultured on Sabouraud DextroseAagar. The study isolated 48 yielded Aspergillus fumigatus and 2 A. flavus. All the isolates were subjected to antifungal susceptibility testing against three triazoles: posaconazole, voriconazole, and itraconazole. Out of the isolates, 3 had MIC of 32 and 1 had MIC of 16 against itraconazole, and 1 isolate had MIC of 32 against posaconazole. CYP51A gene was sequenced, and TR34/L98H mutation was identified. Triazole resistance existing in Kenya calls for rational use of azole-based fungicides in agriculture over concerns of emerging antifungal resistance in clinical practice.
Collapse
Affiliation(s)
- Edson K. Kemoi
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- University of Kabianga, Kericho, Kenya
| | - Andrew Nyerere
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | |
Collapse
|
28
|
Berkow EL, Nunnally NS, Bandea A, Kuykendall R, Beer K, Lockhart SR. Detection of TR 34/L98H CYP51A Mutation through Passive Surveillance for Azole-Resistant Aspergillus fumigatus in the United States from 2015 to 2017. Antimicrob Agents Chemother 2018; 62:e02240-17. [PMID: 29463545 PMCID: PMC5923109 DOI: 10.1128/aac.02240-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/04/2018] [Indexed: 11/20/2022] Open
Abstract
The emergence of azole-resistant Aspergillus fumigatus has become a clinical problem in many parts of the world. Several amino acid mutations in the azole target protein Cyp51Ap contribute to this resistance, with the most concerning being the environmentally derived TR34/L98H and TR46/Y121F/T289A mutations. Here, we performed passive surveillance to assess a sample of the A. fumigatus population in the United States for the presence of these mutations. We found 1.4% of those isolates to exhibit elevated MIC via broth microdilution, and five of those isolates harbored the TR34/L98H mutation.
Collapse
Affiliation(s)
- Elizabeth L Berkow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Natalie S Nunnally
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alex Bandea
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Randall Kuykendall
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Karlyn Beer
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Elevated MIC Values of Imidazole Drugs against Aspergillus fumigatus Isolates with TR 34/L98H/S297T/F495I Mutation. Antimicrob Agents Chemother 2018; 62:AAC.01549-17. [PMID: 29507067 DOI: 10.1128/aac.01549-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/25/2018] [Indexed: 11/20/2022] Open
Abstract
The use of azole fungicides in agriculture is believed to be one of the main reasons for the emergence of azole resistance in Aspergillus fumigatus Though widely used in agriculture, imidazole fungicides have not been linked to resistance in A. fumigatus This study showed that elevated MIC values of imidazole drugs were observed against A. fumigatus isolates with TR34/L98H/S297T/F495I mutation, but not among isolates with TR34/L98H mutation. Short-tandem-repeat (STR) typing analysis of 580 A. fumigatus isolates from 20 countries suggested that the majority of TR34/L98H/S297T/F495I strains from China were genetically different from the predominant major clade comprising most of the azole-resistant strains and the strains with the same mutation from the Netherlands and Denmark. Alignments of sterol 14α-demethylase sequences suggested that F495I in A. fumigatus was orthologous to F506I in Penicillium digitatum and F489L in Pyrenophora teres, which have been reported to be associated with imidazole resistance. In vitro antifungal susceptibility testing of different recombinants with cyp51A mutations further confirmed the association of the F495I mutation with imidazole resistance. In conclusion, this study suggested that environmental use of imidazole fungicides might confer selection pressure for the emergence of azole resistance in A. fumigatus.
Collapse
|
30
|
Dauchy C, Bautin N, Nseir S, Reboux G, Wintjens R, Le Rouzic O, Sendid B, Viscogliosi E, Le Pape P, Arendrup MC, Gosset P, Fry S, Fréalle E. Emergence of Aspergillus fumigatus azole resistance in azole-naïve patients with chronic obstructive pulmonary disease and their homes. INDOOR AIR 2018; 28:298-306. [PMID: 29082624 DOI: 10.1111/ina.12436] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Azole-resistant Aspergillus fumigatus (ARAF) has been reported in patients with chronic obstructive pulmonary disease (COPD) but has not been specifically assessed so far. Here, we evaluated ARAF prevalence in azole-naïve COPD patients and their homes, and assessed whether CYP51A mutations were similar in clinical and environmental reservoirs. Sixty respiratory samples from 41 COPD patients with acute exacerbation and environmental samples from 36 of these patient's homes were prospectively collected. A. fumigatus was detected in respiratory samples from 11 of 41 patients (27%) and in 15 of 36 domiciles (42%). Cyp51A sequencing and selection on itraconazole medium of clinical (n = 68) and environmental (n = 48) isolates yielded ARAF detection in 1 of 11 A. fumigatus colonized patients with COPD (9%) and 2 of 15 A. fumigatus-positive patient's homes (13%). The clinical isolate had no CYP51A mutation. Two environmental isolates from two patients harbored TR34 /L98H mutation, and one had an H285Y mutation. Coexistence of different cyp51A genotypes and/or azole resistance profiles was detected in 3 of 8 respiratory and 2 of 10 environmental samples with more than one isolate, confirming the need for a systematic screening of all clinically relevant isolates. The high prevalence of ARAF in patients with COPD and their homes supports the need for further studies to assess the prevalence of azole resistance in patients with Aspergillus diseases in Northern France.
Collapse
Affiliation(s)
- C Dauchy
- CHU Lille, Laboratoire de Parasitologie-Mycologie, Lille, France
| | - N Bautin
- CHU Lille, Department of Respiratory Diseases, Lille, France
| | - S Nseir
- CHU Lille, Critical Care Center, Lille, France
| | - G Reboux
- Chrono-Environnement UMR 6249 CNRS, Université de Bourgogne Franche-Comté & Laboratoire de Parasitologie-Mycologie, CHU de Besançon, Hôpital Jean-Minjoz, Besançon, France
| | - R Wintjens
- Research in Drug Development, Faculté de Pharmacie, Université Libre de Bruxelles, Bruxelles, Belgium
| | - O Le Rouzic
- CHU Lille, Department of Respiratory Diseases, Lille, France
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - B Sendid
- CHU Lille, Laboratoire de Parasitologie-Mycologie, Lille, France
- Inserm U995, Université de Lille, Lille, France
| | - E Viscogliosi
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - P Le Pape
- EA1155-IICiMed, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| | - M C Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - P Gosset
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - S Fry
- CHU Lille, Department of Respiratory Diseases, Lille, France
| | - E Fréalle
- CHU Lille, Laboratoire de Parasitologie-Mycologie, Lille, France
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
31
|
Vaezi A, Fakhim H, Javidnia J, Khodavaisy S, Abtahian Z, Vojoodi M, Nourbakhsh F, Badali H. Pesticide behavior in paddy fields and development of azole-resistant Aspergillus fumigatus : Should we be concerned? J Mycol Med 2018; 28:59-64. [DOI: 10.1016/j.mycmed.2017.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 10/17/2022]
|
32
|
Tangwattanachuleeporn M, Minarin N, Saichan S, Sermsri P, Mitkornburee R, Groß U, Chindamporn A, Bader O. Prevalence of azole-resistant Aspergillus fumigatus in the environment of Thailand. Med Mycol 2018; 55:429-435. [PMID: 27664994 DOI: 10.1093/mmy/myw090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/07/2016] [Indexed: 12/18/2022] Open
Abstract
Occurrence of azole-resistant Aspergillus fumigatus (ARAF) in the environment is an emerging problem worldwide, likely impacting on patient treatment. Several resistance mutations are thought to have initially arisen through triazole-based fungicide use in agriculture and subsequently being propagated in a similar manner. Here we investigated the prevalence of ARAF in the environment of Thailand and characterized their susceptibility profiles toward clinically used azole compounds along with underlying resistance mutations. Three hundred and eight soil samples were collected and analyzed, out of which 3.25% (n = 10) were positive for ARAF. All isolates obtained were resistant to itraconazole (MIC ≥ 8 μg/ml), two showed additional increased MIC values toward posaconazole (MIC = 0.5 μg/ml), and one other toward voriconazole (MIC = 2 μg/ml). Sequencing of the respective cyp51A genes revealed that eight of the isolates carried the TR34/L98H allele and those two with elevated MIC values to posaconazole the G54R substitution. Although a clear correlation between the use of triazole-based fungicides and isolation of ARAF strains from agricultural lands could not be established for Thailand, but this study clearly demonstrates the spread of globally observed ARAF strains to the environment of South East Asia.
Collapse
Affiliation(s)
| | - Nanthakan Minarin
- Medical Technology Unit, Faculty of Allied Health Sciences, Burapha University, Chon Buri, Thailand
| | - Saranya Saichan
- Biomedical Sciences Unit, Faculty of Allied Health Sciences, Burapha University, Chon Buri, Thailand
| | - Pornsuda Sermsri
- Biomedical Sciences Unit, Faculty of Allied Health Sciences, Burapha University, Chon Buri, Thailand
| | - Ruthairat Mitkornburee
- Biomedical Sciences Unit, Faculty of Allied Health Sciences, Burapha University, Chon Buri, Thailand
| | - Uwe Groß
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Ariya Chindamporn
- Mycology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| |
Collapse
|
33
|
Wang HC, Huang JC, Lin YH, Chen YH, Hsieh MI, Choi PC, Lo HJ, Liu WL, Hsu CS, Shih HI, Wu CJ, Chen YC. Prevalence, mechanisms and genetic relatedness of the human pathogenic fungus Aspergillus fumigatus exhibiting resistance to medical azoles in the environment of Taiwan. Environ Microbiol 2017; 20:270-280. [PMID: 29124846 DOI: 10.1111/1462-2920.13988] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 12/01/2022]
Abstract
Emerging azole resistance in Aspergillus fumigatus poses a serious threat to human health. This nationwide surveillance study investigated the prevalence and molecular characteristics of azole-resistant A. fumigatus environmental isolates in Taiwan, an island country with increasing use of azole fungicides. Of the 2760 air and soil samples screened from 2014 to 2016, 451 A. fumigatus isolates were recovered from 266 samples and 34 isolates from 29 samples displayed resistance to medical azoles (itraconazole, voriconazole or posaconazole). The resistance prevalence was 10.9% and 7.5% in A. fumigatus-positive samples and isolates respectively. Most (29, 85.3%) azole-resistant isolates harboured TR34 /L98H mutations, which were widely distributed, clustered genetically with clinical isolates, and had growth rates that were similar to those of the wild-type isolates. Microsatellite genotyping revealed both the global spread of the TR34 /L98H isolates and the occurrence of TR34 /L98H/S297T/F495I isolates belonging to local microsatellite genotypes. AfuMDR3 and atrF, two efflux transporter genes, were constitutively upregulated in two individual resistant isolates without cyp51A mutations, highlighting their potential roles in azole resistance. These results emphasize the need for periodic environmental surveillance at the molecular level in regions in which azole fungicides are applied, and agricultural fungicide management strategies that generate less selective pressure should be investigated.
Collapse
Affiliation(s)
- Hsuan-Chen Wang
- Division of Infectious Diseases, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zunan, Taiwan
| | - Jui-Chang Huang
- Division of Crop Environment, Tainan District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Tainan, Taiwan
| | - Yong-Hong Lin
- Division of Crop Environment, Kaohsiung District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Pingtung, Taiwan
| | - Yu-Hsin Chen
- Division of Crop Improvement, Taichung District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Ming-I Hsieh
- Division of Infectious Diseases, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zunan, Taiwan
| | - Pui-Ching Choi
- Division of Infectious Diseases, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zunan, Taiwan
| | - Hsiu-Jung Lo
- Division of Infectious Diseases, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zunan, Taiwan.,School of Dentistry, China Medical University, Taichung, Taiwan
| | - Wei-Lun Liu
- Department of Emergency and Critical Care Medicine, Fu Jen Catholic University Hospital, New Taipei, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Ching-Shan Hsu
- Department of Environmental Resource Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Hsin-I Shih
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Jung Wu
- Division of Infectious Diseases, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zunan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
34
|
Meis JF, Chowdhary A, Rhodes JL, Fisher MC, Verweij PE. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0460. [PMID: 28080986 DOI: 10.1098/rstb.2015.0460] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/05/2016] [Indexed: 01/23/2023] Open
Abstract
Aspergillus fungi are the cause of an array of diseases affecting humans, animals and plants. The triazole antifungal agents itraconazole, voriconazole, isavuconazole and posaconazole are treatment options against diseases caused by Aspergillus However, resistance to azoles has recently emerged as a new therapeutic challenge in six continents. Although de novo azole resistance occurs occasionally in patients during azole therapy, the main burden is the aquisition of resistance through the environment. In this setting, the evolution of resistance is attributed to the widespread use of azole-based fungicides. Although ubiquitously distributed, A. fumigatus is not a phytopathogen. However, agricultural fungicides deployed against plant pathogenic moulds such as Fusarium, Mycospaerella and A. flavus also show activity against A. fumigatus in the environment and exposure of non-target fungi is inevitable. Further, similarity in molecule structure between azole fungicides and antifungal drugs results in cross-resistance of A. fumigatus to medical azoles. Clinical studies have shown that two-thirds of patients with azole-resistant infections had no previous history of azole therapy and high mortality rates between 50% and 100% are reported in azole-resistant invasive aspergillosis. The resistance phenotype is associated with key mutations in the cyp51A gene, including TR34/L98H, TR53 and TR46/Y121F/T289A resistance mechanisms. Early detection of resistance is of paramount importance and if demonstrated, either with susceptibility testing or through molecular analysis, azole monotherapy should be avoided. Liposomal amphotericin B or a combination of voriconazole and an echinocandin are recomended for azole-resistant aspergillosis.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
Collapse
Affiliation(s)
- Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wihelmina Hospital (CWZ), Nijmegen, The Netherlands .,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc/CWZ Centre of Excellence in Mycology, Nijmegen, The Netherlands
| | - Anuradha Chowdhary
- Department of Medical Microbiology, Division of Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Johanna L Rhodes
- Department of Infectious Disease Epidemiology, Imperial College School of Public Health, St Mary's Campus, London, UK
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, Imperial College School of Public Health, St Mary's Campus, London, UK
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc/CWZ Centre of Excellence in Mycology, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Molecular Tools for the Detection and Deduction of Azole Antifungal Drug Resistance Phenotypes in Aspergillus Species. Clin Microbiol Rev 2017; 30:1065-1091. [PMID: 28903985 DOI: 10.1128/cmr.00095-16] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The incidence of azole resistance in Aspergillus species has increased over the past years, most importantly for Aspergillus fumigatus. This is partially attributable to the global spread of only a few resistance alleles through the environment. Secondary resistance is a significant clinical concern, as invasive aspergillosis with drug-susceptible strains is already difficult to treat, and exclusion of azole-based antifungals from prophylaxis or first-line treatment of invasive aspergillosis in high-risk patients would dramatically limit drug choices, thus increasing mortality rates for immunocompromised patients. Management options for invasive aspergillosis caused by azole-resistant A. fumigatus strains were recently reevaluated by an international expert panel, which concluded that drug resistance testing of cultured isolates is highly indicated when antifungal therapy is intended. In geographical regions with a high environmental prevalence of azole-resistant strains, initial therapy should be guided by such analyses. More environmental and clinical screening studies are therefore needed to generate the local epidemiologic data if such measures are to be implemented on a sound basis. Here we propose a first workflow for evaluating isolates from screening studies, and we compile the MIC values correlating with individual amino acid substitutions in the products of cyp51 genes for interpretation of DNA sequencing data, especially in the absence of cultured isolates.
Collapse
|
36
|
Al-Obaid K, Asadzadeh M, Ahmad S, Khan Z. Population structure and molecular genetic characterization of clinical Candida tropicalis isolates from a tertiary-care hospital in Kuwait reveal infections with unique strains. PLoS One 2017; 12:e0182292. [PMID: 28854190 PMCID: PMC5576731 DOI: 10.1371/journal.pone.0182292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/15/2017] [Indexed: 11/19/2022] Open
Abstract
Candida tropicalis is a frequently isolated yeast species causing bloodstream, urinary tract and other infections particularly in patients admitted to intensive care units (ICUs) and those requiring prolonged urinary catheterization (UC) or receiving broad-spectrum antibiotics (BSA). This study investigated clinical characteristics and genetic relatedness among C. tropicalis strains isolated from patients at Al-Amiri Hospital in Kuwait. C. tropicalis strains (n = 63) isolated from blood, genito-urinary, respiratory (RT) and digestive (GIT) tracts and wound sites from 54 patients were used. All isolates were phenotypically identified and tested against six antifungal drugs by using Vitek 2 system. Molecular identification was performed by PCR amplification of rDNA. Fingerprinting was achieved by 6-loci-based multilocus sequence typing (MLST) and data were analyzed by BioNumerics software for phylogenetic relationships. Patients mean age was >65 years and >20% patients were hospitalized in ICUs. Most patients had underlying conditions that included UC, BSA, diabetes and RT/GIT abnormalities. Most candiduria cases had UC, ureteric stent or suprapubic catheters. All isolates were identified as C. tropicalis by Vitek 2 and by species-specific PCR. Sixty-two isolates were susceptible to all tested antifungal drugs. MLST identified 59 diploid sequence types (DSTs) including 54 newly-identified DSTs. C. tropicalis isolates from multiple sites of same patient usually belonged to different DSTs. Interestingly, 56 of 57 isolates from 48 patients belonged to unique genotypes. Only six isolates from six patients belonged to three DSTs (clusters), however, C. tropicalis strains in each cluster were isolated >3 months apart. Our data show diverse origins of C. tropicalis infections in Kuwait as most isolates were unique strains. There was no obvious correlation between cluster isolates with time of isolation and/or hospital ward of their origin. This study presents the first MLST analysis of C. tropicalis isolates from Middle East and may be useful for studying genetic relationships among global C. tropicalis strains.
Collapse
Affiliation(s)
- Khaled Al-Obaid
- Microbiology, Department of Medical Laboratories, Al-Amiri Hospital, Sharq, Kuwait
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- * E-mail:
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
37
|
Abstract
Aspergillus spp. are important fungi because of the high mortality associated with aspergillosis. However, we have only three classes of anti-aspergillus drugs available; and only two drugs, itraconazole (ITCZ) and voriconazole (VRCZ), are available as oral agents in Japan. If azole-resistant Aspergillus causes chronic aspergillosis, we cannot treat such patients with oral azoles on an outpatient basis. As is the case with foreign countries, we found the existence of azole-resistant Aspergillus fumigatus in clinical settings in Japan. Resistance was attributed to mutations of the target protein (CYP51A). Additionally, we also found that long-term itraconazole treatment induced G54 substitution in CYP51A, causing itraconazole-resistance. Although there are few resistant Aspergillus strains existing in Japan now, we have to continue to find such resistant isolates, which are spreading worldwide.
Collapse
Affiliation(s)
- Masato Tashiro
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences
| | | |
Collapse
|
38
|
In Vivo Efficacy of Liposomal Amphotericin B against Wild-Type and Azole-Resistant Aspergillus fumigatus Isolates in Two Different Immunosuppression Models of Invasive Aspergillosis. Antimicrob Agents Chemother 2017; 61:AAC.02479-16. [PMID: 28416540 DOI: 10.1128/aac.02479-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/07/2017] [Indexed: 01/06/2023] Open
Abstract
Using an immunocompetent murine model of invasive aspergillosis (IA), we previously reported that the efficacy of liposomal amphotericin B (L-AmB) (Ambisome) is not hampered by the presence of azole resistance mutations in Aspergillus fumigatus (S. Seyedmousavi, W. J. G. Melchers, J. W. Mouton, and P. E. Verweij, Antimicrob Agents Chemother 57:1866-1871, 2013, https://doi.org/10.1128/AAC.02226-12). We here investigated the role of immune suppression, i.e., neutropenia and steroid treatment, in L-AmB efficacy in mice infected with wild-type (WT) A. fumigatus and with azole-resistant A. fumigatus harboring a TR34/L98H mutation in the cyp-51A gene. Survival of treated animals at day 14 in both immunosuppressed models was significantly better than that of nontreated controls. A dose-response relationship was observed that was independent of the azole-resistant mechanism and the immunosuppression method used. In the neutropenic model, 100% survival was reached at an L-AmB dose of 16 mg/kg of body weight for the WT strain and the TR34/L98H isolate. In the steroid-treated group, 90.9% survival and 100% survival were achieved for the WT isolate and the TR34/L98H isolate with an L-AmB dose of 16 mg/kg, respectively. The 50% effective dose (ED50) was 1.40 mg/kg (95% confidence interval [CI], 0.66 to 3.00 mg/kg) for the WT isolate and 1.92 mg/kg (95% CI, 0.60 to 6.17 mg/kg) for the TR34/L98H isolate in the neutropenic model and was 2.40 mg/kg (95% CI, 1.93 to 2.97 mg/kg) for the WT isolate and 2.56 mg/kg (95% CI, 1.43 to 4.56 mg/kg) for the TR34/L98H isolate in the steroid-treated group. Overall, there were no significant differences between the two different immunosuppressed conditions in the efficacy of L-AmB against the wild-type and azole-resistant isolates (P > 0.9). However, the required L-AmB exposure was significantly higher than that seen in the immunocompetent model.
Collapse
|
39
|
Asadzadeh M, Ahmad S, Al-Sweih N, Khan Z. Epidemiology and Molecular Basis of Resistance to Fluconazole Among Clinical Candida parapsilosis Isolates in Kuwait. Microb Drug Resist 2017; 23:966-972. [PMID: 28353392 DOI: 10.1089/mdr.2016.0336] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Fluconazole resistance among clinical Candida parapsilosis isolates is an emerging problem in many countries, including Kuwait. Resistance to fluconazole is mediated by amino acid substitutions in ERG11 and/or by overexpression of efflux pumps MDR1 and CDR1. Clinical C. parapsilosis sensu stricto isolates (n = 442) were tested for susceptibility to fluconazole by Etest, Vitek II, and broth microdilution methods. ERG11 was analyzed from fluconazole-resistant, fluconazole-susceptible dose-dependent, and selected fluconazole-susceptible isolates. Of 442 C. parapsilosis isolates, 425, 2, and 15 were identified as susceptible, susceptible dose-dependent, and resistant to fluconazole, respectively. PCR sequencing of ERG11 identified Y132F mutation in 5 of 11 fluconazole-resistant isolates available for analysis. This mutation was absent in 46 fluconazole-susceptible and 2 fluconazole-susceptible dose-dependent isolates. A multiplex allele-specific PCR was developed for detection of Y132F mutation in ERG11, and results correlated perfectly with PCR sequencing data for ERG11 codon 132 for all isolates analyzed. Detection of resistance in 15 and reduced susceptibility in 2 among 442 C. parapsilosis isolates highlights emerging resistance to fluconazole in Kuwait. The Y132F mutation in ERG11 was found in 5 of 11 (45%) fluconazole-resistant isolates only. Detection of fluconazole resistance in C. parapsilosis will help in proper management of patients infected with this species.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Noura Al-Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| |
Collapse
|
40
|
Epidemiology and Molecular Characterizations of Azole Resistance in Clinical and Environmental Aspergillus fumigatus Isolates from China. Antimicrob Agents Chemother 2016; 60:5878-84. [PMID: 27431231 DOI: 10.1128/aac.01005-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022] Open
Abstract
Azole resistance in Aspergillus fumigatus has emerged as a worldwide public health problem. We sought here to demonstrate the occurrence and characteristics of azole resistance in A. fumigatus from different parts of China. A total of 317 clinical and 144 environmental A. fumigatus isolates from 12 provinces were collected and subjected to screening for azole resistance. Antifungal susceptibility, cyp51A gene sequencing, and genotyping were carried out for all suspected azole-resistant isolates and a subset of azole-susceptible isolates. As a result, 8 (2.5%) clinical and 2 (1.4%) environmental A. fumigatus isolates were identified as azole resistant. Five azole-resistant strains exhibit the TR34/L98H mutation, whereas four carry the TR34/L98H/S297T/F495I mutation in the cyp51A gene. Genetic typing and phylogenetic analysis showed that there was a worldwide clonal expansion of the TR34/L98H isolates, while the TR34/L98H/S297T/F495I isolates from China harbored a distinct genetic background with resistant isolates from other countries. High polymorphisms existed in the cyp51A gene that produced amino acid changes among azole-susceptible A. fumigatus isolates, with N248K being the most common mutation. These data suggest that the wide distribution of azole-resistant A. fumigatus might be attributed to the environmental resistance mechanisms in China.
Collapse
|
41
|
Triazole Resistance in Aspergillus spp.: A Worldwide Problem? J Fungi (Basel) 2016; 2:jof2030021. [PMID: 29376938 PMCID: PMC5753134 DOI: 10.3390/jof2030021] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 11/16/2022] Open
Abstract
Since the first description of an azole-resistant A. fumigatus strain in 1997, there has been an increasing number of papers describing the emergence of azole resistance. Firstly reported in the USA and soon after in Europe, it has now been described worldwide, challenging the management of human aspergillosis. The main mechanism of resistance is the modification of the azole target enzyme: 14-α sterol demethylase, encoded by the cyp51A gene; although recently, other resistance mechanisms have also been implicated. In addition, a shift in the epidemiology has been noted with other Aspergillus species (mostly azole resistant) increasingly being reported as causative agents of human disease. This paper reviews the current situation of Aspergillus azole resistance and its implications in the clinical setting.
Collapse
|
42
|
Lockhart SR, Berkow EL. Hot topics in antifungal susceptibility testing: A new drug, a bad bug, sweeping caspofungin testing under the rug, and solving the ECV shrug. CLINICAL MICROBIOLOGY NEWSLETTER 2016; 38:103-108. [PMID: 29545657 PMCID: PMC5849271 DOI: 10.1016/j.clinmicnews.2016.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There are several new hot topics in antifungals and antifungal susceptibility testing. In this review, four topics of general interest to the clinical microbiology community are discussed. The first topic is the introduction of isavuconazole, a new triazole approved for clinical use in the US. The second is triazole resistance in Aspergillus fumigatus isolates. A specific set of mutations are being found with greater frequency in isolates globally, including the US. The third topic of interest is a word of caution about antifungal susceptibility testing for caspofungin in Candida isolates; some laboratories have reported susceptible isolates with high MIC values that would be interpreted as resistant. The final topic is an introduction to epidemiological cutoff values and their use in the clinical mycology laboratory.
Collapse
Affiliation(s)
- Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA
| | - Elizabeth L Berkow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
43
|
Azole-resistant Aspergillus fumigatus in Denmark: a laboratory-based study on resistance mechanisms and genotypes. Clin Microbiol Infect 2016; 22:570.e1-9. [PMID: 27091095 DOI: 10.1016/j.cmi.2016.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 11/22/2022]
Abstract
Azole-resistant Aspergillus fumigatus originating from the environment as well as induced during therapy are continuously emerging in Danish clinical settings. We performed a laboratory-based retrospective study (2010-2014) of azole resistance and genetic relationship of A. fumigatus at the national mycology reference laboratory of Denmark. A total of 1162 clinical and 133 environmental A. fumigatus isolates were identified by morphology, thermotolerance and/or β-tubulin sequencing. Screening for azole resistance was carried out using azole agar, and resistant isolates were susceptibility tested by the EUCAST (European Committee on Antimicrobial Susceptibility Testing) E.Def 9.2 reference method and CYP51A sequenced. Genotyping was performed for outbreak investigation and, when appropriate, short tandem repeat Aspergillus fumigatus microsatellite assay. All 133 environmental A. fumigatus isolates were azole susceptible. However, from 2010 to 2014, there was an increasing prevalence of azole resistance (from 1.4 to 6% isolates (p <0.001) and 1.8 to 4% patients (p <0.05)) among the clinical isolates, with the well-known environmental CYP51A variant TR34/L98H responsible for >50% of the azole resistance mechanisms. Among 184 Danish A. fumigatus isolates, 120 unique genotypes were identified and compared to a collection of 1822 international genotypes. Seven (5.8%) Danish genotypes were shared between isolates within Denmark but with different origin, 19 (15.8%) were shared with foreign genotypes, and two (11.8%) of 17 genotypes of isolates carrying the TR34/L98H resistance mechanisms were identical to two Dutch TR34/L98H isolates. Our findings underlines the demand for correct identification and susceptibility testing of clinical mould isolates. Furthermore, although complex, genotyping supported the hypotheses regarding clonal expansion and the potential of a single origin for the TR34/L98H clone.
Collapse
|
44
|
Bernal-Martínez L, Alastruey-Izquierdo A, Cuenca-Estrella M. Diagnostics and susceptibility testing in Aspergillus. Future Microbiol 2016; 11:315-28. [PMID: 26848512 DOI: 10.2217/fmb.15.140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Invasive aspergillosis is a major cause of morbidity and mortality in immunosuppressed patients. Early diagnosis and correct antifungal treatment have a direct impact on patient survival. A number of newer diagnostic procedures have been developed as alternatives to conventional microbiological methods. The detection of fungal components, largely antigens and DNA, are used in clinical laboratories to diagnose invasive aspergillosis. Other rapid diagnostic tests have been recently developed with promising results. However, antifungal resistance is becoming an emerging problem. The detection of this resistance is important to administer the proper antifungal agent. This text reviews the novelties on new diagnostics Aspergillus spp. PROCEDURES Intrinsic antifungal resistance and mechanisms of secondary resistance to triazoles in A. fumigatus are also reviewed.
Collapse
Affiliation(s)
- Leticia Bernal-Martínez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
45
|
Lestrade PPA, Meis JF, Arends JP, van der Beek MT, de Brauwer E, van Dijk K, de Greeff SC, Haas PJ, Hodiamont CJ, Kuijper EJ, Leenstra T, Muller AE, Oude Lashof AML, Rijnders BJ, Roelofsen E, Rozemeijer W, Tersmette M, Terveer EM, Verduin CM, Wolfhagen MJHM, Melchers WJG, Verweij PE. Diagnosis and management of aspergillosis in the Netherlands: a national survey. Mycoses 2015; 59:101-7. [PMID: 26648179 DOI: 10.1111/myc.12440] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 01/26/2023]
Abstract
A survey of diagnosis and treatment of invasive aspergillosis was conducted in eight University Medical Centers (UMCs) and eight non-academic teaching hospitals in the Netherlands. Against a background of emerging azole resistance in Aspergillus fumigatus routine resistance screening of clinical isolates was performed primarily in the UMCs. Azole resistance rates at the hospital level varied between 5% and 10%, although rates up to 30% were reported in high-risk wards. Voriconazole remained first choice for invasive aspergillosis in 13 out of 16 hospitals. In documented azole resistance 14 out of 16 centres treated patients with liposomal amphotericin B.
Collapse
Affiliation(s)
- Pieter P A Lestrade
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,National Mycology Reference Laboratory, Nijmegen, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,National Mycology Reference Laboratory, Nijmegen, The Netherlands
| | - Jan P Arends
- Department of Medical Microbiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Martha T van der Beek
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Els de Brauwer
- Department of Medical Microbiology, Atrium-Orbis Medical Centre, Heerlen, The Netherlands
| | - Karin van Dijk
- Department of Medical Microbiology and Infection Control, VU University Medical Centre, Amsterdam, The Netherlands
| | - Sabine C de Greeff
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Pieter-Jan Haas
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Caspar J Hodiamont
- Department of Medical Microbiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tjalling Leenstra
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Anouk E Muller
- Department of Medical Microbiology, Medical Centre Haaglanden, The Hague, The Netherlands
| | - Astrid M L Oude Lashof
- Department of Medical Microbiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bart J Rijnders
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Wouter Rozemeijer
- Department of Medical Microbiology, Medisch Centrum Alkmaar, Alkmaar, The Netherlands
| | - Mathijs Tersmette
- Department of Medical Microbiology, Sint Antonius Hospital, Nieuwegein, The Netherlands
| | - Elizabeth M Terveer
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Cees M Verduin
- Department of Medical Microbiology, Amphia Hospital, Breda, The Netherlands
| | | | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,National Mycology Reference Laboratory, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Abstract
Rapid, accurate diagnostic laboratory tests are needed to improve clinical outcomes of invasive fungal disease (IFD). Traditional direct microscopy, culture and histological techniques constitute the 'gold standard' against which newer tests are judged. Molecular diagnostic methods, whether broad-range or fungal-specific, have great potential to enhance sensitivity and speed of IFD diagnosis, but have varying specificities. The use of PCR-based assays, DNA sequencing, and other molecular methods including those incorporating proteomic approaches such as matrix-assisted laser desorption ionisation-time of flight mass spectroscopy (MALDI-TOF MS) have shown promising results. These are used mainly to complement conventional methods since they require standardisation before widespread implementation can be recommended. None are incorporated into diagnostic criteria for defining IFD. Commercial assays may assist standardisation. This review provides an update of molecular-based diagnostic approaches applicable to biological specimens and fungal cultures in microbiology laboratories. We focus on the most common pathogens, Candida and Aspergillus, and the mucormycetes. The position of molecular-based approaches in the detection of azole and echinocandin antifungal resistance is also discussed.
Collapse
|
47
|
Rocchi S, Reboux G, Millon L. [Azole resistance with environmental origin: What alternatives for the future?]. J Mycol Med 2015; 25:249-56. [PMID: 26631951 DOI: 10.1016/j.mycmed.2015.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 01/25/2023]
Abstract
Azole resistant Aspergillus fumigatus strains are increasingly reported in many countries. One resistance mechanism is attributed to the use of azole fungicides in environment. Two mutations, TR34/L98H and TR46/Y121F/T289A, on the cyp51A gene, have been described. Results of 40 publications about azole resistant strain detections, with TR34/L98H and TR46/Y121F/T289A mutations, in clinical and/or environmental samples, are presented in this review. These cases, observed in many countries, suggest spreading phenomenon. Measures to moderate fungicides treatments and/or alternative treatments in environment should be established to preserve the effectiveness of azole antifungal therapy for at-risk patients.
Collapse
Affiliation(s)
- S Rocchi
- Laboratoire de parasitologie-mycologie, centre hospitalier régional universitaire Jean-Minjoz, 25000 Besançon, France; UMR 6249 CNRS chrono-environnement, université de Bourgogne Franche-Comté, 25000 Besançon, France.
| | - G Reboux
- Laboratoire de parasitologie-mycologie, centre hospitalier régional universitaire Jean-Minjoz, 25000 Besançon, France; UMR 6249 CNRS chrono-environnement, université de Bourgogne Franche-Comté, 25000 Besançon, France
| | - L Millon
- Laboratoire de parasitologie-mycologie, centre hospitalier régional universitaire Jean-Minjoz, 25000 Besançon, France; UMR 6249 CNRS chrono-environnement, université de Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
48
|
Triazole Susceptibilities in Thermotolerant Fungal Isolates from Outdoor Air in the Seoul Capital Area in South Korea. PLoS One 2015; 10:e0138725. [PMID: 26405807 PMCID: PMC4583468 DOI: 10.1371/journal.pone.0138725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
Abstract
Emerging fungi resistant to triazoles are a concern because of the increased use of medical triazoles and exposure to agricultural triazoles. However, little is known about the levels of triazole susceptibility in outdoor airborne fungi making it difficult to assess the risks of inhalation exposure to airborne, antifungal-resistant fungi. This study examined triazole susceptibilities of the airborne thermotolerant fungi isolated from the ambient air of the Seoul Capital Area of South Korea. We used impactor air sampling with triazole-containing nutrient agar plates as the collection substrates to screen for airborne fungal isolates based on their triazole susceptibilities. This study estimated that 0.17% of all the culturable fungi belong to the pathogenic thermotolerant taxa, among which each isolate of Aspergillus niger and Aspergillus tubingensis showed a minimum inhibitory concentration (MIC) of 2 μg/mL or greater for itraconazole. Their concentration in air was 0.4 CFU/m3. Seven human pathogenic Paecilomyces variotii isolates had MICs of 32 μg/mL or greater and lower than 2 μg/mL for the agricultural fungicide tebuconazole and the medical triazole itraconazole, respectively. Though the concentration was low, our results confirm the presence of airborne fungi with high MICs for itraconazole in ambient air. Inhalation is an important exposure route because people inhale more than 10 m3 of air each day. Vigilance is preferred over monitoring for the emergence of triazole-resistant fungal pathogens in ambient outdoor air.
Collapse
|
49
|
International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resist Updat 2015; 21-22:30-40. [PMID: 26282594 DOI: 10.1016/j.drup.2015.08.001] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An international expert panel was convened to deliberate the management of azole-resistant aspergillosis. In culture-positive cases, in vitro susceptibility testing should always be performed if antifungal therapy is intended. Different patterns of resistance are seen, with multi-azole and pan-azole resistance more common than resistance to a single triazole. In confirmed invasive pulmonary aspergillosis due to an azole-resistant Aspergillus, the experts recommended a switch from voriconazole to liposomal amphotericin B (L-AmB; Ambisome(®)). In regions with environmental resistance rates of ≥10%, a voriconazole-echinocandin combination or L-AmB were favoured as initial therapy. All experts recommended L-AmB as core therapy for central nervous system aspergillosis suspected to be due to an azole-resistant Aspergillus, and considered the addition of a second agent with the majority favouring flucytosine. Intravenous therapy with either micafungin or L-AmB given as either intermittent or continuous therapy was recommended for chronic pulmonary aspergillosis due to a pan-azole-resistant Aspergillus. Local and national surveillance with identification of clinical and environmental resistance patterns, rapid diagnostics, better quality clinical outcome data, and a greater understanding of the factors driving or minimising environmental resistance are areas where research is urgently needed, as well as the development of new oral agents outside the azole drug class.
Collapse
|
50
|
Stergiopoulou T, Walsh TJ. Clinical pharmacology of antifungal agents to overcome drug resistance in pediatric patients. Expert Opin Pharmacother 2015; 16:213-26. [PMID: 25579070 DOI: 10.1517/14656566.2015.1000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Antifungal resistance is an emerging problem that increases morbidity and mortality in immunosuppressed pediatric patients, who suffer from invasive fungal diseases. Optimal pharmacological management is critical for the successful treatment of invasive fungal infections by resistant strains. AREAS COVERED This paper reviews the mechanisms of resistance of different classes of antifungal agents and the current understanding of pediatric antifungal pharmacology for overcoming antifungal resistance in children based on laboratory and clinical studies in the English literature. The therapeutic choices against fungal pathogens with intrinsic or acquired resistance are further reviewed. EXPERT OPINION There is a paucity of data in the pediatric population regarding the epidemiology of the resistant organisms to different antifungal agents. It is also unknown if there are more prevalent molecular mechanisms that promote antifungal resistance. Selection and dosages of the most effective antifungal agent for overcoming the antifungal resistance is crucial. However, there are limited studies guiding the optimal dosage and duration of treatment for management of emergent antifungal resistance. Further studies are warranted to elucidate the optimal pharmacology of the current antifungal agents against resistant organisms and to advance the development of new antifungal agents.
Collapse
|