1
|
Huang N, Wang B, Liu S, Wang K, Wang R, Liu F, Chen C. Cadmium exposure in infants and children: toxicity, health effects, dietary risk assessment and mitigation strategies. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39264340 DOI: 10.1080/10408398.2024.2403036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As a non-essential metal, cadmium (Cd) poses a significant threat to food safety and public health. This risk is particularly pronounced for infants and young children due to their high food consumption relative to body weight and immature physiological systems. This review examines the health risks associated with Cd exposure, particularly during the prenatal period through adolescence. It evaluates the prevalence of Cd-rich foods in children's diets and their intake levels across various countries. The review demonstrates that Cd exposure is associated with neurodevelopmental disorders, immune dysfunction, and cardiovascular diseases. It also highlights geographic differences in exposure, with some Asian countries, such as Thailand and China, exhibiting higher overall levels of Cd intake among children compared to other regions. This review presents several recommendations to mitigate Cd intake during early childhood, including reducing the Cd content in food, inhibiting Cd absorption, and promoting its excretion from the body. To minimize the risk of dietary Cd intake in children, it is recommended that stringent regulations of Cd limits in children's food be implemented, alongside a coordinated multi-stakeholder effort. This review provides important insights into effective public health policy development, laying the foundation for achieving broader public health goals.
Collapse
Affiliation(s)
- Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baozhen Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shufang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kebo Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengquan Liu
- Department of Plant Pathology/Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Riegl SD, Starnes C, Jima DD, Baptissart M, Diehl AM, Belcher SM, Cowley M. The imprinted gene Zac1 regulates steatosis in developmental cadmium-induced nonalcoholic fatty liver disease. Toxicol Sci 2023; 191:34-46. [PMID: 36200916 PMCID: PMC9887675 DOI: 10.1093/toxsci/kfac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cadmium (Cd) exposure in adulthood is associated with nonalcoholic fatty liver disease (NAFLD), characterized by steatosis, inflammation, and fibrosis. The prevalence of NAFLD in children is increasing, suggesting a role for the developmental environment in programming susceptibility. However, the role of developmental Cd exposure in programming NAFLD and the underlying mechanisms remain unclear. We have proposed that imprinted genes are strong candidates for connecting the early life environment and later life disease. In support of this, we previously identified roles for the Imprinted Gene Network (IGN) and its regulator Zac1 in programming NAFLD in response to maternal metabolic dysfunction. Here, we test the hypothesis that developmental Cd exposure is sufficient to program NAFLD, and further, that this process is mediated by Zac1 and the IGN. Using mice, we show that developmental cadmium chloride (CdCl2) exposure leads to histological, biochemical, and molecular signatures of steatosis and fibrosis in juveniles. Transcriptomic analyses comparing livers of CdCl2-exposed and control mice show upregulation of Zac1 and the IGN coincident with disease presentation. Increased hepatic Zac1 expression is independent of promoter methylation and imprinting statuses. Finally, we show that over-expression of Zac1 in cultured hepatocytes is sufficient to induce lipid accumulation in a Pparγ-dependent manner and demonstrate direct binding of Zac1 to the Pparγ promoter. Our findings demonstrate that developmental Cd exposure is sufficient to program NAFLD in later life, and with our previous work, establish Zac1 and the IGN as key regulators of prosteatotic and profibrotic pathways, two of the major pathological hallmarks of NAFLD.
Collapse
Affiliation(s)
- Sierra D Riegl
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Cassie Starnes
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Marine Baptissart
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Scott M Belcher
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Michael Cowley
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
3
|
Satarug S, Vesey DA, Gobe GC, Yimthiang S, Buha Đorđević A. Health Risk in a Geographic Area of Thailand with Endemic Cadmium Contamination: Focus on Albuminuria. TOXICS 2023; 11:68. [PMID: 36668794 PMCID: PMC9866753 DOI: 10.3390/toxics11010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
An increased level of cadmium (Cd) in food crops, especially rice is concerning because rice is a staple food for over half of the world’s population. In some regions, rice contributes to more than 50% of the total Cd intake. Low environmental exposure to Cd has been linked to an increase in albumin excretion to 30 mg/g creatinine, termed albuminuria, and a progressive reduction in the estimated glomerular filtration rate (eGFR) to below 60 mL/min/1.73 m2, termed reduced eGFR. However, research into albuminuria in high exposure conditions is limited. Here, we applied benchmark dose (BMD) analysis to the relevant data recorded for the residents of a Cd contamination area and a low-exposure control area. We normalized the excretion rates of Cd (ECd) and albumin (Ealb) to creatinine clearance (Ccr) as ECd/Ccr and Ealb/Ccr to correct for differences among subjects in the number of surviving nephrons. For the first time, we defined the excretion levels of Cd associated with clinically relevant adverse kidney health outcomes. Ealb/Ccr varied directly with ECd/Ccr (β = 0.239, p < 0.001), and age (β = 0.203, p < 0.001), while normotension was associated with lower Ealb/Ccr (β = −0.106, p = 0.009). ECd/Ccr values between 16.5 and 35.5 ng/L of the filtrate were associated with a 10% prevalence of albuminuria, while the ECd/Ccr value of 59 ng/L of the filtrate was associated with a 10% prevalence of reduced eGFR. Thus, increased albumin excretion and eGFR reduction appeared to occur at low body burdens, and they should form toxicity endpoints suitable for the calculation of health risk due to the Cd contamination of food chains.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
| | - David A. Vesey
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane 4102, Australia
| | - Glenda C. Gobe
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| | - Supabhorn Yimthiang
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Aleksandra Buha Đorđević
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Yim G, Reynaga L, Nunez V, Howe CG, Romano ME, Chen Y, Karagas MR, Toledo-Corral C, Farzan SF. Perinatal Metal and Metalloid Exposures and Offspring Cardiovascular Health Risk. Curr Environ Health Rep 2022; 9:714-734. [PMID: 35980568 PMCID: PMC11559654 DOI: 10.1007/s40572-022-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Toxic metal exposures have been associated with cardiovascular disease in adults and growing evidence suggests metal exposures also adversely affect cardiovascular phenotypes in childhood and adolescence. However, to our knowledge, the influence of perinatal metals exposure, particularly metal mixtures, in relation to cardiovascular-related outcomes have not been comprehensively reviewed. RECENT FINDINGS We summarized 17 contemporary studies (2017-2021) that investigated the impact of perinatal metal exposures on measures of cardiovascular health in children. Accumulating evidence supports a potential adverse impact of perinatal Pb exposure on BP in children. Fewer recent studies have focused on perinatal As, Hg, and Cd; thus, the cardiovascular impacts of these metals are less clear. Studies of metal mixtures demonstrate that interactions between metals may be complex and have identified numerous understudied elements and essential metals, including Mo, Co, Ni, Se, Zn, and Mn, which may influence cardiovascular risk. A key question that remains is whether perinatal metals exposure influences cardiovascular health into adulthood. Comparisons across studies remain challenging due to several factors, including differences in the timing of exposure/outcome assessments and exposure biomarkers, as well as variability in exposure levels and mixture compositions across populations. Future studies longitudinally investigating trajectories of cardiovascular outcomes could help determine the influence of perinatal metals exposure on long-term effects of clinical relevance in later life and whether interventions, which reduce metals exposures during this key developmental window, could alter disease development.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Lorena Reynaga
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
| | - Velia Nunez
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yu Chen
- Department of Population Health, NYU School of Medicine, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudia Toledo-Corral
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto Street, Los Angeles, CA, 90032, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto Street, Los Angeles, CA, 90032, USA.
| |
Collapse
|
5
|
Liu M, Li M, Guo W, Zhao L, Yang H, Yu J, Liu L, Fang Q, Lai X, Yang L, Zhu K, Dai W, Mei W, Zhang X. Co-exposure to priority-controlled metals mixture and blood pressure in Chinese children from two panel studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119388. [PMID: 35526645 DOI: 10.1016/j.envpol.2022.119388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Metals may affect adversely cardiovascular system, but epidemiological evidence on the associations of priority-controlled metals including antimony (Sb), arsenic (As), cadmium, lead, and thallium with children's blood pressure (BP) was scarce and inconsistent. We conducted two panel studies with 3 surveys across 3 seasons among 144 and 142 children aged 4-12 years in Guangzhou and Weinan, respectively. During each seasonal survey, urine samples were collected for 4 consecutive days and BP was measured on the 4th day. We obtained 786 BP values and urinary metals measurements at least once within 4 days, while 773, 596, 612, and 754 urinary metals measurements were effective on the health examination day (Lag 0), and the 1st, 2nd, and 3rd day preceding BP measurement (Lag 1, lag 2 and lag 3), respectively. We used linear mixed-effect models, generalized estimating equations and multiple informant models to assess the associations of individual metal at each lag day and accumulated lag day (4 days averaged, lag 0-3) with BP and hypertension, and Bayesian Kernel Machine Regression to evaluate the relations of metals mixture at lag 0-3 and BP outcomes. We found Sb was positively and consistently related to systolic BP (SBP), mean arterial pressure (MAP), and odds of having hypertension within 4 days, which were the strongest at lag 0 and declined over time. And such relationships at lag 0-3 showed in a dose-response manner. Meanwhile, Sb was the only contributor to the relations of mixture with SBP, MAP, and odds of having hypertension. Also, synergistic interaction between Sb and As was significant. In addition, modification effect of passive smoking status on the association of Sb and SBP was more evident in passive smokers. Accordingly, urinary Sb was consistently and dose-responsively associated with increased BP and hypertension, of which Sb was the major contributor among children.
Collapse
Affiliation(s)
- Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Li
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Public Health, Medical College of Qinghai University, Xining, Qinghai, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Yu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Fang
- Department of Medical affairs, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kejing Zhu
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, China
| | - Wencan Dai
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, China
| | - Wenhua Mei
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Yalçin SS, Erdal İ, Oğuz B, Duzova A. Associations between toxic elements and blood pressure parameters in adolescents. J Trace Elem Med Biol 2022; 71:126949. [PMID: 35193093 DOI: 10.1016/j.jtemb.2022.126949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Both exposure to toxic elements and hypertension (HT) are a global health problem. We planned to examine the associations between some toxic elements in urine, and blood pressure (BP) and its diurnal changes in adolescents. METHODS In this cross-sectional study, 48 adolescents who were newly diagnosed with HT and 38 adolescents with age-appropriate BP and normal physical examination were included. Anthropometric measurements, urinary toxic elements, carotid intima media thickness (cIMT), and office and 24-hour ambulatory BP measurements (ABPM) of participants were taken. Urinary elements levels were studied with ICP-MS. Elements were grouped in tertiles according to urinary levels. Logistic regression analyses were performed to show the interactions. RESULTS Urinary cadmium, mercury, lead, and arsenic were found to be at detectable level in 90.7%, 69.8%, 91.9% and 100% of the participants, respectively. Univariate analyses showed that elevated daytime systolic and/or diastolic BP was associated with urinary cadmium and mercury. No association between urinary toxic elements and nighttime BP was found. When height and body mass index z-scores adjusted for, age, gender, and all four urinary creatinine-corrected toxic elements analyzed, multiple logistic regression revealed that there was an association between mercury (high vs. low; AOR:3.85) and office HT, and mercury (high vs. low; AOR:6.18) and cadmium (middle vs. low; AOR: 13.38) were associated with "elevated 24-hour systolic BP and/or diastolic BP", and "elevated 24-hour mean arterial BP" in ABPM. CONCLUSION There are complex relationships between toxic elements and BP parameters in adolescents, and more studies are needed to define the evolution of these relations.
Collapse
Affiliation(s)
- Siddika Songül Yalçin
- Division of Social Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - İzzet Erdal
- Division of Social Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Berna Oğuz
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Ali Duzova
- Division of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
7
|
Aramjoo H, Arab-Zozani M, Feyzi A, Naghizadeh A, Aschner M, Naimabadi A, Farkhondeh T, Samarghandian S. The association between environmental cadmium exposure, blood pressure, and hypertension: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35682-35706. [PMID: 35257333 DOI: 10.1007/s11356-021-17777-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
We performed a systematic and meta-analysis study to find the association between cadmium (Cd) exposure and blood pressure (BP)/hypertension (HTN) in exposed general populations. We searched main databases for literature published between year 2000 and April 15, 2021. Quality assessment was performed with the Joanna Briggs Institute (JBI) critical appraisal tools. Heterogeneity between studies was determined by I-squared (I2) statistic. The random effects model was used to determine the association between blood and urine Cd levels with hypertension. The overall standard differences in mean for Cd level in hypertensive and control groups were 3.34, 1.79, and 8.09 based on samples from blood, urine, and hair, respectively. The overall standard differences in mean for Cd level in the low and high exposure groups were - 0.795 and - 1.036 based on blood and urinary samples, respectively. Our findings indicate a positive relationship between blood and hair Cd levels and hypertension. We also found that hair is the optimal biological sample to find the relationship between Cd exposure and hypertension for both genders. However, more studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Hamed Aramjoo
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Morteza Arab-Zozani
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Feyzi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209 1300 Morris Park Avenue, Bronx, NY, USA
| | - Abolfazl Naimabadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
8
|
A scoping review of infant and children health effects associated with cadmium exposure. Regul Toxicol Pharmacol 2022; 131:105155. [DOI: 10.1016/j.yrtph.2022.105155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
|
9
|
Environmental exposure to lead, mercury, and cadmium is not associated with abnormal kidney function in Korean adolescents. Pediatr Nephrol 2022; 37:625-631. [PMID: 34448022 DOI: 10.1007/s00467-021-05215-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND We aimed to elucidate the relationship between environmental exposure to lead (Pb), mercury (Hg), and cadmium (Cd) which were measured in blood and the kidney function of adolescents. METHODS Cross-sectional study was conducted using data from the Korea National Health and Nutrition Examination Survey from 2010 to 2017. Statistical procedures were performed to analyze the Korean population of adolescents aged 12-17 years. Regression analysis was performed, and covariates included age, sex, body mass index, smoking status, and other heavy metal levels. RESULTS The median blood levels of Pb, Hg, and Cd were 1.165 μg/dL, 1.805 μg/L, and 0.304 μg/L, respectively. Adolescents with Pb levels in the highest quartile (> 1.454 μg/dL) had a 3.35 mL/min/1.73 m2-lower estimated glomerular filtration rate using creatinine (eGFRcr) (95% confidence interval (CI), -6.03 to -0.68 mL/min/1.73 m2) compared to those in the lowest quartile (< 0.856 μg/dL) in the unadjusted model. However, there was no association between the blood Pb level and eGFRcr in the adjusted model. Levels of Hg and Cd were not associated with eGFRcr in either model. High blood levels of all three heavy metals were not associated with the risk of hypertension. CONCLUSIONS There was no association between increased blood levels of Pb, Hg, and Cd; eGFRcr; and increased risk of hypertension in Korean adolescents who were exposed to relatively low levels of heavy metals.
Collapse
|
10
|
Ventura C, Gomes BC, Oberemm A, Louro H, Huuskonen P, Mustieles V, Fernández MF, Ndaw S, Mengelers M, Luijten M, Gundacker C, Silva MJ. Biomarkers of effect as determined in human biomonitoring studies on hexavalent chromium and cadmium in the period 2008-2020. ENVIRONMENTAL RESEARCH 2021; 197:110998. [PMID: 33713715 DOI: 10.1016/j.envres.2021.110998] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
A number of human biomonitoring (HBM) studies have presented data on exposure to hexavalent chromium [Cr(VI)] and cadmium (Cd), but comparatively few include results on effect biomarkers. The latter are needed to identify associations between exposure and adverse outcomes (AOs) in order to assess public health implications. To support improved derivation of EU regulation and policy making, it is of great importance to identify the most reliable effect biomarkers for these heavy metals that can be used in HBM studies. In the framework of the Human Biomonitoring for Europe (HBM4EU) initiative, our study aim was to identify effect biomarkers linking Cr(VI) and Cd exposure to selected AOs including cancer, immunotoxicity, oxidative stress, and omics/epigenetics. A comprehensive PubMed search identified recent HBM studies, in which effect biomarkers were examined. Validity and applicability of the markers in HBM studies are discussed. The most frequently analysed effect biomarkers regarding Cr(VI) exposure and its association with cancer were those indicating oxidative stress (e.g., 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), glutathione (GSH)) and DNA or chromosomal damage (comet and micronucleus assays). With respect to Cd and to some extent Cr, β-2-microglobulin (B2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are well-established, sensitive, and the most common effect biomarkers to relate Cd or Cr exposure to renal tubular dysfunction. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule (KIM)-1 could serve as sensitive biomarkers of acute kidney injury in response to both metals, but need further investigation in HBM studies. Omics-based biomarkers, i.e., changes in the (epi-)genome, transcriptome, proteome, and metabolome associated with Cr and/or Cd exposure, are promising effect biomarkers, but more HBM data are needed to confirm their significance. The combination of established effect markers and omics biomarkers may represent the strongest approach, especially if based on knowledge of mechanistic principles. To this aim, also mechanistic data were collected to provide guidance on the use of more sensitive and specific effect biomarkers. This also led to the identification of knowledge gaps relevant to the direction of future research.
Collapse
Affiliation(s)
- Célia Ventura
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Bruno Costa Gomes
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Henriqueta Louro
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Pasi Huuskonen
- Finnish Institute of Occupational Health, PO Box 40, FI-00032 Työterveyslaitos, Finland
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Sophie Ndaw
- French National Research and Safety Institute (INRS), France
| | - Marcel Mengelers
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Department of Food Safety, Bilthoven, the Netherlands
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, A-1090 Vienna, Austria.
| | - Maria João Silva
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal.
| |
Collapse
|
11
|
Wu Y, Yang X, Wang H, Jia G, Wang T. Relationship between ambient PM 2.5 exposure and blood cadmium level in children under 14 years in Beijing, China. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123871. [PMID: 33264943 DOI: 10.1016/j.jhazmat.2020.123871] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 05/17/2023]
Abstract
Ambient PM2.5 pollution is a global environmental problem. PM2.5 can act as a carrier of heavy metals. However, the relationship between PM2.5 exposure and blood cadmium (Cd) level in children was less understood. Based on the data of hourly collected PM2.5 and blood Cd level of 13,626 children aged 0-14 years from Apr. 2008 to Feb. 2013 in Beijing of China, we investigated the short-term effects of PM2.5 exposure on blood Cd level. Generalized linear mixed models (GLMMs) were utilized to explore the potential association between PM2.5 exposure and blood Cd level of children. The results showed that the mean blood Cd level was 0.64 μg/L. There was a significant association between PM2.5 exposure and blood Cd level (P < 0.05). Age was negatively associated with blood Cd level (P < 0.05), and the younger children were more sensitive to Cd from PM2.5 exposure. There wasn't a significant difference in PM2.5 concentration between heating and non-heating seasons in winter (P > 0.05); there was also no gender difference of children on blood Cd level (P > 0.05). The present study demonstrates the importance of controlling the PM2.5 bound Cd exposure, and environmental countermeasures should be implemented stringently to reduce their impact on children's health.
Collapse
Affiliation(s)
- Yonghua Wu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Xu Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tiancheng Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
12
|
Chandravanshi L, Shiv K, Kumar S. Developmental toxicity of cadmium in infants and children: a review. Environ Anal Health Toxicol 2021; 36:e2021003-0. [PMID: 33730790 PMCID: PMC8207007 DOI: 10.5620/eaht.2021003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Several millions of people are exposed to cadmium worldwide due to natural and anthropogenic activities that led to their widespread distribution in the environment and have shown potential adverse effects on the kidneys, liver, heart and nervous system. Recently human and animal-based studies have been shown that In utero and early life exposure to cadmium can have serious health issues that are related to the risk of developmental disabilities and other outcomes in adulthood. Since, cadmium crosses the placental barrier and reaches easily to the fetus, even moderate or high-level exposure of this metal during pregnancy could be of serious health consequences which might be reflected either in the children’s early or later stages of life. Mortality from various diseases including cancer, cardiovascular, respiratory, kidney and neurological problems, correlation with In utero or early life exposure to cadmium has been found in epidemiological studies. Animal studies with strong evidence of various diseases mostly support for the human studies, as well as suggested a myriad mechanism by which cadmium can interfere with human health and development. More studies are needed to establish the mechanism of cadmium-induced toxicity with environmentally relevant doses in childhood and later life. In this review, we provide a comprehensive examination of the literature addressing potential long- term health issues with In utero and early life exposure to cadmium, as well as correlating with human and animal exposure studies.
Collapse
Affiliation(s)
- Lalit Chandravanshi
- Department of Forensic Science, College and Traffic Management- Institute of Road and Traffic Education, Faridabad - Haryana - 121010, India
| | - Kunal Shiv
- Division of Forensic Science, School of Basic & Applied Sciences, Galgotias University Greater Noida - 201306, India
| | - Sudhir Kumar
- Forensic Science laboratory, Modinagar, Ghaziabad - 201204, India
| |
Collapse
|
13
|
Martins AC, Almeida Lopes ACB, Urbano MR, Carvalho MDFH, Silva AMR, Tinkov AA, Aschner M, Mesas AE, Silbergeld EK, Paoliello MMB. An updated systematic review on the association between Cd exposure, blood pressure and hypertension. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111636. [PMID: 33396156 PMCID: PMC7785863 DOI: 10.1016/j.ecoenv.2020.111636] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Since the first report by Perry et al. (1955), most studies affirmed the hypertensive effects of cadmium (Cd) in humans. Nonetheless, conclusions between studies remain inconsistent. OBJECTIVE The aim of this study was to reevaluate the evidence for a potential relationship between Cd exposure and altered blood pressure and/or hypertension, focusing on studies published between January 2010 and March 2020. METHODS We reviewed all observational studies from database searches (PubMed and SCOPUS) on Cd exposure and blood pressure or hypertension. We extracted information from studies that provided sufficient data on population characteristics, smoking status, exposure, outcomes, and design. RESULTS Thirty-eight studies met our inclusion criteria; of those, twenty-nine were cross sectional, three case control, five cohort and one interventional study. Blood or urinary Cd levels were the most commonly used biomarkers. CONCLUSIONS A positive association between blood Cd levels and blood pressure and/or hypertension was identified in numerous studies at different settings. Limited number of representative population-based studies of never-smokers was observed, which may have confounded our conclusions. The association between urinary Cd and blood pressure and/or hypertension remains uncertain due to conflicting results, including inverse relationships with lack of strong mechanistic support. We point to the urgent need for additional longitudinal studies to confirm our findings.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA
| | - Ana Carolina B Almeida Lopes
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, 86038-350 Londrina, PR, Brazil
| | - Mariana R Urbano
- Department of Statistics, State University of Londrina, Rodovia Celso Garcia Cid, Km 380, s/no, Campus Universitário, 86057-970 Londrina, PR, Brazil
| | - Maria de Fatima H Carvalho
- Inorganic Contaminants Department, Adolfo Lutz Institute, Sao Paulo, Avenida Doutor Arnaldo, 355, 01246-000 São Paulo, SP, Brazil
| | - Ana Maria R Silva
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, 86038-350 Londrina, PR, Brazil
| | - Alexey A Tinkov
- I. M. Sechenov First Moscow Medical University (Sechenov University), Bolshaya Pirogovskaya St., 19-1, 119146 Moscow, Russia; Yaroslavl State University, Yaroslavl 150000, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA; I. M. Sechenov First Moscow Medical University (Sechenov University), Bolshaya Pirogovskaya St., 19-1, 119146 Moscow, Russia
| | - Arthur E Mesas
- Universidad de Castilla-La Mancha, Facultad de Enfermería, Edificio Melchor Cano, Campus Universitario de Cuenca, Camino de Pozuelo, s/n 16071 Cuenca, Spain
| | - Ellen K Silbergeld
- Emerita Professor, Johns Hopkins University, Bloomberg School of Public Health, 615N Wolfe St, 21205 Baltimore, MD, USA
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA; Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, 86038-350 Londrina, PR, Brazil.
| |
Collapse
|
14
|
Howe CG, Margetaki K, Vafeiadi M, Roumeliotaki T, Karachaliou M, Kogevinas M, McConnell R, Eckel SP, Conti DV, Kippler M, Farzan SF, Chatzi L. Prenatal metal mixtures and child blood pressure in the Rhea mother-child cohort in Greece. Environ Health 2021; 20:1. [PMID: 33407552 PMCID: PMC7789252 DOI: 10.1186/s12940-020-00685-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/07/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Child blood pressure (BP) is predictive of future cardiovascular risk. Prenatal exposure to metals has been associated with higher BP in childhood, but most studies have evaluated elements individually and measured BP at a single time point. We investigated impacts of prenatal metal mixture exposures on longitudinal changes in BP during childhood and elevated BP at 11 years of age. METHODS The current study included 176 mother-child pairs from the Rhea Study in Heraklion, Greece and focused on eight elements (antimony, arsenic, cadmium, cobalt, lead, magnesium, molybdenum, selenium) measured in maternal urine samples collected during pregnancy (median gestational age at collection: 12 weeks). BP was measured at approximately 4, 6, and 11 years of age. Covariate-adjusted Bayesian Varying Coefficient Kernel Machine Regression and Bayesian Kernel Machine Regression (BKMR) were used to evaluate metal mixture impacts on baseline and longitudinal changes in BP (from ages 4 to 11) and the development of elevated BP at age 11, respectively. BKMR results were compared using static versus percentile-based cutoffs to define elevated BP. RESULTS Molybdenum and lead were the mixture components most consistently associated with BP. J-shaped relationships were observed between molybdenum and both systolic and diastolic BP at age 4. Similar associations were identified for both molybdenum and lead in relation to elevated BP at age 11. For molybdenum concentrations above the inflection points (~ 40-80 μg/L), positive associations with BP at age 4 were stronger at high levels of lead. Lead was positively associated with BP measures at age 4, but only at high levels of molybdenum. Potential interactions between molybdenum and lead were also identified for BP at age 11, but were sensitive to the cutoffs used to define elevated BP. CONCLUSIONS Prenatal exposure to high levels of molybdenum and lead, particularly in combination, may contribute to higher BP at age 4. These early effects appear to persist throughout childhood, contributing to elevated BP in adolescence. Future studies are needed to identify the major sources of molybdenum and lead in this population.
Collapse
Affiliation(s)
- Caitlin G. Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, 1 Medical Center Dr, Lebanon, NH 03766 USA
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA USA
| | - Katerina Margetaki
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA USA
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete Greece
| | - Marianna Karachaliou
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete Greece
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Rob McConnell
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA USA
| | - Sandrah P. Eckel
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA USA
| | - David V. Conti
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA USA
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shohreh F. Farzan
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA USA
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
15
|
Bouhanick B, Sosner P, Brochard K, Mounier-Véhier C, Plu-Bureau G, Hascoet S, Ranchin B, Pietrement C, Martinerie L, Boivin JM, Fauvel JP, Bacchetta J. Hypertension in Children and Adolescents: A Position Statement From a Panel of Multidisciplinary Experts Coordinated by the French Society of Hypertension. Front Pediatr 2021; 9:680803. [PMID: 34307254 PMCID: PMC8292722 DOI: 10.3389/fped.2021.680803] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
Hypertension is much less common in children than in adults. The group of experts decided to perform a review of the literature to draw up a position statement that could be used in everyday practice. The group rated recommendations using the GRADE approach. All children over the age of 3 years should have their blood pressure measured annually. Due to the lack of data on cardiovascular morbidity and mortality associated with blood pressure values, the definition of hypertension in children is a statistical value based on the normal distribution of blood pressure in the paediatric population, and children and adolescents are considered as having hypertension when their blood pressure is greater than or equal to the 95th percentile. Nevertheless, it is recommended to use normative blood pressure tables developed according to age, height and gender, to define hypertension. Measuring blood pressure in children can be technically challenging and several measurement methods are listed here. Regardless of the age of the child, it is recommended to carefully check for a secondary cause of hypertension as in 2/3 of cases it has a renal or cardiac origin. The care pathway and principles of the therapeutic strategy are described here.
Collapse
Affiliation(s)
- Béatrice Bouhanick
- Service d'Hypertension Artérielle et Thérapeutique, CHU Rangueil, CERPOP, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Philippe Sosner
- Centre Médico-Sportif MON STADE, Paris, France.,Hôpital Hôtel-Dieu, APHP, Centre de Diagnostic et de Thérapeutique, Paris, France.,Laboratoire MOVE (EA 6314), Université de Poitiers, Faculté des Sciences du Sport, Poitiers, France
| | - Karine Brochard
- Service de Néphrologie Médecine Interne Pédiatrique, Hôpital des Enfants, CHU Toulouse, Toulouse, France
| | - Claire Mounier-Véhier
- Institut Cœur-Poumon, Médecine Vasculaire et HTA, CHU, Université Lille, EA 2694 - Santé Publique: Epidémiologie et Qualité des Soins Lille, Lille, France
| | - Geneviève Plu-Bureau
- Unité de Gynécologie Médicale, AP-HP, Hôpital Port-Royal, Université de Paris, Paris, France
| | - Sébastien Hascoet
- Pôle des Cardiopathies Congénitales du Nouveau-Né à L'adulte - Centre Constitutif Cardiopathies Congénitales Complexes M3C, Groupe Hospitalier Paris Saint-Joseph, Hôpital Marie-Lannelongue, Inserm U999, Université Paris-Saclay, Le Plessis-Robinson, France
| | - Bruno Ranchin
- Centre de Référence des Maladies Rénales Rares, Service de Néphrologie Rhumatologie et Dermatologie Pédiatriques, Filières Maladies Rares ORKID et ERK-Net, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Bron, France.,Faculté de Médecine Lyon Est, Université Lyon 1, Lyon, France
| | | | - Laetitia Martinerie
- Centre de Reference des Maladies Rares de la Croissance et du Développement, Université de Paris, Endocrinologie et Diabétologie Pédiatrique, AP-HP, Hôpital Robert-Debré, Paris, France
| | - Jean Marc Boivin
- Département de Médecine Générale, Université de Lorraine, Inserm CIC-P Pierre Drouin Vandœuvre-Lès-Nancy, Vandœuvre-lès-Nancy, France
| | - Jean Pierre Fauvel
- Service de Néphrologie Hospices Civils, Hôpital Edouard Herriot, Lyon, France.,UMR CNRS 5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Justine Bacchetta
- Centre de Référence des Maladies Rénales Rares, Service de Néphrologie Rhumatologie et Dermatologie Pédiatriques, Filières Maladies Rares ORKID et ERK-Net, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Bron, France.,Faculté de Médecine Lyon Est, Université Lyon 1, Lyon, France
| |
Collapse
|
16
|
Yao B, Lu X, Xu L, Wang Y, Qu H, Zhou H. Relationship between low-level lead, cadmium and mercury exposures and blood pressure in children and adolescents aged 8-17 years: An exposure-response analysis of NHANES 2007-2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138446. [PMID: 32320874 DOI: 10.1016/j.scitotenv.2020.138446] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
This study investigated whether low-level blood and urinary lead, cadmium and mercury exposures were associated with blood pressure (BP) in children and adolescents. Data from National Health and Nutrition Examination Survey (NHANES) between 2007 and 2016 for children and adolescents aged 8-17 years (n = 7076) were analyzed. Outcome variables were systolic BP, diastolic BP and high BP status. High BP was defined as: self-reported antihypertensive medication usage or a diagnosis of hypertension; classified as having elevated BP/hypertension according to 2017 AAP guidelines. Multivariable linear and logistic regressions models were performed and stratified by race/ethnicity and gender. Blood lead was negatively associated with diastolic BP among blacks, and positively associated with diastolic BP among whites. For a two-fold increase of blood lead concentration, the change in diastolic BP was -1.59 mm Hg (95% CI: -3.04 to -0.16 mm Hg) among blacks and 1.38 mm Hg (95% CI: 0.40 to 2.36 mm Hg) among whites. No significant associations between either systolic BP or diastolic BP with urinary lead were observed. The inverse associations between blood lead and high BP were found in females, Mexican Americans and other Hispanics. No associations between blood cadmium and BP were observed, except in other Hispanics. Urinary cadmium levels were inversely correlated with systolic BP, diastolic BP and high BP in all participants and in men. When compared to the lowest quartile of urinary cadmium levels, participants with a urinary cadmium level ≥ 0.12 μg/L had 0.48 (95% CI: 0.29-0.78) times and 0.53 (95% CI: 0.30-0.94) times reduced odds of having high BP in all participants and in men, respectively. No associations between either blood mercury or urinary mercury with systolic BP were observed. Significant inverse associations were found between blood total mercury and methyl mercury with diastolic BP in all participants and in men. Future prospective studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Baodong Yao
- Department of Cardiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Cardiovascular Disease Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China
| | - Xiaojing Lu
- Department of Performance Management, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lai Xu
- Department of Performance Management, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Wang
- Department of Cardiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Cardiovascular Disease Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China
| | - Huiyan Qu
- Department of Cardiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Cardiovascular Disease Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China.
| | - Hua Zhou
- Department of Cardiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Cardiovascular Disease Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China.
| |
Collapse
|
17
|
Sinitkul R, Wongrathanandha C, Sirirattanapruk S, Plitponkarnpim A, Maude RJ, Marczylo EL. Children's Environmental Health in Thailand: Past, Present, and Future. Ann Glob Health 2018; 84:306-329. [PMID: 30835380 PMCID: PMC6748291 DOI: 10.29024/aogh.2301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: There is increasing evidence of a link between environmental pollution and preventable diseases in developing countries, including Thailand. Economic development has generated several types of pollution that can affect population health. While these environmental health effects can be observed throughout life, pregnant women and children represent particularly vulnerable and sensitive groups. Methods: The published epidemiological literature investigating environmental chemical exposure in Thai children was reviewed, highlighting those that investigated associations between exposure and subsequent health outcomes. Results: The majority of the Thai epidemiological studies on environmental health in children were cross-sectional in design, with some demonstrating associations between exposure and outcome. The three main types of chemical exposure in Thai children were pesticides, heavy metals, and air pollution, which resulted from agricultural activities in countryside areas, industrial zones (both registered and unregistered establishments), mining, and traffic in inner cities. Major health outcomes included detrimental effects on cognitive function and cancer risk. Pesticide exposure was focused on, but not limited to, agricultural areas. The success of the Thai environmental policy to introduce lead–free petrol can be demonstrated by the decline of mean blood lead levels in children, particularly in urban areas. However, unregistered lead-related factories and smelters act as hidden sources. In addition, there is increasing concern, but little acknowledgement, about the effects of chronic arsenic exposure related to mining. Lastly, air pollution remains a problem in both dense city populations due to traffic and in rural areas due to contamination of indoor air and house dust with heavy metals, endotoxins and other allergens. Conclusions: The increasing number of published articles demonstrates an improved awareness of children’s environmental health in Thailand. Chemical hazards, including the improper use of pesticides, environmental contamination with heavy metals (lead and arsenic), and air pollution in inner cities and indoor air, continue to be growing issues.
Collapse
Affiliation(s)
- Ratchaneewan Sinitkul
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, TH
| | | | | | | | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, TH.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Harvard TH Chan School of Public Health, Harvard University, Boston, US
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| |
Collapse
|
18
|
Sanders AP, Saland JM, Wright RO, Satlin L. Perinatal and childhood exposure to environmental chemicals and blood pressure in children: a review of literature 2007-2017. Pediatr Res 2018; 84:165-180. [PMID: 29884847 PMCID: PMC6185812 DOI: 10.1038/s41390-018-0055-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 01/09/2023]
Abstract
Exposure to environmental chemicals during periods of renal development from embryogenesis to birth and through childhood can inform critical windows of nephrotoxicity, including changes in childhood blood pressure. This review assessed recent studies that examined the relationship of air pollution, metals, and other organic pollutants with children's blood pressure outcomes. We restricted this review to peer-reviewed studies published in English between January 2007 and July 2017. We identified a total of 36 articles that estimated associations with childhood blood pressure, of which 14 studies examined the effects of air pollution, 10 examined metals, and 12 examined other organic pollutants including phthalates (n = 4), Bisphenol A (n = 3), polychlorinated biphenols (n = 2), organophosphate pesticides (n = 2), or perfluoroalkyl acids (n = 1). Similar to the established relationship between tobacco smoke exposure and childhood blood pressure, the majority of studies that examined air pollutants, particularly exposure to PM10 and PM2.5, reported associations with increased childhood blood pressure. The literature reported conflicting evidence for metals, and putative evidence of the effects of exposure to phthalates, Bisphenol A, polychlorinated biphenols, and pesticides. Overall, our review underscores the need for additional studies that assess the impact of nephrotoxicant exposure during early life, particularly the perinatal period, and blood pressure in childhood.
Collapse
Affiliation(s)
- Alison P Sanders
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jeffrey M Saland
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
19
|
Barnett-Itzhaki Z, Esteban López M, Puttaswamy N, Berman T. A review of human biomonitoring in selected Southeast Asian countries. ENVIRONMENT INTERNATIONAL 2018; 116:156-164. [PMID: 29684824 DOI: 10.1016/j.envint.2018.03.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
Rapid development and industrialization in Southeast (SE) Asia has led to environmental pollution, potentially exposing the general population to environmental contaminants. Human biomonitoring (HBM), measurement of chemical and/or their metabolites in human tissues and fluids, is an important tool for assessing cumulative exposure to complex mixtures of chemicals and for monitoring chemical exposures in the general population. While there are national HBM programs in several developed countries, there are no such national programs in most of the SE Asian countries. However, in recent years there has been progress in the field of HBM in many of the SE Asian countries. In this review, we present recent HBM studies in five selected SE Asian countries: Bangladesh, Indonesia, Malaysia, Myanmar and Thailand. While there is extensive HBM research in several SE Asian countries, such as Thailand, in other countries HBM studies are limited and focus on traditional environmental pollutants (such as lead, arsenic and mercury). Further development of this field in SE Asia would be benefited by establishment of laboratory capacity, improving quality control and assurance, collaboration with international experts and consortiums, and sharing of protocols and training both for pre-analytical and analytical phases. This review highlights the impressive progress in HBM research in selected SE Asian countries and provides recommendations for development of this field.
Collapse
Affiliation(s)
- Zohar Barnett-Itzhaki
- Ministry of Health, Jeremiya Street 39, Jerusalem 9446724, Israel; Bioinformatics Department, School of Life and Health Science, Jerusalem College of Technology, Jerusalem, Israel.
| | - Marta Esteban López
- Área de Toxicología Ambiental, Centro Nacional de Sanidad Ambiental, Instituto de Salud Carlos III, Madrid, Spain
| | - Naveen Puttaswamy
- Center for Air Quality, Climate and Health, Department of Environmental Health Engineering, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Tamar Berman
- Ministry of Health, Jeremiya Street 39, Jerusalem 9446724, Israel
| |
Collapse
|
20
|
Cui X, Cheng H, Liu X, Giubilato E, Critto A, Sun H, Zhang L. Cadmium exposure and early renal effects in the children and adults living in a tungsten-molybdenum mining areas of South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15089-15101. [PMID: 29557043 DOI: 10.1007/s11356-018-1631-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Adverse health effects related to accumulative cadmium (Cd) exposure have aroused widespread attention from the public in China. Knowledge on the relationships between Cd exposure and early renal effects is particularly limited for children, who are more susceptible to absorbing metals than adults. A typical Cd-polluted area of South China was selected to determine the Cd exposure and related early renal effects of the general population, including children. In total, 211 children and 806 adults were enrolled in the study. The urinary levels of Cd (U-Cd), β2-microglobulin (U-BMG), retinol binding protein (U-RBP), and N-acetyl-β-D-glucosaminidase (U-NAG) were measured. The relationship between U-Cd and ranked indicators of early renal effects was examined by multiple regression analysis. The average U-Cd ranged from 7.01 μg/g creatinine (boys) to 13.55 μg/g creatinine (women) in the Cd-polluted areas. These values are much higher than those of the control group and those that have been reported by other countries. In agreement with previous studies, environmental Cd pollution resulted in elevated Cd accumulation in the bodies of children, and it increased the concentration of NAG in their urine. Similarly, environmental Cd pollution increased NAG and BMG in the urine of adults. Multivariate models showed that the urinary excretion of BMG, RBP, and NAG was positively associated with Cd levels in the urine of both children and adults. The reference thresholds of U-Cd in relation to elevated U-BMG, U-RBP, and U-NAG were higher in children than adults after standardization for other covariates. These results reinforce the need to control and regulate the sources of environmental Cd contamination and to promote more effective risk management measures, especially for vulnerable groups.
Collapse
Affiliation(s)
- Xiangfen Cui
- School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, People's Republic of China
| | - Hongguang Cheng
- School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, People's Republic of China.
| | - Xuelian Liu
- Green Development Institute, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari, Venice, Italy
| | - Andrea Critto
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari, Venice, Italy.
| | - Haixu Sun
- School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, People's Republic of China
| | - Lei Zhang
- School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, People's Republic of China
| |
Collapse
|
21
|
Mezynska M, Brzóska MM. Environmental exposure to cadmium-a risk for health of the general population in industrialized countries and preventive strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3211-3232. [PMID: 29230653 DOI: 10.1007/s11356-017-0827-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 11/23/2017] [Indexed: 05/10/2023]
Abstract
Cadmium (Cd) is a heavy metal belonging to the group of the main chemical pollutants of the natural and occupational environment in economically developed countries. The forecasts indicate that contamination of the environment with this toxic metal, and thus the exposure of the general population, will increase. Food (particularly plant products) is the main source of the general population exposure to this element. Moreover, an important, and often the main, source of intoxication with Cd is habitual tobacco smoking. Recent epidemiological studies have provided numerous evidence that even low-level environmental exposure to this toxic metal, nowadays occurring in numerous economically developed countries, creates a risk for health of the general population. The low-level lifetime exposure to this metal may lead to the damage to the kidneys, liver, skeletal system, and cardiovascular system, as well as to the deterioration of the sight and hearing. Moreover, it has been suggested that environmental exposure to this xenobiotic may contribute to the development of cancer of the lung, breast, prostate, pancreas, urinary bladder, and nasopharynx. Taking the above into account, the aim of this review article is to draw more attention to Cd as an environmental risk factor for the health of the general population and the need to undertake preventive actions allowing to reduce the risk of health damage due to a lifetime exposure to this toxic metal.
Collapse
Affiliation(s)
- Magdalena Mezynska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222, Bialystok, Poland.
| | - Malgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222, Bialystok, Poland.
| |
Collapse
|
22
|
Zheng LY, Sanders AP, Saland JM, Wright RO, Arora M. Environmental exposures and pediatric kidney function and disease: A systematic review. ENVIRONMENTAL RESEARCH 2017; 158:625-648. [PMID: 28727988 PMCID: PMC5821495 DOI: 10.1016/j.envres.2017.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/29/2017] [Accepted: 06/23/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Environmental chemical exposures have been implicated in pediatric kidney disease. No appraisal of the available evidence has been conducted on this topic. METHODS We performed a systematic review of the epidemiologic studies that assessed association of environmental exposures with measures of kidney function and disease in pediatric populations. The search period went through July 2016. RESULTS We found 50 studies that met the search criteria and were included in this systematic review. Environmental exposures reviewed herein included lead, cadmium, mercury, arsenic, fluoride, aflatoxin, melamine, environmental tobacco, bisphenol A, dental procedures, phthalates, ferfluorooctanoic acid, triclosan, and thallium/uranium. Most studies assessed environmental chemical exposure via biomarkers but four studies assessed exposure via proximity to emission source. There was mixed evidence of association between metal exposures, and other non-metal environmental exposures and pediatric kidney disease and other kidney disease biomarkers. The evaluation of causality is hampered by the small numbers of studies for each type of environmental exposure, as well as lack of study quality and limited prospective evidence. CONCLUSION There is a need for well-designed epidemiologic studies of environmental chemical exposures and kidney disease outcomes.
Collapse
Affiliation(s)
- Laura Y Zheng
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, United States.
| | - Alison P Sanders
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, United States; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, United States.
| | - Jeffrey M Saland
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, United States.
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, United States; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, United States.
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, United States.
| |
Collapse
|
23
|
Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, de Ferranti SD, Dionne JM, Falkner B, Flinn SK, Gidding SS, Goodwin C, Leu MG, Powers ME, Rea C, Samuels J, Simasek M, Thaker VV, Urbina EM. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017; 140:peds.2017-1904. [PMID: 28827377 DOI: 10.1542/peds.2017-1904] [Citation(s) in RCA: 1972] [Impact Index Per Article: 281.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
These pediatric hypertension guidelines are an update to the 2004 "Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents." Significant changes in these guidelines include (1) the replacement of the term "prehypertension" with the term "elevated blood pressure," (2) new normative pediatric blood pressure (BP) tables based on normal-weight children, (3) a simplified screening table for identifying BPs needing further evaluation, (4) a simplified BP classification in adolescents ≥13 years of age that aligns with the forthcoming American Heart Association and American College of Cardiology adult BP guidelines, (5) a more limited recommendation to perform screening BP measurements only at preventive care visits, (6) streamlined recommendations on the initial evaluation and management of abnormal BPs, (7) an expanded role for ambulatory BP monitoring in the diagnosis and management of pediatric hypertension, and (8) revised recommendations on when to perform echocardiography in the evaluation of newly diagnosed hypertensive pediatric patients (generally only before medication initiation), along with a revised definition of left ventricular hypertrophy. These guidelines include 30 Key Action Statements and 27 additional recommendations derived from a comprehensive review of almost 15 000 published articles between January 2004 and July 2016. Each Key Action Statement includes level of evidence, benefit-harm relationship, and strength of recommendation. This clinical practice guideline, endorsed by the American Heart Association, is intended to foster a patient- and family-centered approach to care, reduce unnecessary and costly medical interventions, improve patient diagnoses and outcomes, support implementation, and provide direction for future research.
Collapse
Affiliation(s)
- Joseph T Flynn
- Dr. Robert O. Hickman Endowed Chair in Pediatric Nephrology, Division of Nephrology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington;
| | - David C Kaelber
- Departments of Pediatrics, Internal Medicine, Population and Quantitative Health Sciences, Center for Clinical Informatics Research and Education, Case Western Reserve University and MetroHealth System, Cleveland, Ohio
| | - Carissa M Baker-Smith
- Division of Pediatric Cardiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Douglas Blowey
- Children's Mercy Hospital, University of Missouri-Kansas City and Children's Mercy Integrated Care Solutions, Kansas City, Missouri
| | - Aaron E Carroll
- Department of Pediatrics, School of Medicine, Indiana University, Bloomington, Indiana
| | - Stephen R Daniels
- Department of Pediatrics, School of Medicine, University of Colorado-Denver and Pediatrician in Chief, Children's Hospital Colorado, Aurora, Colorado
| | - Sarah D de Ferranti
- Director, Preventive Cardiology Clinic, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Janis M Dionne
- Division of Nephrology, Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Bonita Falkner
- Departments of Medicine and Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Susan K Flinn
- Consultant, American Academy of Pediatrics, Washington, District of Columbia
| | - Samuel S Gidding
- Cardiology Division Head, Nemours Cardiac Center, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Celeste Goodwin
- National Pediatric Blood Pressure Awareness Foundation, Prairieville, Louisiana
| | - Michael G Leu
- Departments of Pediatrics and Biomedical Informatics and Medical Education, University of Washington, University of Washington Medicine and Information Technology Services, and Seattle Children's Hospital, Seattle, Washington
| | - Makia E Powers
- Department of Pediatrics, School of Medicine, Morehouse College, Atlanta, Georgia
| | - Corinna Rea
- Associate Director, General Academic Pediatric Fellowship, Staff Physician, Boston's Children's Hospital Primary Care at Longwood, Instructor, Harvard Medical School, Boston, Massachusetts
| | - Joshua Samuels
- Departments of Pediatrics and Internal Medicine, McGovern Medical School, University of Texas, Houston, Texas
| | - Madeline Simasek
- Pediatric Education, University of Pittsburgh Medical Center Shadyside Family Medicine Residency, Clinical Associate Professor of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vidhu V Thaker
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Medical Center, New York, New York; and
| | - Elaine M Urbina
- Preventive Cardiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
24
|
Developmental Exposure to Environmental Chemicals and Metabolic Changes in Children. Curr Probl Pediatr Adolesc Health Care 2016; 46:255-85. [PMID: 27401018 DOI: 10.1016/j.cppeds.2016.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidence of childhood obesity, type 2 diabetes, and other forms of metabolic disease have been rising over the past several decades. Although diet and physical activity play important roles in these trends, other environmental factors also may contribute to this significant public health issue. In this article, we discuss the possibility that widespread exposure to endocrine-disrupting chemicals (EDCs) may contribute to the development of metabolic diseases in children. We summarize the epidemiological evidence on exposure to environmental chemicals during early development and metabolic outcomes in infants and children. Prenatal exposure to EDCs, particularly the persistent organic pollutant DDT and its metabolite DDE, may influence growth patterns during infancy and childhood. The altered growth patterns associated with EDCs vary according to exposure level, sex, exposure timing, pubertal status, and age at which growth is measured. Early exposure to air pollutants also is linked to impaired metabolism in infants and children. As a result of these and other studies, professional health provider societies have called for a reduction in environmental chemical exposures. We summarize the resources available to health care providers to counsel patients on how to reduce chemical exposures. We conclude with a discussion of environmental policies that address chemical exposures and ultimately aim to improve public health.
Collapse
|
25
|
Fillman T, Shimizu-Furusawa H, Ng CFS, Parajuli RP, Watanabe C. Association of cadmium and arsenic exposure with salivary telomere length in adolescents in Terai, Nepal. ENVIRONMENTAL RESEARCH 2016; 149:8-14. [PMID: 27155138 DOI: 10.1016/j.envres.2016.04.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Cadmium and arsenic are ubiquitous metals commonly found in the environment which can harm human health. A growing body of research shows telomere length as a potential biomarker of future disease risk. Few studies have examined the effects of metals on telomere length and none have focused on adolescents. OBJECTIVES In this study, the impact of cadmium and arsenic on salivary telomere length was studied in adolescents in Terai, Nepal. METHODS Adolescents aged 12-16 years old (n=351)were recruited where questionnaire interviews and both saliva and urine collection took place. Telomere length was determined by quantitative polymerase chain reaction using DNA extracted from saliva. Urinary cadmium and arsenic concentration were measured by inductively coupled plasma mass spectrometry. Multivariable linear regression was used to examine associations between urinary metals and salivary telomere length. RESULTS The geometric means and standard deviations of cadmium and arsenic were 0.33±0.33μg/g creatinine and 196.0±301.1μg/g creatinine, respectively. Urinary cadmium concentration was negatively associated with salivary telomere length after adjustment for confounders (β=-0.24, 95% CI -0.42,-0.07). Arsenic showed positive associations with telomere length but did not reach statistical significance. CONCLUSIONS This is the first study to demonstrate that cadmium may shorten adolescent telomeres, even at exposure levels that may be considered low. These results agree with prior experimental and adult epidemiological studies, and also help identify the mechanism of DNA damage by cadmium. This study expanded current evidence on the harmful effects of cadmium exposure on telomere length even to adolescents.
Collapse
Affiliation(s)
- Toki Fillman
- Department of Human Ecology, School of International Health, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| | - Hana Shimizu-Furusawa
- Department of Human Ecology, School of International Health, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| | - Chris Fook Sheng Ng
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Rajendra Prasad Parajuli
- Basu Laboratory, CINE Building, Macdonald Campus, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada.
| | - Chiho Watanabe
- Department of Human Ecology, School of International Health, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
26
|
Vrhovnik P, Dolenec M, Serafimovski T, Tasev G, Arrebola JP. Assessment of essential and nonessential dietary exposure to trace elements from homegrown foodstuffs in a polluted area in Makedonska Kamenica and the Kočani region (FYRM). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 559:204-211. [PMID: 27065442 DOI: 10.1016/j.scitotenv.2016.03.197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
UNLABELLED The main purpose of the present study is to assess human dietary exposure to essential and non-essential trace elements via consumption of selected homegrown foodstuffs. Twelve essential and non-essential trace elements (Cd, Co, Cu, Cr, Hg, Mo, Ni, Pb, Sb, Se, Zn and As) were detected in various homegrown foodstuffs. Detailed questionnaires were also applied among a sample of the local population to collect information on sociodemographic characteristics. The results of the present study clearly indicate that the majority of the trace elements are at highly elevated levels in the studied foodstuffs, in comparison to international recommendations. The maximum measured levels of ETE and NETE are as follows [μgkg(-1)]: Cd 873, Co 1370, Cu 21700, Cr 59633, Hg 26, Mo 6460, Ni14.5, Pb 11100, Sb 181, Se 0.30, Zn 102 and As 693. Additionally, age, body mass index and gender were significantly associated with levels of dietary exposure. Further research is warranted on the potential health implication of this exposure. CAPSULE ABSTRACT The study merges the accumulation of ETE and NETE in home-grown foodstuffs and reflects considerably high health risks for inhabitants.
Collapse
Affiliation(s)
| | - Matej Dolenec
- University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Geology, Aškerčeva 12, SI-1000 Ljubljana, Slovenia
| | - Todor Serafimovski
- Faculty of Mining, Geology and Polytechnics, University "Goce Delcev - Stip", Goce Delcev 89, 2000 Stip, Macedonia
| | - Goran Tasev
- Faculty of Mining, Geology and Polytechnics, University "Goce Delcev - Stip", Goce Delcev 89, 2000 Stip, Macedonia
| | - Juan P Arrebola
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, University of Granada, CIBERESP, 18071 Granada, Spain
| |
Collapse
|
27
|
Park S, Choi NK. Associations of blood heavy metal levels with intraocular pressure. Ann Epidemiol 2016; 26:546-550.e1. [PMID: 27497680 DOI: 10.1016/j.annepidem.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Whether or which blood heavy metal levels (BHMLs) influence elevating intraocular pressure (IOP) are unknown. We examined the relationship among blood lead, mercury, and cadmium levels, blood pressure (BP), and IOP and assessed whether BP mediates these BHMLs-IOP associations. METHODS We analyzed data on 8371 adult (≥20 years) from the Korea National Health and Nutrition Examination Survey from 2008 to 2012. Mediation analysis was used to examine the contribution of BP to the BHMLs-IOP relationship. RESULTS IOP and three BHMLs were significantly associated with systolic and diastolic BP. But IOP was associated with only blood lead and mercury levels. BP significantly mediated lead-IOP and mercury-IOP associations: BP accounted for 20.5% and 14.2% of the association with IOP. Blood lead and mercury levels were significantly associated with IOP. CONCLUSIONS BP significantly mediates the effects of those blood lead and mercury levels on IOP outcome. Prospective studies are needed to further examine the causal pathway from BHMLs to IOP elevation.
Collapse
Affiliation(s)
- Sangshin Park
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI; Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Nam-Kyong Choi
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
28
|
Environmental pollutants and child health-A review of recent concerns. Int J Hyg Environ Health 2016; 219:331-42. [PMID: 27216159 DOI: 10.1016/j.ijheh.2016.05.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 01/09/2023]
Abstract
In recent years, many new studies have evaluated associations between environmental pollutants and child health. This review aims to provide a broad summary of this literature, comparing the state of epidemiological evidence for the effects of a wide range of environmental contaminants (air pollutants, heavy metals, organochlorine compounds, perfluoroalkyl substances, polybrominated diphenyl ethers, pesticides, phthalates and bisphenol A) on child health outcomes. The review addresses effects on foetal growth and prematurity, neurodevelopment, respiratory and immune health, and childhood growth and obesity. Findings of recent prospective studies and meta-analyses have corroborated previous good evidence, often at lower exposure levels, for effects on foetal growth of air pollution and polychlorinated biphenyls (PCBs), for neurotoxic effects of lead, methylmercury, PCBs and organophosphate pesticides, and for respiratory health effects of air pollution. Moderate evidence has emerged for a potential role of environmental pollutants in attention deficit hyperactivity disorder and autism (lead, PCBs, air pollution), respiratory and immune health (dichlorodiphenyldichloroethylene - DDE - and PCBs), and obesity (DDE). In addition, there is now moderate evidence that certain chemicals of relatively recent concern may be associated with adverse child health outcomes, specifically perfluorooctanoate and foetal growth, and polybrominated diphenyl ethers and neurodevelopment. For other chemicals of recent concern, such as phthalates and bisphenol A, the literature is characterised by large inconsistencies preventing strong conclusions. In conclusion, since most of the recent literature evaluates common exposures in the general population, and not particularly high exposure situations, this accumulating body of evidence suggests that the unborn and young child require more protection than is currently provided. Large, coordinated research efforts are needed to improve understanding of long-term effects of complex chemical mixtures.
Collapse
|