1
|
Deutschmeyer VE, Schlaudraff NA, Walesch SK, Moyer J, Sokol AM, Graumann J, Meissner W, Schneider M, Muley T, Helmbold P, Schwinn M, Richter AM, Schmitz ML, Dammann RH. SIAH3 is frequently epigenetically silenced in cancer and regulates mitochondrial metabolism. Int J Cancer 2024. [PMID: 39344659 DOI: 10.1002/ijc.35202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
Of the seven in absentia homologue (SIAH) family, three members have been identified in the human genome. In contrast to the E3 ubiquitin ligase encoding SIAH1 and SIAH2, little is known on the regulation and function of SIAH3 in tumorigenesis. In this study, we reveal that SIAH3 is frequently epigenetically silenced in different cancer entities, including cutaneous melanoma, lung adenocarcinoma and head and neck cancer. Low SIAH3 levels correlate with an impaired survival of cancer patients. Additionally, induced expression of SIAH3 reduces cell proliferation and induces cell death. Functionally, SIAH3 negatively affects cellular metabolism by shifting cells form aerobic oxidative phosphorylation to glycolysis. SIAH3 is localized in the mitochondrion and interacts with proteins involved in mitochondrial ribosome biogenesis and translation. We also report that SIAH3 interacts with ubiquitin ligases, including SIAH1 or SIAH2, and is degraded by them. These results suggest that SIAH3 acts as an epigenetically controlled tumor suppressor by regulating cellular metabolism through the inhibition of oxidative phosphorylation.
Collapse
Affiliation(s)
| | - Nico A Schlaudraff
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sara K Walesch
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Janine Moyer
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Anna M Sokol
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Institute of Translational Proteomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - Wolfgang Meissner
- Core Facility for Cellular Metabolism, Department of Medicine, Philipps-University, Marburg, Germany
| | - Marc Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- University of Giessen Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Giessen, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- University of Giessen Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Giessen, Germany
| | - Peter Helmbold
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Markus Schwinn
- Institute of Biochemistry, Medical Faculty of the University Giessen, Giessen, Germany
| | - Antje M Richter
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty of the University Giessen, Giessen, Germany
| | - Reinhard H Dammann
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- University of Giessen Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
2
|
Yu G, Wu L, Su Q, Ji X, Zhou J, Wu S, Tang Y, Li H. Neurotoxic effects of heavy metal pollutants in the environment: Focusing on epigenetic mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123563. [PMID: 38355086 DOI: 10.1016/j.envpol.2024.123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The pollution of heavy metals (HMs) in the environment is a significant global environmental issue, characterized by its extensive distribution, severe contamination, and profound ecological impacts. Excessive exposure to heavy metal pollutants can damage the nervous system. However, the mechanisms underlying the neurotoxicity of most heavy metals are not completely understood. Epigenetics is defined as a heritable change in gene function that can influence gene and subsequent protein expression levels without altering the DNA sequence. Growing evidence indicates that heavy metals can induce neurotoxic effects by triggering epigenetic changes and disrupting the epigenome. Compared with genetic changes, epigenetic alterations are more easily reversible. Epigenetic reprogramming techniques, drugs, and certain nutrients targeting specific epigenetic mechanisms involved in gene expression regulation are emerging as potential preventive or therapeutic tools for diseases. Therefore, this review provides a comprehensive overview of epigenetic modifications encompassing DNA/RNA methylation, histone modifications, and non-coding RNAs in the nervous system, elucidating their association with various heavy metal exposures. These primarily include manganese (Mn), mercury (Hg), lead (Pb), cobalt (Co), cadmium (Cd), nickel (Ni), sliver (Ag), toxic metalloids arsenic (As), and etc. The potential epigenetic mechanisms in the etiology, precision prevention, and target therapy of various neurodevelopmental disorders or different neurodegenerative diseases are emphasized. In addition, the current gaps in research and future areas of study are discussed. From a perspective on epigenetics, this review offers novel insights for prevention and treatment of neurotoxicity induced by heavy metal pollutants.
Collapse
Affiliation(s)
- Guangxia Yu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lingyan Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qianqian Su
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xianqi Ji
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jinfu Zhou
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Siying Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ying Tang
- Fujian Center for Prevention and Control Occupational Diseases and Chemical Poisoning, Fuzhou 350125, China
| | - Huangyuan Li
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
3
|
Chen C, Ma C, Li Q, Hang JG, Shen J, Nakayama SF, Kido T, Lin Y, Feng H, Jung C, Sun XL, Lou J. Prenatal Exposure to Heavy Metals and Adverse Birth Outcomes: Evidence From an E-Waste Area in China. GEOHEALTH 2023; 7:e2023GH000897. [PMID: 38023386 PMCID: PMC10680130 DOI: 10.1029/2023gh000897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
Electronic waste that has not been properly treated can lead to environmental contamination including of heavy metals, which can pose risks to human health. Infants, a sensitive group, are highly susceptible to heavy metals exposure. The aim of this study was to investigate the association between prenatal heavy metal exposure and infant birth outcomes in an e-waste recycling area in China. We analyzed cadmium (Cd), chromium (Cr), manganese (Mn), lead (Pb), copper (Cu), and arsenic (As) concentrations in 102 human milk samples collected 4 weeks after delivery. The results showed that 34.3% of participants for Cr, which exceeds the World Health Organization (WHO) guidelines, as well as the mean exposure of Cr exceeded the WHO guidelines. We collected data on the birth weight (BW) and length of infants and analyzed the association between metal concentration in human milk and birth outcomes using multivariable linear regression. We observed a significant negative association between the Cd concentration in maternal milk and BW in female infants (β = -162.72, 95% CI = -303.16, -22.25). In contrast, heavy metals did not associate with birth outcomes in male infants. In this study, we found that 34.3% of participants in an e-waste recycling area had a Cr concentration that exceeded WHO guidelines, and there was a significant negative association between prenatal exposure to the Cd and infant BW in females. These results suggest that prenatal exposure to heavy metals in e-waste recycling areas may lead to adverse birth outcomes, especially for female infants.
Collapse
Affiliation(s)
- Chen Chen
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| | | | - Qiyao Li
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| | - Jin Guo Hang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical UniversityTaizhouChina
| | - Jiantong Shen
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| | - Shoji F. Nakayama
- Japan Environment and Children's Study Programme OfficeNational Institute for Environmental StudiesTsukubaJapan
| | - Teruhiko Kido
- Faculty of Health SciencesInstitute of Medical, Pharmaceutical, and Health SciencesKanazawa UniversityKanazawaJapan
| | - Yibin Lin
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| | - Hao Feng
- School of MedicineJiaxing UniversityJiaxingChina
| | - Chau‐Ren Jung
- Department of Public HealthCollege of Public HealthChina Medical UniversityTaichungTaiwan
| | - Xian Liang Sun
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
- Faculty of Health SciencesInstitute of Medical, Pharmaceutical, and Health SciencesKanazawa UniversityKanazawaJapan
| | - Jianlin Lou
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| |
Collapse
|
4
|
Jeong DS, Lee JY, Kim MH, Oh JH. Regulation of sexually dimorphic placental adaptation in LPS exposure-induced intrauterine growth restriction. Mol Med 2023; 29:114. [PMID: 37718409 PMCID: PMC10506314 DOI: 10.1186/s10020-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/15/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Sexual dimorphism in placental physiology affects the functionality of placental adaptation during adverse pregnancy. Defects of placental function compromise fetal programming, affecting the offspring's adult life. However, studies focusing on the relationship between sex-specific placental adaptation and consequent fetal maldevelopment under sub-optimal uterus milieu are still elusive. METHODS Here, we investigated the effects of maternal lipopolysaccharide (LPS) exposure between placental sex. Pregnant ICR mice received intraperitoneal injection of phosphate-buffered saline or 100, 200, and 400 µg/kg LPS on the gestational day (GD) 15.5. To determine whether prenatal maternal LPS exposure resulted in complicated pregnancy outcomes, survival rate of embryos was calculated and the growth of embryos and placentas was examined. To elucidate global transcriptomic changes occurring in the placenta, total RNA-sequencing (RNA-seq) was performed in female and male placentas. RESULTS LPS administration induced placental inflammation in both sexes at GD 17.5. Prenatal infection resulted in growth retardation in both sexes of embryos, and especially more prevalently in male. Impaired placental development was observed in a sex-specific manner. LPS 400 µg/kg reduced the percentage area of the labyrinth in females and junctional zone in males, respectively. RNA-sequencing revealed widespread sexually dimorphic transcriptional changes in placenta. In particular, representative changes were involved in biological processes such as trophoblast differentiation, nutrient/ion transporter, pregnancy, and immune system. CONCLUSIONS Our results present the sexually dimorphic responses of placental physiology in intrauterine growth restriction model and provide tentative relationship further to be elucidated between sex-biased placental functional change and long-term effects on the offspring's later life.
Collapse
Affiliation(s)
- Da Som Jeong
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ji-Yeon Lee
- Vivozon, Inc, Kolon Digital Tower3, 49, Achasan-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Ji Hoon Oh
- Department of Biological Sciences, Keimyung University College of Natural Sciences, Daegu, 42601, Republic of Korea.
| |
Collapse
|
5
|
Miralles F, Vaiman D. Abnormal placental DNA methylation following environmental stress: a mere biomarker in a highly sensitive target organ? Epigenomics 2023; 15:719-721. [PMID: 37485923 DOI: 10.2217/epi-2023-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Affiliation(s)
- Francisco Miralles
- Institut Cochin, U1016 INSERM, CNRS UMR8104, Faculté de Paris, 24 Rue du Faubourg St Jacques, Paris, 75014, France
| | - Daniel Vaiman
- Institut Cochin, U1016 INSERM, CNRS UMR8104, Faculté de Paris, 24 Rue du Faubourg St Jacques, Paris, 75014, France
| |
Collapse
|
6
|
Paz-Sabillón M, Torres-Sánchez L, Piña-Pozas M, Del Razo LM, Quintanilla-Vega B. Prenatal Exposure to Potentially Toxic Metals and Their Effects on Genetic Material in Offspring: a Systematic Review. Biol Trace Elem Res 2023; 201:2125-2150. [PMID: 35713810 DOI: 10.1007/s12011-022-03323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
In recent years, the background level of environmental pollutants, including metals, has increased. Pollutant exposure during the earliest stages of life may determine chronic disease susceptibility in adulthood because of genetic or epigenetic changes. The objective of this review was to identify the association between prenatal and early postnatal exposure to potentially toxic metals (PTMs) and their adverse effects on the genetic material of offspring. A systematic review was carried out following the Cochrane methodology in four databases: PubMed, Scopus, Web of Science, and the Cochrane Library. Eligible papers were those conducted in humans and published in English between 2010/01/01 and 2021/04/30. A total of 57 articles were included, most of which evaluated prenatal exposure. Most commonly evaluated PTMs were As, Cd, and Pb. Main adverse effects on the genetic material of newborns associated with PTM prenatal exposure were alterations in telomere length, gene or protein expression, mitochondrial DNA content, metabolomics, DNA damage, and epigenetic modifications. Many of these effects were sex-specific, being predominant in boys. One article reported a synergistic interaction between As and Hg, and two articles observed antagonistic interactions between PTMs and essential metals, such as Cu, Se, and Zn. The findings in this review highlight that the problem of PTM exposure persists, affecting the most susceptible populations, such as newborns. Some of these associations were observed at low concentrations of PTMs. Most of the studies have focused on single exposures; however, three interactions between essential and nonessential metals were observed, highlighting that metal mixtures need more attention.
Collapse
Affiliation(s)
- Marvin Paz-Sabillón
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Luisa Torres-Sánchez
- National Institute of Public Health, Ave. Universidad 655, Santa María Ahuacatitlán, 62100, Cuernavaca, Morelos, Mexico
| | - Maricela Piña-Pozas
- National Institute of Public Health, Ave. Universidad 655, Santa María Ahuacatitlán, 62100, Cuernavaca, Morelos, Mexico
| | - Luz M Del Razo
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Betzabet Quintanilla-Vega
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|
7
|
Mohanraj L, Wolf H, Silvey S, Liu J, Toor A, Swift-Scanlan T. DNA Methylation Changes in Autologous Hematopoietic Stem Cell Transplant Patients. Biol Res Nurs 2023; 25:310-325. [PMID: 36321693 PMCID: PMC10236442 DOI: 10.1177/10998004221135628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Blood cancers may be potentially cured with hematopoietic stem cell transplantation (HCT); however, standard pre-assessments for transplant eligibility do not capture all contributing factors for transplant outcomes. Epigenetic biomarkers predict outcomes in various diseases. This pilot study aims to explore epigenetic changes (epigenetic age and differentially methylated genes) in patients before and after autologous HCT, that can serve as potential biomarkers to better predict HCT outcomes. METHODS This study used a prospective longitudinal study design to compare genome wide DNA methylation changes in 36 autologous HCT eligible patients recruited from the Cellular Immunotherapies and Transplant clinic at a designated National Cancer Center. RESULTS Genome-wide DNA methylation, measured by the Illumina Infinium Human Methylation 850K BeadChip, showed a significant difference in DNA methylation patterns post-HCT compared to pre-HCT. Compared to baseline levels of DNA methylation pre-HCT, 3358 CpG sites were hypo-methylated and 3687 were hyper-methylated. Identified differentially methylated positions overlapped with genes involved in hematopoiesis, blood cancers, inflammation and immune responses. Enrichment analyses showed significant alterations in biological processes such as immune response and cell structure organization, however no significant pathways were noted. Though participants had an advanced epigenetic age compared to chronologic age before and after HCT, both epigenetic age and accelerated age decreased post-HCT. CONCLUSION Epigenetic changes, both in epigenetic age and differentially methylated genes were observed in autologous HCT recipients, and should be explored as biomarkers to predict transplant outcomes after autologous HCT in larger, longitudinal studies.
Collapse
Affiliation(s)
- Lathika Mohanraj
- Department of Adult Health and Nursing
Systems, VCU School of Nursing, Richmond, VA, USA
| | - Hope Wolf
- Department of Human and Molecular Genetics, VCU School of Medicine, Richmond, VA, USA
| | - Scott Silvey
- Department of Biostatistics, VCU School of Medicine, Richmond, VA, USA
| | - Jinze Liu
- Department of Biostatistics, VCU School of Medicine, Richmond, VA, USA
| | - Amir Toor
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA, USA
| | - Theresa Swift-Scanlan
- Endowed Professor and Director,
Biobehavioral Research Lab, VCU School of Nursing, Richmond, VA, USA
| |
Collapse
|
8
|
Interaction between Long Noncoding RNAs and Syncytin-1/Syncytin-2 Genes and Transcripts: How Noncoding RNAs May Affect Pregnancy in Patients with Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:ijms24032259. [PMID: 36768581 PMCID: PMC9917164 DOI: 10.3390/ijms24032259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Patients with systemic lupus erythematosus (SLE) often suffer from obstetric complications not necessarily associated with the antiphospholipid syndrome. These events may potentially result from the reduced placental synthesis of the fusogenic proteins syncytin-1 and syncytin-2, observed in women with pregnancy-related disorders. SLE patients have an aberrant noncoding (nc)RNA signature that may in turn dysregulate the expression of syncytin-1 and syncytin-2 during placentation. The aim of this research is to computationally evaluate and characterize the interaction between syncytin-1 and syncytin-2 genes and human ncRNAs and to discuss the potential implications for SLE pregnancy adverse outcomes. METHODS The FASTA sequences of the syncytin-1 and syncytin-2 genes were used as inputs to the Ensembl.org library to find any alignments with human ncRNA genes and their transcripts, which were characterized for their tissue expression, regulatory activity on adjacent genes, biological pathways, and potential association with human disease. RESULTS BLASTN analysis revealed a total of 100 hits with human long ncRNAs (lncRNAs) for the syncytin-1 and syncytin-2 genes, with median alignment scores of 151 and 66.7, respectively. Only lncRNAs TP53TG1, TTTY14, and ENSG00000273328 were reported to be expressed in placental tissue. Dysregulated expression of lncRNAs TP53TG1, LINC01239, and LINC01320 found in this analysis has previously been described in SLE patients as well as in women with a high-risk pregnancy. In addition, some of the genes adjacent to lncRNAs aligned with syncytin-1 or syncytin-2 in a regulatory region might increase the risk of pregnancy complications or SLE. CONCLUSIONS This is the first computational study showing alignments between syncytin-1 and syncytin-2 genes and human lncRNAs. Whether this mechanism affects syncytiotrophoblast morphogenesis in SLE females is unknown and requires further investigation.
Collapse
|
9
|
Lawless L, Xie L, Zhang K. The inter- and multi- generational epigenetic alterations induced by maternal cadmium exposure. Front Cell Dev Biol 2023; 11:1148906. [PMID: 37152287 PMCID: PMC10157395 DOI: 10.3389/fcell.2023.1148906] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Exposure to cadmium during pregnancy, from environmental or lifestyle factors, has been shown to have detrimental fetal and placental developmental effects, along with negatively impacting maternal health during gestation. Additionally, prenatal cadmium exposure places the offspring at risk for developing diseases in infancy, adolescence, and adulthood. Although given much attention, the underlying mechanisms of cadmium-induced teratogenicity and disease development remain largely unknown. Epigenetic changes in DNA, RNA and protein modifications have been observed during cadmium exposure, which implies a scientific premise as a conceivable mode of cadmium toxicity for developmental origins of health and disease (DOHaD). This review aims to examine the literature and provide a comprehensive overview of epigenetic alterations induced by prenatal cadmium exposure, within the developing fetus and placenta, and the continued effects observed in childhood and across generations.
Collapse
Affiliation(s)
- Lauren Lawless
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Ke Zhang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- *Correspondence: Ke Zhang,
| |
Collapse
|
10
|
Young JL, Cave MC, Xu Q, Kong M, Xu J, Lin Q, Tan Y, Cai L. Whole life exposure to low dose cadmium alters diet-induced NAFLD. Toxicol Appl Pharmacol 2022; 436:115855. [PMID: 34990729 PMCID: PMC8796138 DOI: 10.1016/j.taap.2021.115855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major global public health concern affecting more than 25% of the world's population. Although obesity and diabetes are major risk factors for NAFLD, they cannot account for all cases, indicating the importance of other factors such as environmental exposures. Cadmium (Cd) exposure is implicated in the development of NAFLD; however, the influence of early life, in utero Cd exposure on the development of diet-induced NAFLD is poorly understood. Therefore, we developed an in vivo, multiple-hit model to study the effect of whole-life, low dose Cd exposure on high fat diet (HFD)-induced NAFLD. Adult male and female C57BL/6 J mice fed normal diets (ND) were exposed to 0, 0.5 or 5 ppm Cd-containing drinking water for 14 weeks before breeding. At weaning, offspring were fed ND or HFD and continued on the same drinking water regimen as their parents for 24 weeks. Cd exposure at different concentrations differentially altered HFD-associated adverse health effects, including liver injury. HFD-induced increased body weight, decreased glucose tolerance. Liver injury and lipid deposition were exacerbated by 5 ppm Cd exposure but attenuated by 0.5 ppm Cd exposure. Further, HFD blunted the response of metallothionein, a major Cd detoxification protein, in mice exposed to 5 ppm Cd but enhanced the response in mice exposed to 0.5 ppm Cd, suggesting a possible mechanism for Cd alteration of HFD-induced NAFLD. These results confirm the multi-hit nature of NAFLD and show whole life, low dose Cd exposure alters HFD-induced NAFLD with outcomes dependent on Cd concentration.
Collapse
Affiliation(s)
- Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, the University of Louisville School of Medicine, Louisville, KY 40202, USA; Pediatric Research Institute, Departments of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Matthew C Cave
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, the University of Louisville School of Medicine, Louisville, KY 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, the University of Louisville School of Medicine, Louisville, KY 40202, USA; Superfund Research Center, the University of Louisville, Louisville, KY 40202, USA; The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40202, USA.
| | - Qian Xu
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, USA.
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, USA.
| | - Jianxiang Xu
- Pediatric Research Institute, Departments of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Qian Lin
- Pediatric Research Institute, Departments of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Yi Tan
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Pediatric Research Institute, Departments of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Pediatric Research Institute, Departments of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
11
|
McCall JL, Varney ME, Rice E, Dziadowicz SA, Hall C, Blethen KE, Hu G, Barnett JB, Martinez I. Prenatal Cadmium Exposure Alters Proliferation in Mouse CD4 + T Cells via LncRNA Snhg7. Front Immunol 2022; 12:720635. [PMID: 35087510 PMCID: PMC8786704 DOI: 10.3389/fimmu.2021.720635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Prenatal cadmium (Cd) exposure leads to immunotoxic phenotypes in the offspring affecting coding and non-coding genes. Recent studies have shown that long non-coding RNAs (lncRNAs) are integral to T cell regulation. Here, we investigated the role of long non-coding RNA small nucleolar RNA host gene 7 (lncSnhg7) in T cell proliferation. Methods RNA sequencing was used to analyze the expression of lncRNAs in splenic CD4+ T cells with and without CD3/CD28 stimulation. Next, T cells isolated from offspring exposed to control or Cd water throughout mating and gestation were analyzed with and without stimulation with anti-CD3/CD28 beads. Quantitative qPCR and western blotting were used to detect RNA and protein levels of specific genes. Overexpression of a miR-34a mimic was achieved using nucleofection. Apoptosis was measured using flow cytometry and luminescence assays. Flow cytometry was also used to measure T cell proliferation in culture. Finally, lncSnhg7 was knocked down in splenic CD4+ T cells with lentivirus to assess its effect on proliferation. Results We identified 23 lncRNAs that were differentially expressed in stimulated versus unstimulated T cells, including lncSnhg7. LncSnhg7 and a downstream protein, GALNT7, are upregulated in T cells from offspring exposed to Cd during gestation. Overexpression of miR-34a, a regulator of lncSnhg7 and GALNT7, suppresses GALNT7 protein levels in primary T cells, but not in a mouse T lymphocyte cell line. The T cells isolated from Cd-exposed offspring exhibit increased proliferation after activation in vitro, but Treg suppression and CD4+ T cell apoptosis are not affected by prenatal Cd exposure. Knockdown on lncSnhg7 inhibits proliferation of CD4+ T cells. Conclusion Prenatal Cd exposure alters the expression of lncRNAs during T cell activation. The induction of lncSnhg7 is enhanced in splenic T cells from Cd offspring resulting in the upregulation of GALNT7 protein and increased proliferation following activation. miR-34a overexpression decreased GALNT7 expression and knockdown of lncSnhg7 inhibited proliferation suggesting that the lncSnhg7/miR-34a/GALNT7 is an important pathway in primary CD4+ T cells. These data highlight the need to understand the consequences of environmental exposures on lncRNA functions in non-cancerous cells as well as the effects in utero.
Collapse
Affiliation(s)
- Jamie L. McCall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Melinda E. Varney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Emily Rice
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Casey Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Kathryn E. Blethen
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
- Bioinformatics Core, West Virginia University, Morgantown, WV, United States
| | - John B. Barnett
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Ivan Martinez
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
12
|
Liu L, Yao L, Dong M, Liu T, Lai W, Yin X, Zhou S, Lv L, Li L, Wang J, Jiang X, Parveen B, Chen J, Sun X. Maternal urinary cadmium concentrations in early pregnancy in relation to prenatal and postpartum size of offspring. J Trace Elem Med Biol 2021; 68:126823. [PMID: 34293648 DOI: 10.1016/j.jtemb.2021.126823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/21/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND The impacts of environmental cadmium (Cd) exposure on birth size parameters including weight, length and head circumference (HC) have been reported in multiple studies. However, little remains known of the impacts of maternal Cd exposure during pregnancy on size during in utero development and during early childhood. The aim of this study was to comprehensively investigate impacts of maternal Cd exposure during pregnancy on the size of offspring in utero (from 24 weeks pregnancy) until six months of age. METHODS Pregnant mothers were recruited as part of an ongoing prospective birth cohort study based in Guangdong, China. Maternal urine samples were collected in the first and third trimesters of pregnancy, in which Cd concentrations were measured by inductively couple plasma mass spectrometry (ICPMS). In utero size indicators at 24 and 32 week of gestation, including biparietal diameter (BPD), abdominal circumference (AC), femur length (FL) and HC were derived from ultrasound examinations. Anthropometric measures of weight, height and HC at birth and one, three and six months of age were also collected. Associations of size measures at the various time points with maternal urinary Cd concentrations were assessed using linear regression models. RESULTS The median urinary Cd concentration was 1.00 and 0.98 μg/g creatinine in the first and third trimesters respectively. In univariate analysis, increased maternal Cd levels in the first trimester were associated with decreased HC (-0.17 cm/ug/g urinary Cd) at birth, and the association was particularly pronounced among males (-0.30 cm/ug/g urinary Cd). First trimester Cd exposure was also found to be significantly associated with decreased infant weight at three and six months of age among girls (-101 g/ug/g and -97 g/ug/g urinary Cd, respectively). Associations of similar magnitude were observed after adjustment for various maternal factors. No significant associations were observed with infant size measures or with measures of Cd in the third trimester. CONCLUSIONS Our detailed study suggests that the first trimester is particularly critical window of susceptibility to sex-specific effects of Cd on size parameters at birth, with some effects persisting to six months of age. These compelling sex-dependent effects on HC and body weight warrant future studies examining longer-term health effects of pregnancy-related Cd exposures.
Collapse
Affiliation(s)
- Lili Liu
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Lena Yao
- Fred Hutchison Cancer Research Center, Seattle, USA
| | - Ming Dong
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Ting Liu
- Huzhou Center for Disease Control and Prevention, Zhenjiang, China
| | - Weina Lai
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Xiao Yin
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Shanyu Zhou
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Lijuan Lv
- Guangdong Maternal and Child Hospital, Guangzhou, China
| | - Lifang Li
- Nanhai Maternity and Child Healthcare Hospital of Foshan, Foshan, China
| | - Jin Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao Jiang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bhatti Parveen
- Fred Hutchison Cancer Research Center, Seattle, USA; Cancer Control Research, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Jiabin Chen
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China.
| | - Xin Sun
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
13
|
Ghazi T, Naidoo P, Naidoo RN, Chuturgoon AA. Prenatal Air Pollution Exposure and Placental DNA Methylation Changes: Implications on Fetal Development and Future Disease Susceptibility. Cells 2021; 10:cells10113025. [PMID: 34831248 PMCID: PMC8616150 DOI: 10.3390/cells10113025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept postulates that in utero exposures influence fetal programming and health in later life. Throughout pregnancy, the placenta plays a central role in fetal programming; it regulates the in utero environment and acts as a gatekeeper for nutrient and waste exchange between the mother and the fetus. Maternal exposure to air pollution, including heavy metals, can reach the placenta, where they alter DNA methylation patterns, leading to changes in placental function and fetal reprogramming. This review explores the current knowledge on placental DNA methylation changes associated with prenatal air pollution (including heavy metals) exposure and highlights its effects on fetal development and disease susceptibility. Prenatal exposure to air pollution and heavy metals was associated with altered placental DNA methylation at the global and promoter regions of genes involved in biological processes such as energy metabolism, circadian rhythm, DNA repair, inflammation, cell differentiation, and organ development. The altered placental methylation of these genes was, in some studies, associated with adverse birth outcomes such as low birth weight, small for gestational age, and decreased head circumference. Moreover, few studies indicate that DNA methylation changes in the placenta were sex-specific, and infants born with altered placental DNA methylation patterns were predisposed to developing neurobehavioral abnormalities, cancer, and atopic dermatitis. These findings highlight the importance of more effective and stricter environmental and public health policies to reduce air pollution and protect human health.
Collapse
Affiliation(s)
- Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (P.N.)
| | - Pragalathan Naidoo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (P.N.)
| | - Rajen N. Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (P.N.)
- Correspondence: ; Tel.: +27-31-260-4404
| |
Collapse
|
14
|
Hussey MR, Suter MK, Mohanty AF, Enquobahrie DA. Placental cadmium, placental genetic variations, and birth size. J Matern Fetal Neonatal Med 2021; 35:8594-8602. [PMID: 34666587 DOI: 10.1080/14767058.2021.1989404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Maternal cadmium (Cd) burden has been associated with offspring birth size measures, yet associations of placental Cd with birth size are less clear. Further, the role of genetics in these associations has not been examined. We investigated associations of placental Cd with birth size and placental genotypes. We also examined the potential role of placental genotypes as modifiers of placental Cd and birth size associations. METHODS Participants were 490 mother-child pairs from the Omega and Placenta Microarray studies based in Seattle, WA. Placental Cd was measured using Agilent 7500 ICP-MS. The birth size was characterized using birth weight (BW), ponderal index (PI), and head circumference (HC). Eleven placental single nucleotide polymorphisms (SNPs) related to metal transport, growth regulation, endocrine response, and cell signaling were genotyped. Adjusted multivariable linear regression models were used to examine overall and sex-specific associations of placental Cd with birth size (BW, PI and HC), as well as associations of placental genotypes with placental Cd. Effect modification of placenta Cd and birth size associations by placental SNPs was examined using interaction terms and stratified analyses. RESULTS Mean maternal age was 33.6 years (SD = 4.4). Mean and median placental Cd levels were 4.0 ng/g tissue (SD = 2.7 ng/g tissue) and 3.6 ng/g (IQR 2.5 - 5.2 ng/g), respectively. Overall, compared with infants in the lowest quartile for placental Cd, infants in the second (ß = -102.8 g, 95% CI: -220.7, 15.1), third (ß = -83.2 g, 95% CI: -199.3, 32.9) and fourth (ß = -109.2 g, 95% CI: -225.4, 7.1) quartiles had lower BW, though associations were not statistically significant (all p-values > .05, trend p-value = .11). Among male infants, infants in the second (ß = -203.3 g, 95% CI: -379.7, -27.0) and fourth quartiles (ß = -198.3 g, 95% CI: -364.2, -32.5) had lower BW compared with those in the first quartiles (p-values < .05, trend p-value = .08). Similar relationships were not observed among female infants, though infant sex-placental Cd interaction terms were not significant. Similarly, male, but not female, infants had marginally significant positive associations between placental Cd and ponderal index (trend p-value = .06). The minor rs3811647 allele of the placental transferrin gene (NCBI Gene ID: 7018) was associated with an increase in Cd among all infants (p-value = .04). We did not find differences in associations of placental Cd with birth size markers among infants stratified by rs3811647 genotype. CONCLUSIONS Placental Cd was inversely associated with BW among male infants. The rs3811647 SNP of the transferrin gene was associated with placental Cd.
Collapse
Affiliation(s)
- Michael R Hussey
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Megan K Suter
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - April F Mohanty
- Informatics, Decision Enhancement, and Analytic Sciences Center (IDEAS), VA Salt Lake City Health Care System, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
15
|
Risk Assessment and Source Apportionment of Heavy Metals in Soils from Handan City. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soil-heavy metals are potentially harmful to the ecosystem and human health. Quantifying heavy metals sources is conducive to pollution control. In this study, 64 surface-soil samples were collected in Handan city. Cr, Mn, Ni, Cu, Zn, Cd and Pb were determined; then, their spatial distribution in the sampling area was drawn by ArcGIS. The pollution index (PI) method, geo-accumulation index (Igeo) method, Nemerow integrated pollution index (NIPI) and pollution load index (PLI) were used to evaluate the pollution level of heavy metals in surface soil; then, an ecological and health risk assessment of soil-heavy metals was carried out. Combined with the spatial distribution, correlation analysis, cluster analysis, PCA and PMF model, the pollution sources of heavy metals in soil were identified and apportioned. The results showed that the average content of Cd was nearly ten times that of the background limit, which was the most serious among the studied metals. In terms of non-carcinogenic risk, Cr had the highest value, followed by Pb. In terms of carcinogenic risk, Cd, Cr, and Ni had an acceptable or tolerable risk. Three pollution sources were identified by cluster analysis and PCA, including traffic sources with Cu, Pb and Cd as main loads, industrial sources with Mn, Cd and Zn as main loads, and natural sources with Cr and Ni as main loads. The PMF model analyzed three main factors: traffic source (17.61%), natural source (28.62%) and industrial source (53.77%). The source categories and the main load elements obtained from the source apportionment results were consistent with the source identification results.
Collapse
|
16
|
Environmental pollutants exposure and male reproductive toxicity: The role of epigenetic modifications. Toxicology 2021; 456:152780. [PMID: 33862174 DOI: 10.1016/j.tox.2021.152780] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Male fertility rates have shown a progressive decrease in recent decades. There is a growing concern about the male reproductive dysfunction caused by environmental pollutants exposure, however the underlying molecular mechanisms are still not well understood. Epigenetic modifications play a key role in the biological responses to external stressors. Therefore, this review discusses the roles of epigenetic modifications in male reproductive toxicity induced by environmental pollutants, with a particular emphasis on DNA methylation, histone modifications and miRNAs. The available literature proposed that environmental pollutants can directly or cause oxidative stress and DNA damage to induce a variety of epigenetic changes, which lead to gene dysregulation, mitochondrial dysfunction and consequent male reproductive toxicity. However, future studies focusing on more kinds of epigenetic modifications and their crosstalk as well as epidemiological data are still required to fill in the current research gaps. In addition, the intrinsic links between pollutants-mediated epigenetic regulations and male reproduction-related physiological responses deserve to be further explored.
Collapse
|
17
|
Aung MT, M Bakulski K, Feinberg JI, F Dou J, D Meeker J, Mukherjee B, Loch-Caruso R, Ladd-Acosta C, Volk HE, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Fallin MD. Maternal blood metal concentrations and whole blood DNA methylation during pregnancy in the Early Autism Risk Longitudinal Investigation (EARLI). Epigenetics 2021; 17:253-268. [PMID: 33794742 DOI: 10.1080/15592294.2021.1897059] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The maternal epigenome may be responsive to prenatal metals exposures. We tested whether metals are associated with concurrent differential maternal whole blood DNA methylation. In the Early Autism Risk Longitudinal Investigation cohort, we measured first or second trimester maternal blood metals concentrations (cadmium, lead, mercury, manganese, and selenium) using inductively coupled plasma mass spectrometry. DNA methylation in maternal whole blood was measured on the Illumina 450 K array. A subset sample of 97 women had both measures available for analysis, all of whom did not report smoking during pregnancy. Linear regression was used to test for site-specific associations between individual metals and DNA methylation, adjusting for cell type composition and confounding variables. Discovery gene ontology analysis was conducted on the top 1,000 sites associated with each metal. We observed hypermethylation at 11 DNA methylation sites associated with lead (FDR False Discovery Rate q-value <0.1), near the genes CYP24A1, ASCL2, FAT1, SNX31, NKX6-2, LRC4C, BMP7, HOXC11, PCDH7, ZSCAN18, and VIPR2. Lead-associated sites were enriched (FDR q-value <0.1) for the pathways cell adhesion, nervous system development, and calcium ion binding. Manganese was associated with hypermethylation at four DNA methylation sites (FDR q-value <0.1), one of which was near the gene ARID2. Manganese-associated sites were enriched for cellular metabolism pathways (FDR q-value<0.1). Effect estimates for DNA methylation sites associated (p < 0.05) with cadmium, lead, and manganese were highly correlated (Pearson ρ > 0.86). DNA methylation sites associated with lead and manganese may be potential biomarkers of exposure or implicate downstream gene pathways.
Collapse
Affiliation(s)
- Max T Aung
- Department of Biostatistics, University of Michigan, Ann Arbor, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, USA.,Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA.,Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - John D Meeker
- Department of Environmental Health, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, USA.,Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Rita Loch-Caruso
- Department of Environmental Health, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, USA.,Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, USA.,Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente, Oakland, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, USA
| | - Craig J Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Penn State University, USA
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, USA.,Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
18
|
Goodrich JM, Furlong MA, Caban-Martinez AJ, Jung AM, Batai K, Jenkins T, Beitel S, Littau S, Gulotta J, Wallentine D, Hughes J, Popp C, Calkins MM, Burgess JL. Differential DNA Methylation by Hispanic Ethnicity Among Firefighters in the United States. Epigenet Insights 2021; 14:25168657211006159. [PMID: 35036834 PMCID: PMC8756104 DOI: 10.1177/25168657211006159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Firefighters are exposed to a variety of environmental hazards and are at increased risk for multiple cancers. There is evidence that risks differ by ethnicity, yet the biological or environmental differences underlying these differences are not known. DNA methylation is one type of epigenetic regulation that is altered in cancers. In this pilot study, we profiled DNA methylation with the Infinium MethylationEPIC in blood leukocytes from 31 Hispanic white and 163 non-Hispanic white firefighters. We compared DNA methylation (1) at 12 xenobiotic metabolizing genes and (2) at all loci on the array (>740 000), adjusting for confounders. Five of the xenobiotic metabolizing genes were differentially methylated at a raw P-value <.05 when comparing the 2 ethnic groups, yet were not statistically significant at a 5% false discovery rate (q-value <.05). In the epigenome-wide analysis, 76 loci exhibited DNA methylation differences at q < .05. Among these, 3 CpG sites in the promoter region of the biotransformation gene SULT1C2 had lower methylation in Hispanic compared to non-Hispanic firefighters. Other differentially methylated loci included genes that have been implicated in carcinogenesis in published studies (FOXK2, GYLTL1B, ZBTB16, ARHGEF10, and more). In this pilot study, we report differential DNA methylation between Hispanic and non-Hispanic firefighters in xenobiotic metabolism genes and other genes with functions related to cancer. Epigenetic susceptibility by ethnicity merits further study as this may alter risk for cancers linked to toxic exposures.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA,Jaclyn M Goodrich, Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Melissa A Furlong
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alesia M Jung
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Ken Batai
- Department of Urology, University of Arizona, Tucson, AZ, USA
| | - Timothy Jenkins
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Shawn Beitel
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Sally Littau
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | | | | | - Jeff Hughes
- Orange County Fire Authority, Irvine, CA, USA
| | | | - Miriam M Calkins
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Jefferey L Burgess
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| |
Collapse
|
19
|
Liu J, Liao J, Zhang C, Zeng L, Zong C, Lv Y, Li J, Zhang W. The role of miRNAs in regulating the effect of prenatal cadmium exposure on ovarian granulosa cells in a transgenerational manner in female rats. Food Chem Toxicol 2021; 150:112062. [PMID: 33652105 DOI: 10.1016/j.fct.2021.112062] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/09/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd) is known to affect ovarian granulosa cells (GCs), but no information on the transgenerational effects of Cd on GCs. In this study, pregnant Sprague-Dawley (SD) rats were orally dosed with Cd from gestation day 1 until birth. F1 or F2 female rats were mated with untreated males to produce the F2 or F3 generation. In the F1 generation, apoptotic cell bodies were observed in the Cd-treated group but not in the F2 generation. Moreover, significant changes in B-cell lymphoma 2 (Bcl2) expression were observed in both generations. Additionally, the expression of microRNAs (miRNAs) was significantly changed based on microarray analysis. Specifically, miR-16-5p and miR-181b-5p were upregulated in F1 and F2 rats, while miR-92a-2-5p demonstrated different expression patterns between the two generations. In F3 generation, miR-16-5p and miR-92a-2-5p were down-regulated. Further, another experiment was used to show that miR-16-5p and miR-92a-2-5p regulated the Bcl2-induced apoptotic effect of Cd on GCs by the Human ovarian GC tumor line (COV434 cell line) miRNA-knockdown model Overall, the results indicate that prenatal Cd exposure has epigenetic transgenerational effect on GCs, Moreover, the underlying mechanism may involve interference with miR-16-5p and miR-92a-2-5p-mediated regulation of Bcl2 genes in offspring.
Collapse
Affiliation(s)
- Jin Liu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China
| | - Jinglan Liao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China
| | - Chenyun Zhang
- School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China
| | - Lingfeng Zeng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China
| | - Chaowei Zong
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China
| | - Yake Lv
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China
| | - Jingwen Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China
| | - Wenchang Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China.
| |
Collapse
|
20
|
Chandravanshi L, Shiv K, Kumar S. Developmental toxicity of cadmium in infants and children: a review. Environ Anal Health Toxicol 2021; 36:e2021003-0. [PMID: 33730790 PMCID: PMC8207007 DOI: 10.5620/eaht.2021003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Several millions of people are exposed to cadmium worldwide due to natural and anthropogenic activities that led to their widespread distribution in the environment and have shown potential adverse effects on the kidneys, liver, heart and nervous system. Recently human and animal-based studies have been shown that In utero and early life exposure to cadmium can have serious health issues that are related to the risk of developmental disabilities and other outcomes in adulthood. Since, cadmium crosses the placental barrier and reaches easily to the fetus, even moderate or high-level exposure of this metal during pregnancy could be of serious health consequences which might be reflected either in the children’s early or later stages of life. Mortality from various diseases including cancer, cardiovascular, respiratory, kidney and neurological problems, correlation with In utero or early life exposure to cadmium has been found in epidemiological studies. Animal studies with strong evidence of various diseases mostly support for the human studies, as well as suggested a myriad mechanism by which cadmium can interfere with human health and development. More studies are needed to establish the mechanism of cadmium-induced toxicity with environmentally relevant doses in childhood and later life. In this review, we provide a comprehensive examination of the literature addressing potential long- term health issues with In utero and early life exposure to cadmium, as well as correlating with human and animal exposure studies.
Collapse
Affiliation(s)
- Lalit Chandravanshi
- Department of Forensic Science, College and Traffic Management- Institute of Road and Traffic Education, Faridabad - Haryana - 121010, India
| | - Kunal Shiv
- Division of Forensic Science, School of Basic & Applied Sciences, Galgotias University Greater Noida - 201306, India
| | - Sudhir Kumar
- Forensic Science laboratory, Modinagar, Ghaziabad - 201204, India
| |
Collapse
|
21
|
Shih YH, Chen HY, Christensen K, Handler A, Turyk ME, Argos M. Prenatal exposure to multiple metals and birth outcomes: An observational study within the National Children's Study cohort. ENVIRONMENT INTERNATIONAL 2021; 147:106373. [PMID: 33422966 PMCID: PMC7855942 DOI: 10.1016/j.envint.2020.106373] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Prenatal exposure to metals may play an important role in fetal growth. However, the epidemiologic evidence for certain metals is sparse, and most of the existing research has focused on evaluating single metals in highly exposed target populations. OBJECTIVES We evaluated associations of cadmium, lead, manganese, selenium, and total mercury exposures during pregnancy with fetal growth using data from mother-infant pairs participating in the National Children's Study. METHODS Prenatal metal exposures were measured using maternal blood collected from 6 to 32 weeks of gestation. Birth outcomes, including gestational age, birthweight, birth length, head circumference, and ponderal index, were ascertained through physical measurement at birth or abstraction from medical records. Regression coefficients and their 95% confidence intervals were estimated from multivariable linear regression models in the overall study population as well as among male and female infants. We further evaluated pairwise metal-metal interactions. RESULTS Sex-specific associations were observed for lead, with inverse associations for birthweight, birth length, head circumference, and gestational age observed only among female infants. Sex-specific associations were also observed for selenium, with a positive association for birthweight observed among male infants; selenium was also positively associated with ponderal index and inversely associated with birth length among female infants. Overall, total mercury was inversely associated with birthweight and ponderal index, and the association with birthweight was stronger among female infants. No significant associations were observed with cadmium and manganese. In the metal-metal interaction analyses, we found evidence of a synergistic interaction between lead and total mercury and antagonistic interaction between selenium and total mercury with selected birth outcomes. CONCLUSIONS Our findings suggest that prenatal exposure to metals may be related to birth outcomes, and infant sex may modify these associations.
Collapse
Affiliation(s)
- Yu-Hsuan Shih
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Hua Yun Chen
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL 60612, United States
| | | | - Arden Handler
- Division of Community Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Mary E Turyk
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
22
|
Saintilnord WN, Tenlep SYN, Preston JD, Duregon E, DeRouchey JE, Unrine JM, de Cabo R, Pearson KJ, Fondufe-Mittendorf YN. Chronic Exposure to Cadmium Induces Differential Methylation in Mice Spermatozoa. Toxicol Sci 2021; 180:262-276. [PMID: 33483743 PMCID: PMC8041459 DOI: 10.1093/toxsci/kfab002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cadmium exposure is ubiquitous and has been linked to diseases including cancers and reproductive defects. Since cadmium is nonmutagenic, it is thought to exert its gene dysregulatory effects through epigenetic reprogramming. Several studies have implicated germline exposure to cadmium in developmental reprogramming. However, most of these studies have focused on maternal exposure, while the impact on sperm fertility and disease susceptibility has received less attention. In this study, we used reduced representation bisulfite sequencing to comprehensively investigate the impact of chronic cadmium exposure on mouse spermatozoa DNA methylation. Adult male C57BL/J6 mice were provided water with or without cadmium chloride for 9 weeks. Sperm, testes, liver, and kidney tissues were collected at the end of the treatment period. Cadmium exposure was confirmed through gene expression analysis of metallothionein-1 and 2, 2 well-known cadmium-induced genes. Analysis of sperm DNA methylation changes revealed 1788 differentially methylated sites present at regulatory regions in sperm of mice exposed to cadmium compared with vehicle (control) mice. Furthermore, most of these differential methylation changes positively correlated with changes in gene expression at both the transcription initiation stage as well as the splicing levels. Interestingly, the genes targeted by cadmium exposure are involved in several critical developmental processes. Our results present a comprehensive analysis of the sperm methylome in response to chronic cadmium exposure. These data, therefore, highlight a foundational framework to study gene expression patterns that may affect fertility in the exposed individual as well as their offspring, through paternal inheritance.
Collapse
Affiliation(s)
- Wesley N Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Sara Y N Tenlep
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Joshua D Preston
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA,Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Eleonora Duregon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 20892, USA
| | - Jason E DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 20892, USA
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA,To whom correspondence should be addressed at Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0509, USA. E-mail: ; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 Rose Street, 273 BBSRB, Lexington, KY 40536-0509, USA. E-mail:
| | - Yvonne N Fondufe-Mittendorf
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA,To whom correspondence should be addressed at Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0509, USA. E-mail: ; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 Rose Street, 273 BBSRB, Lexington, KY 40536-0509, USA. E-mail:
| |
Collapse
|
23
|
Young JL, Cai L. Implications for prenatal cadmium exposure and adverse health outcomes in adulthood. Toxicol Appl Pharmacol 2020; 403:115161. [PMID: 32721433 DOI: 10.1016/j.taap.2020.115161] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
Cadmium is a ubiquitous, non-essential metal that has earned a spot on the World Health Organizations top 10 chemicals of major public health concern. The mechanisms of cadmium-induced adverse health outcomes, such as cardiovascular disease, renal toxicity and cancer, are well studied in adults. However, the implications for early life exposures to low-level cadmium leading to increased risk of developing diseases in adulthood remains elusive. Epidemiological investigation of the long term implications of cadmium-associated adverse birth outcomes are limited and studies do not extend into adulthood. This review will summarize the literature on the non-lethal, adverse health effects associated with prenatal and early life exposure to cadmium and the implications of these exposures in the development of diseases later in life. In addition, this review will highlight possible mechanisms responsible for these outcomes as well as address the inconsistencies in the literature. More recent studies have addressed sex as a biological variable, showing prenatal cadmium exposure elicits sex-specific outcomes that would otherwise be masked by pooling male and female data. Furthermore, researchers have begun to investigate the role of prenatal and early life cadmium exposures in the development of diet-induced diseases with evidence of altered essential metal homeostasis as a likely mechanism for cadmium-enhanced, diet-induced diseases. Although novel experimental models are beginning to be established to study the association between prenatal cadmium exposure and adverse health outcomes in adulthood, the studies are few, highlighting a major need for further investigation.
Collapse
Affiliation(s)
- Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Departments of Pediatrics and Radiation Oncology, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
24
|
Anyanwu BO, Orisakwe OE. Current mechanistic perspectives on male reproductive toxicity induced by heavy metals. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:204-244. [PMID: 32648503 DOI: 10.1080/26896583.2020.1782116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Environmental and occupational exposures to heavy metals have led to various deleterious damages to the biological system of which infertility is one of them. Infertility is a global public health concern, affecting 15% of all couples of reproductive age. Out of the 100% cases of reported infertility among couples, 40% of the cases are related to male factors; including decreased semen quality. This review focuses on the recent mechanistic perspectives of heavy metal-induced male reproductive toxicity. The associated toxic metal-mediated mechanisms of male reproductive toxicity include ion mimicry, disruption of cell signaling pathways, oxidative stress, altered gene expression, epigenetic regulation of gene expression, apoptosis, disruption of testis/blood barrier, inflammation and endocrine disruption. The current literature suggests that non-coding RNAs (ncRNAs) mediate paternal intergenerational epigenetic inheritance and thus has a direct functional importance, as well as possess novel biomarker potential, for male reproductive toxicity. To identify the specific ncRNAs with the most profound impacts on heavy metal-induced male reproductive toxicity should be thrust of further research.
Collapse
Affiliation(s)
- Brilliance Onyinyechi Anyanwu
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (CEFOR), University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Orish Ebere Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
25
|
Zhou T, Guo J, Zhang J, Xiao H, Qi X, Wu C, Chang X, Zhang Y, Liu Q, Zhou Z. Sex-Specific Differences in Cognitive Abilities Associated with Childhood Cadmium and Manganese Exposures in School-Age Children: a Prospective Cohort Study. Biol Trace Elem Res 2020; 193:89-99. [PMID: 30977088 DOI: 10.1007/s12011-019-01703-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/19/2019] [Indexed: 01/06/2023]
Abstract
To examine sex-specific associations of neonatal and childhood exposure to eight trace elements with cognitive abilities of school-age children. The association between exposure and effects was assessed among 296 school-age children from a population-based birth cohort study, who had manganese (Mn), cadmium (Cd), and lead (Pb) exposure measured in cord blood and chromium (Cr), manganese, cobalt (Co), copper (Cu), arsenic (As), selenium (Se), cadmium, and lead exposure quantified in spot urine. Cognitive abilities were assessed using the Wechsler Intelligence Scale for Children-Chinese Revised (WISC-CR). Generalized linear models were performed to analyze associations of intelligence quotient (IQ) with trace element concentrations in cord blood and urinary trace element levels. General linear models were used to evaluate association between exposure fluctuation and children's IQ. Urinary Cd concentrations were negatively associated with full-scale IQ (β = - 3.469, 95% confidence interval (CI) - 6.291, - 0.647; p = 0.016) and performance IQ (β = - 4.012, 95% CI - 7.088, - 0.936; p = 0.011) in girls; however, neonatal Cd exposure expressed as Cd concentrations in cord blood was in inverse associations with verbal IQ (β = - 2.590, 95% CI - 4.570, - 0.609; p = 0.010) only in boys. Positive association between urinary Mn concentrations and performance IQ (β = 1.305, 95% CI 0.035, 2.575; p = 0.044) of children was observed, especially in girls. In addition, inverse association of urinary Cu concentrations with verbal IQ (β = - 2.200, 95% CI - 4.360, - 0.039; p = 0.046) was only found in boys. Childhood Cd exposure may adversely affect cognitive abilities, while Mn exposure may beneficially modify cognitive abilities of school-age children, particularly in girls.
Collapse
Affiliation(s)
- Tong Zhou
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Hongxi Xiao
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399, Binsheng Road, Hangzhou, 310051, China
| | - Chunhua Wu
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Yubin Zhang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Qiang Liu
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Zhijun Zhou
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
26
|
Huang Y, Zhu J, Li H, Wang W, Li Y, Yang X, Zheng N, Liu Q, Zhang Q, Zhang W, Liu J. Cadmium exposure during prenatal development causes testosterone disruption in multigeneration via SF-1 signaling in rats. Food Chem Toxicol 2020; 135:110897. [DOI: 10.1016/j.fct.2019.110897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/30/2022]
|
27
|
Kumar S, Sharma A. Cadmium toxicity: effects on human reproduction and fertility. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:327-338. [PMID: 31129655 DOI: 10.1515/reveh-2019-0016] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Background Cadmium (Cd) is a non-essential toxic heavy metal, an environmental toxicant, and toxic at a low concentration, and it has no known beneficial role in the human body. Its exposure induces various health impairments including hostile reproductive health. Objective The present review discusses the information on exposure to Cd and human reproductive health impairments including pregnancy or its outcome with respect to environmental and occupational exposure. Methods The present review provides current information on the reproductive toxic potential of Cd in humans. The data were collected using various websites and consulting books, reports, etc. We have included recent data which were published from 2000 onward in this review. Results Cd exposure affects human male reproductive organs/system and deteriorates spermatogenesis, semen quality especially sperm motility and hormonal synthesis/release. Based on experimental and human studies, it also impairs female reproduction and reproductive hormonal balance and affects menstrual cycles. Based on the literature, it might be concluded that exposure to Cd at low doses has adverse effects on both human male and female reproduction and affects pregnancy or its outcome. Further, maternal prenatal Cd exposure might have a differential effect on male and female offspring especially affecting more female offspring. Hence, efforts must be made to prevent exposure to Cd. Conclusion Cd affects both male and female reproduction, impairs hormone synthesis/regulation and deteriorates pregnancy rate or its outcome even at lower doses.
Collapse
Affiliation(s)
- Sunil Kumar
- Retd, Former, Director-in-Charge, Scientist 'G', NIOH, A-10, Radhey Kunj Apartment, B/H Circuit House, Shahi Baugh, Ahmedabad, 380004, India
- ICMR - National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Anupama Sharma
- ICMR - National Institute of Occupational Health, Ahmedabad, 380016, India
| |
Collapse
|
28
|
Hildebrand J, Thakar S, Watts TL, Banfield L, Thabane L, Macri J, Hill S, Samaan MC. The impact of environmental cadmium exposure on type 2 diabetes risk: a protocol for an overview of systematic reviews. Syst Rev 2019; 8:309. [PMID: 31810499 PMCID: PMC6896588 DOI: 10.1186/s13643-019-1246-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a worldwide epidemic, and while its etiology is polygenic, the role of environmental contaminant exposure in T2DM pathogenesis is of increasing importance. However, the evidence presented in systematic reviews on the relationship between cadmium exposure and T2DM development is inconsistent. This overview aims to assess existing evidence from systematic reviews linking cadmium exposure to T2DM and select metabolic disorders in humans. METHODS Searches will be conducted in Medline, Embase, Web of Science, GEOBASE, BIOSIS Previews, and Cochrane Database of Systematic Reviews. Two reviewers (J.H and S.T.) will independently complete screening, data abstraction, risk of bias evaluation, and quality assessment. The primary outcome will be the association between cadmium exposure and T2DM prevalence. Secondary outcomes will include prediabetes, obesity, dyslipidemia, hypertension, and non-alcoholic fatty liver disease. We will perform a meta-analysis if two or more studies assess similar populations, utilize analogous methods, have related study designs, and evaluate similar outcomes. DISCUSSION This overview will assess current evidence from systematic reviews for the association between cadmium exposure and risk of T2DM and other metabolic morbidities. This overview may be helpful for policy-makers and healthcare teams aiming to mitigate T2DM risk in populations at risk of cadmium exposure. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019125956.
Collapse
Affiliation(s)
- Julia Hildebrand
- Department of Pediatrics, McMaster University, Hamilton, Ontario Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario Canada
| | - Swarni Thakar
- Department of Pediatrics, McMaster University, Hamilton, Ontario Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario Canada
| | - Tonya-Leah Watts
- Department of Pediatrics, McMaster University, Hamilton, Ontario Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario Canada
| | - Laura Banfield
- Health Sciences Library, McMaster University, Hamilton, Ontario Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario Canada
- Department of Anesthesia, McMaster University, Hamilton, Ontario Canada
- Centre for Evaluation of Medicines, St. Joseph’s Healthcare, Hamilton, Ontario Canada
- Biostatistics Unit, St. Joseph’s Healthcare Hamilton, Hamilton, Ontario Canada
| | - Joseph Macri
- Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario Canada
| | - Stephen Hill
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario Canada
| | - M. Constantine Samaan
- Department of Pediatrics, McMaster University, Hamilton, Ontario Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario Canada
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario Canada
| |
Collapse
|
29
|
Li X, Chu SG, Shen XN, Hou XH, Xu W, Ou YN, Dong Q, Tan L, Yu JT. Genome-wide association study identifies SIAH3 locus influencing the rate of ventricular enlargement in non-demented elders. Aging (Albany NY) 2019; 11:9862-9874. [PMID: 31711042 PMCID: PMC6874439 DOI: 10.18632/aging.102435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022]
Abstract
Ventricular enlargement occurs in several neurodegenerative and psychiatric diseases. A large genome-wide association study (GWAS) has identified seven loci associated with ventricular volume. The rate of ventricular enlargement increased in the progression of disease from normal cognition to dementia. Here, we aimed to use the rate of ventricular enlargement as an endophenotype for the development and progression of neurodegenerative diseases to discover more common genetic variants. We performed a GWAS of the rate of ventricular enlargement using 507 nondemented non-Hispanic white participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Linear regression model was used to identify the association of the rate of ventricular enlargement with single nucleotide polymorphisms (SNPs) in PLINK software. The associations of genome-wide significant SNPs with other four phenotypes were further discussed. Two SNPs (rs11620312, P = 4.04×10−8; rs79174114, P = 4.28×10−8) within SIAH3 gene in linkage disequilibrium (LD) reached genome-wide significance for association with increased rate of ventricular enlargement. Some intergenic SNPs and SNPs within NKAIN2, TBC1D2, GALNT18, ABCC1 and SRCIN1 genes were identified as potential candidates. SIAH3 rs11620312-C carriers were associated with poor cognition and brain hypometabolism longitudinally. Our findings indicated that SIAH3 gene may have potential influence on the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xian Li
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Shu-Guang Chu
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Huang S, Kuang J, Zhou F, Jia Q, Lu Q, Feng C, Yang W, Fan G. The association between prenatal cadmium exposure and birth weight: A systematic review and meta-analysis of available evidence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:699-707. [PMID: 31108303 DOI: 10.1016/j.envpol.2019.05.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/13/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
We conducted a meta-analysis to evaluate the association between prenatal cadmium (Cd) exposure and birth weight. PubMed, Embase, China National Knowledge Infrastructure (CNKI), and Wanfang databases were searched for studies published before March 2019. We used a model-based method, standardizing effect size from linear regression models to include a maximum number of studies during our quantitative evaluations. As a result, 11 articles from the general population, containing 10 birth cohorts and one cross-sectional study, were included. Our meta-analysis demonstrated that a 50% increase of maternal urine Cd (UCd) would be associated with a 6.15 g decrease in neonatal birth weight (β = -6.15 g, 95% CI: -10.81, -1.49) as well as a 50% increase of maternal blood Cd (BCd) would be associated with an 11.57 g decrease (β = -11.57 g; 95% CI: -18.85, -4.30). Stratified analysis of UCd data indicated that the results of female newborns were statistically significant (β = -8.92 g, 95% CI: -17.51, -0.34), as was the first trimester (β = -11.34 g, 95% CI: -19.54, -3.14). Furthermore, increased UCd levels were associated with a higher rate of low birth weight (LBW) risk (OR = 1.12, 95% CI: 1.03, 1.22). This meta-analysis demonstrated that elevated maternal Cd levels are associated with decreased birth weight and higher LBW risk.
Collapse
Affiliation(s)
- Shouhe Huang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China; Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jie Kuang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China; Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, China
| | - Fankun Zhou
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China; Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, China
| | - Qiyue Jia
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China; Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, China
| | - Qi Lu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, China
| | - Chang Feng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China; Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, China
| | - Wei Yang
- Nevada Center for Health Statistics and Informatics, School of Community Health Sciences, University of Nevada, Reno, USA
| | - Guangqin Fan
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China; Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
31
|
Hu J, Yu Y. Epigenetic response profiles into environmental epigenotoxicant screening and health risk assessment: A critical review. CHEMOSPHERE 2019; 226:259-272. [PMID: 30933735 DOI: 10.1016/j.chemosphere.2019.03.096] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The epigenome may be an important interface between exposure to environmental contaminants and adverse outcome on human health. Many environmental pollutants deregulate gene expression and promote diseases by modulating the epigenome. Adverse epigenetic responses have been widely used for risk assessment of chemical substances. Various pollutants, including trace elements and persistent organic pollutants, have been detected frequently in the environment. Epigenetic toxicity of environmental matrices including water, air, soil, and food cannot be ignored. This review provides a comprehensive overview of epigenetic effects of pollutants and environmental matrices. We start with an overview of the mechanisms of epigenetic regulation and the effects of several types of environmental pollutants (trace elements, persistent organic pollutants, endocrine disrupting chemicals, and volatile organic pollutants) on epigenetic modulation. We then discuss the epigenetic responses to environmental water, air, and soil based on in vivo and in vitro assays. Finally, we discuss recommendations to promote the incorporation of epigenotoxicity into contamination screening and health risk assessment.
Collapse
Affiliation(s)
- Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
32
|
Demanelis K, Argos M, Tong L, Shinkle J, Sabarinathan M, Rakibuz-Zaman M, Sarwar G, Shahriar H, Islam T, Rahman M, Yunus M, Graziano JH, Broberg K, Engström K, Jasmine F, Ahsan H, Pierce BL. Association of Arsenic Exposure with Whole Blood DNA Methylation: An Epigenome-Wide Study of Bangladeshi Adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57011. [PMID: 31135185 PMCID: PMC6791539 DOI: 10.1289/ehp3849] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Arsenic exposure affects [Formula: see text] people worldwide, including [Formula: see text] in Bangladesh. Arsenic exposure increases the risk of cancer and other chronic diseases, and one potential mechanism of arsenic toxicity is epigenetic dysregulation. OBJECTIVE We assessed associations between arsenic exposure and genome-wide DNA methylation measured at baseline among 396 Bangladeshi adults participating in the Health Effects of Arsenic Longitudinal Study (HEALS) who were exposed by drinking naturally contaminated well water. METHODS Methylation in whole blood DNA was measured at [Formula: see text] using the Illumina InfiniumMethylationEPIC (EPIC) array. To assess associations between arsenic exposure and CpG methylation, we used linear regression models adjusted for covariates and surrogate variables (SVs) (capturing unknown technical and biologic factors). We attempted replication and conducted a meta-analysis using an independent dataset of [Formula: see text] from 400 Bangladeshi individuals with arsenical skin lesions. RESULTS We identified 34 CpGs associated with [Formula: see text] creatinine-adjusted urinary arsenic [[Formula: see text]]. Sixteen of these CpGs annotated to the [Formula: see text] array, and 10 associations were replicated ([Formula: see text]). The top two CpGs annotated upstream of the ABR gene (cg01912040, cg10003262 ). All urinary arsenic-associated CpGs were also associated with arsenic concentration measured in drinking water ([Formula: see text]). Meta-analysis ([Formula: see text] samples) identified 221 urinary arsenic-associated CpGs ([Formula: see text]). The arsenic-associated CpGs from the meta-analysis were enriched in non-CpG islands and shores ([Formula: see text]) and depleted in promoter regions ([Formula: see text]). Among the arsenic-associated CpGs ([Formula: see text]), we observed significant enrichment of genes annotating to the reactive oxygen species pathway, inflammatory response, and tumor necrosis factor [Formula: see text] ([Formula: see text]) signaling via nuclear factor kappa-B ([Formula: see text]) hallmarks ([Formula: see text]). CONCLUSIONS The novel and replicable associations between arsenic exposure and DNA methylation at specific CpGs observed in this work suggest that epigenetic alterations should be further investigated as potential mediators in arsenic toxicity and as biomarkers of exposure and effect in exposed populations. https://doi.org/10.1289/EHP3849.
Collapse
Affiliation(s)
- Kathryn Demanelis
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | | | - Golam Sarwar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Hasan Shahriar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mahfuzar Rahman
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
- Research and Evaluation Division, BRAC, Dhaka, Bangladesh
| | - Mohammad Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Karin Broberg
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Karin Engström
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Brandon L. Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
33
|
Punshon T, Li Z, Jackson BP, Parks WT, Romano M, Conway D, Baker ER, Karagas MR. Placental metal concentrations in relation to placental growth, efficiency and birth weight. ENVIRONMENT INTERNATIONAL 2019; 126:533-542. [PMID: 30851484 PMCID: PMC6475117 DOI: 10.1016/j.envint.2019.01.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 05/19/2023]
Abstract
The quality of the intrauterine environment, in which the placenta plays a critical role, affects birth outcomes and lifelong health. The effect of metal contaminants on the growth and functioning of the placenta have not been widely reported but may provide insights into how metal exposures lead to these outcomes. We examined relationships between placental concentrations of cadmium (Cd), arsenic (As), mercury (Hg) and lead (Pb) and measures of placental growth and functioning (placental weight, placental efficiency (the log ratio of placental weight and birth weight), chorionic disc area and disc eccentricity) as part of the New Hampshire Birth Cohort Study (N = 1159). We additionally examined whether these associations were modified by placental concentrations of essential elements zinc (Zn) and selenium (Se). Associations were evaluated using generalized linear models. Multivariable-adjusted differences in placental weight were - 7.81 g (95% CI: -15.42, -2.48) with every ng/g increase in the Cd concentration of placenta (p-Value = 0.0009). Greater decrements in placental weight and efficiency associated with placental Cd were observed for females. For placentae with below median Zn and Se concentrations, decrements in placental weight were - 8.81 g (95% CI: -16.85, -0.76) and - 13.20 g (95% CI: -20.70, -5.70) respectively. The Cd concentration of placenta was also associated with reductions in placental efficiency both overall, and in Zn- and Se-stratified models. No appreciable differences were observed with other elements (As, Hg or Pb) and with other placental measures (chorionic disc area and disc eccentricity). In structural equation models, placental weight was a mediator in the relation between placental Cd concentration and reduced birth weight. Our findings suggest a role of interacting essential and contaminant elements on birth weight that may be mediated by changes in the growth and function of the placenta.
Collapse
Affiliation(s)
- Tracy Punshon
- Dartmouth College, Department of Biology, 78 College Street, Hanover, NH 03755, USA.
| | - Zhigang Li
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Brian P Jackson
- Dartmouth College, Department of Earth Sciences, 6105 Sherman Fairchild Hall, Hanover, NH 03755, USA
| | - W Tony Parks
- Dartmouth College, Department of Biology, 78 College Street, Hanover, NH 03755, USA; Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH, USA
| | - Megan Romano
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | | | - Emily R Baker
- Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH, USA
| | | |
Collapse
|
34
|
Everson TM, Marable C, Deyssenroth MA, Punshon T, Jackson BP, Lambertini L, Karagas MR, Chen J, Marsit CJ. Placental Expression of Imprinted Genes, Overall and in Sex-Specific Patterns, Associated with Placental Cadmium Concentrations and Birth Size. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57005. [PMID: 31082282 PMCID: PMC6791491 DOI: 10.1289/ehp4264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Prenatal cadmium (Cd) exposure has been recognized to restrict growth, and male and female fetuses may have differential susceptibility to the developmental toxicity of Cd. Imprinted genes, which exhibit monoallelic expression based on parent of origin, are highly expressed in placental tissues. The function of these genes is particularly critical to fetal growth and development, and some are expressed in sex-specific patterns. OBJECTIVES We aimed to examine whether prenatal Cd associates with the expression of imprinted placental genes, overall or in fetal sex-specific patterns, across two independent epidemiologic studies. METHODS We tested for Cd–sex interactions in association with gene expression, then regressed the placental expression levels of 74 putative imprinted genes on placental log-Cd concentrations while adjusting for maternal age, sex, smoking history, and educational attainment. These models were performed within study- and sex-specific strata in the New Hampshire Birth Cohort Study (NHBCS; [Formula: see text]) and the Rhode Island Child Health Study (RICHS; [Formula: see text]). We then used fixed-effects models to estimate the sex-specific and overall associations across strata and then examine heterogeneity in the associations by fetal sex. RESULTS We observed that higher Cd concentrations were associated with higher expression of distal-less homeobox 5 (DLX5) ([Formula: see text]), and lower expression of h19 imprinted maternally expressed transcript (H19) ([Formula: see text]) and necdin, MAGE family member (NDN) ([Formula: see text]) across study and sex-specific strata, while three other genes [carboxypeptidase A4 (CPA4), growth factor receptor bound protein 10 (GRB10), and integrin-linked kinase (ILK)] were significantly associated with Cd concentrations, but only among female placenta ([Formula: see text]). Additionally, the expression of DLX5, H19, and NDN, the most statistically significant Cd-associated genes, were also associated with standardized birth weight z-scores. DISCUSSION The differential regulation of a set of imprinted genes, particularly DLX5, H19, and NDN, in association with prenatal Cd exposure may be involved in overall developmental toxicity, and some imprinted genes may respond to Cd exposure in a manner that is specific to infant gender. https://doi.org/10.1289/EHP4264.
Collapse
Affiliation(s)
- Todd M. Everson
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| | - Carmen Marable
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| | - Maya A. Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Luca Lambertini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Chatzi L, Ierodiakonou D, Margetaki K, Vafeiadi M, Chalkiadaki G, Roumeliotaki T, Fthenou E, Pentheroudaki E, McConnell R, Kogevinas M, Kippler M. Associations of Prenatal Exposure to Cadmium With Child Growth, Obesity, and Cardiometabolic Traits. Am J Epidemiol 2019; 188:141-150. [PMID: 30252047 DOI: 10.1093/aje/kwy216] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 09/14/2018] [Indexed: 12/18/2022] Open
Abstract
Prenatal cadmium exposure has been associated with impaired fetal growth; much less is known about the impact during later childhood on growth and cardiometabolic traits. To elucidate the associations of prenatal cadmium exposure with child growth, adiposity, and cardiometabolic traits in 515 mother-child pairs in the Rhea Mother-Child Study cohort (Heraklion, Greece, 2007-2012), we measured urinary cadmium concentrations during early pregnancy and assessed their associations with repeated weight and height measurements (taken from birth through childhood), waist circumference, skinfold thickness, blood pressure, and serum lipid, leptin, and C-reactive protein levels at age 4 years. Adjusted linear, Poisson, and mixed-effects regression models were used, with interaction terms for child sex and maternal smoking added. Elevated prenatal cadmium levels (third tertile of urinary cadmium concentration (0.571-2.658 μg/L) vs. first (0.058-0.314 μg/L) and second (0.315-0.570 μg/L) tertiles combined) were significantly associated with a slower weight trajectory (per standard deviation score) in all children (β = -0.17, 95% confidence interval (CI): -0.32, -0.02) and a slower height trajectory in girls (β = -0.30, 95% CI: -0.52,-0.09; P for interaction = 0.025) and in children born to mothers who smoked during pregnancy (β = -0.48, 95% CI: -0.83, -1.13; P for interaction = 0.027). We concluded that prenatal cadmium exposure was associated with delayed growth in early childhood. Further research is needed to understand cadmium-related sex differences and the role of coexposure to maternal smoking during early pregnancy.
Collapse
Affiliation(s)
- Leda Chatzi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Despo Ierodiakonou
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Georgia Chalkiadaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Eleni Fthenou
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Eirini Pentheroudaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Rob McConnell
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Manolis Kogevinas
- ISGlobal, Centre for Research in Environmental Epidemiology
- Hospital del Mar Research Institute
- Consorcio Centro de Investigación Biomédica en Red Epidemiología y Salud Pública
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Strakovsky RS, Schantz SL. Impacts of bisphenol A (BPA) and phthalate exposures on epigenetic outcomes in the human placenta. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy022. [PMID: 30210810 PMCID: PMC6128378 DOI: 10.1093/eep/dvy022] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 05/18/2023]
Abstract
The placenta guides fetal growth and development. Bisphenol A (BPA) and phthalates are widespread environmental contaminants and endocrine disruptors, and the placental epigenetic response to these chemicals is an area of growing research interest. Therefore, our objective was to summarize research linking BPA or phthalate exposure to placental outcomes in human pregnancies, with a particular focus on epigenetic endpoints. In PubMed, studies were selected for review (without limiting start date and ending on 1 May 2018) if they reported any direct effects of BPA or phthalates on the placenta in humans. Collectively, available studies suggest that BPA and phthalate exposures are associated with changes to placental micro-RNA expression, DNA methylation, and genomic imprinting. Furthermore, several studies suggest that fetal sex may be an important modifier of placental outcomes in response to these chemicals. Studies in humans demonstrate associations of BPA and phthalate exposure with adverse placental outcomes. Moving forward, more studies should consider sex differences (termed "placental sex") in the measured outcomes, and should utilize appropriate statistical approaches to assess modification by fetal sex. Furthermore, more consistent sample collection and molecular outcome assessment paradigms will be indispensable for making progress in the field. These advances, together with improved non-invasive tools for measuring placental function and outcomes across pregnancy, will be critical for understanding the mechanisms driving placental epigenetic disruption in response to BPA and phthalates, and how these disruptions translate into placental and fetal health.
Collapse
Affiliation(s)
- Rita S Strakovsky
- The Department of Food Science and Human Nutrition, Michigan State University, 236C Trout Building, 469 Wilson Road, East Lansing, MI, USA
- Correspondence address. The Department of Food Science and Human Nutrition, Michigan State University, 236C Trout Building, 469 Wilson Road, East Lansing, MI 48823, USA. Tel: 517-353-3352; Fax: 517-353-8963; E-mail:
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, USA
- Department of Comparative Biosciences, 2347 Beckman Institute, University of Illinois Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, USA
| |
Collapse
|
37
|
Loke YJ, Muggli E, Nguyen L, Ryan J, Saffery R, Elliott EJ, Halliday J, Craig JM. Time- and sex-dependent associations between prenatal alcohol exposure and placental global DNA methylation. Epigenomics 2018; 10:981-991. [PMID: 29956547 DOI: 10.2217/epi-2017-0147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM Epigenetic changes, in particular in the placenta, may mediate the effects of prenatal alcohol exposure (PAE) on children's health. We examined the relationship between PAE patterns, based on dose and timing, and placental global DNA methylation. METHODS Using linear regression analysis, we examined the association between different PAE categories and placental global DNA methylation (n = 187), using the proxy measure of Alu-interspersed repeats. RESULTS Following adjustment for important covariates, we found no evidence of an association between PAE and placental global DNA methylation overall. However, when stratifying by newborn sex, PAE throughout pregnancy was associated with higher placental global DNA methylation (1.5%; p = 0.01) of male newborns. CONCLUSION PAE may have sex-specific effects on placental global DNA methylation if alcohol is consumed throughout pregnancy.
Collapse
Affiliation(s)
- Yuk Jing Loke
- Environmental & Genetic Epidemiology Research, Murdoch Children's Research Institute, the Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Evelyne Muggli
- Public Health Genetics, Murdoch Children's Research Institute, the Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Linh Nguyen
- Environmental & Genetic Epidemiology Research, Murdoch Children's Research Institute, the Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Joanne Ryan
- Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia.,Cancer & Disease Epigenetics, Murdoch Children's Research Institute, the Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Richard Saffery
- Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia.,Cancer & Disease Epigenetics, Murdoch Children's Research Institute, the Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Elizabeth J Elliott
- Discipline of Child & Adolescent Health, School of Medicine and Health, University of Sydney, Sydney 2006, New South Wales, Australia.,Australian Paediatric Surveillance Unit, Sydney Childrens Hospitals Network, Westmead, Sydney, New South Wales, Australia
| | - Jane Halliday
- Public Health Genetics, Murdoch Children's Research Institute, the Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jeffrey M Craig
- Environmental & Genetic Epidemiology Research, Murdoch Children's Research Institute, the Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia.,Centre for Molecular and Medical Research, Deakin University, Geelong Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| |
Collapse
|
38
|
Everson TM, Punshon T, Jackson BP, Hao K, Lambertini L, Chen J, Karagas MR, Marsit CJ. Cadmium-Associated Differential Methylation throughout the Placental Genome: Epigenome-Wide Association Study of Two U.S. Birth Cohorts. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:017010. [PMID: 29373860 PMCID: PMC6014712 DOI: 10.1289/ehp2192] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cadmium (Cd) is a ubiquitous environmental toxicant that can accumulate in the placenta during pregnancy, where it may impair placental function and affect fetal development. OBJECTIVES We aimed to investigate Cd-associated variations in placental DNA methylation (DNAM) and associations with gene expression; we also aimed to identify novel pathways involved in Cd-associated reproductive toxicity. METHODS Using placental DNAM and Cd concentrations in the New Hampshire Birth Cohort Study (NHBCS, n=343) and the Rhode Island Child Health Study (RICHS, n=141), we performed an epigenome-wide association study (EWAS) between Cd and DNAM, adjusting for tissue heterogeneity using a reference-free method. Cohort-specific results were aggregated via inverse variance weighted fixed effects meta-analysis, and variably methylated CpGs were associated with gene expression. We then performed functional enrichment analysis and tests for associations between gene expression and birth size metrics. RESULTS We identified 17 Cd-associated differentially methylated CpG sites with meta-analysis p-values<1×10−5, two of which were within a 5% false discovery rate (FDR). DNAM levels at 9 of the 17 loci were associated with increased expression of 6 genes (5% FDR): TNFAIP2, EXOC3L4, GAS7, SREBF1, ACOT7, and RORA. Higher placental expression of TNFAIP2 and ACOT7 and lower expression of RORA were associated with lower birth weight z-scores (p-values<0.05). CONCLUSION Cd-associated differential DNAM and corresponding DNAM-expression associations were observed at loci involved in inflammatory signaling and cell growth. The expression levels of genes involved in inflammatory signaling (TNFAIP2, ACOT7, and RORA) were also associated with birth weight, suggesting a role for inflammatory processes in Cd-associated reproductive toxicity. https://doi.org/10.1289/EHP2192.
Collapse
Affiliation(s)
- Todd M Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Ke Hao
- Department of Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luca Lambertini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Dartmouth College, Lebanon, New Hampshire, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Dartmouth College, Lebanon, New Hampshire, USA
| |
Collapse
|
39
|
Martin EM, Fry RC. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annu Rev Public Health 2018; 39:309-333. [PMID: 29328878 DOI: 10.1146/annurev-publhealth-040617-014629] [Citation(s) in RCA: 390] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA methylation is the most well studied of the epigenetic regulators in relation to environmental exposures. To date, numerous studies have detailed the manner by which DNA methylation is influenced by the environment, resulting in altered global and gene-specific DNA methylation. These studies have focused on prenatal, early-life, and adult exposure scenarios. The present review summarizes currently available literature that demonstrates a relationship between DNA methylation and environmental exposures. It includes studies on aflatoxin B1, air pollution, arsenic, bisphenol A, cadmium, chromium, lead, mercury, polycyclic aromatic hydrocarbons, persistent organic pollutants, tobacco smoke, and nutritional factors. It also addresses gaps in the literature and future directions for research. These gaps include studies of mixtures, sexual dimorphisms with respect to environmentally associated methylation changes, tissue specificity, and temporal stability of the methylation marks.
Collapse
Affiliation(s)
- Elizabeth M Martin
- Department of Environmental Sciences and Engineering, and Curriculum in Toxicology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, and Curriculum in Toxicology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| |
Collapse
|
40
|
Zhang Y, Xu X, Chen A, Davuljigari CB, Zheng X, Kim SS, Dietrich KN, Ho SM, Reponen T, Huo X. Maternal urinary cadmium levels during pregnancy associated with risk of sex-dependent birth outcomes from an e-waste pollution site in China. Reprod Toxicol 2018; 75:49-55. [PMID: 29154917 DOI: 10.1016/j.reprotox.2017.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 10/11/2017] [Accepted: 11/13/2017] [Indexed: 02/05/2023]
Abstract
This study was to investigate whether exposure to cadmium (Cd) during pregnancy is associated with an increased risk of adverse birth outcomes in a sex-dependent manner. Cd concentrations in maternal urine (U-Cd) samples were measured in 237 subjects from Guiyu (e-waste area) and 212 subjects from Haojiang. A significance level of p <0.05 was used for all analyses. The maternal U-Cd levels in Guiyu residents were significantly higher than Haojiang. We found significant inverse associations between U-Cd concentrations and birth anthropometry (birth weight, birth length, Head Circumference and Apgar scores with 1min and 5 mins) in female neonates, but no significant associations were observed in male neonates except Apgar (1min) score after adjustment. The association was more pronounced among female neonates than male neonates, suggesting an association between Cd and adverse birth outcomes may be sex-specific.
Collapse
Affiliation(s)
- Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Departments of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Aimin Chen
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Chand Basha Davuljigari
- Laboratory of Environmental Medicine and Developmental Toxicology and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Stephani S Kim
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kim N Dietrich
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Shuk-Mei Ho
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Tiina Reponen
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
41
|
Cai J, Zhao Y, Liu P, Xia B, Zhu Q, Wang X, Song Q, Kan H, Zhang Y. Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1103-1108. [PMID: 28724248 DOI: 10.1016/j.scitotenv.2017.07.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 05/06/2023]
Abstract
Maternal exposure to particulate matter with aerodynamic diameter <10μm (PM10) during pregnancy results in adverse birth outcomes. Changes in placental DNA methylation might mediate those adverse effects. In this study, we examined the associations between prenatal PM10 exposure and DNA methylation of LINE1, HSD11B2 and NR3C1 in human placenta. One hundred and eighty-one mother newborn pairs (80 fetal growth restriction newborns, 101 normal newborns) participated in this study. The average PM10 exposure of each trimester and of the whole pregnancy was calculated using daily air pollution concentration data. Placental DNA methylation was measured by quantitative polymerase chain reaction-pyrosequencing. Placental LINE-1 DNA methylation was reversely associated with first trimester PM10 exposure 1.78% (-β=1.78, 95% CI: -3.35, -0.22%), while placental HSD11B2 DNA methylation was associated with both first and second trimester PM10 exposure, and relatively increased by 1.03% (95% CI: 0.07, 1.98%) and 2.33% (95% CI: 0.69, 3.76%) for each 10μg/m3 increase in exposure to PM10. Those associations were much more evident in fetal growth restriction newborns than those in normal newborns. In summary, early pregnancy PM10 exposure was associated with placental DNA methylation of LINE1 and HSD11B2, suggesting that such methylation alterations might mediate PM-induced reproductive and developmental toxicity.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Yan Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | | | - Bin Xia
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Qingyang Zhu
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Xiu Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Qi Song
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
42
|
Dharmadasa P, Kim N, Thunders M. Maternal cadmium exposure and impact on foetal gene expression through methylation changes. Food Chem Toxicol 2017; 109:714-720. [DOI: 10.1016/j.fct.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022]
|
43
|
de Angelis C, Galdiero M, Pivonello C, Salzano C, Gianfrilli D, Piscitelli P, Lenzi A, Colao A, Pivonello R. The environment and male reproduction: The effect of cadmium exposure on reproductive function and its implication in fertility. Reprod Toxicol 2017; 73:105-127. [PMID: 28774687 DOI: 10.1016/j.reprotox.2017.07.021] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 07/11/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
Abstract
Cadmium is an environmental pollutant known as endocrine disruptor. Testis is particularly susceptible to cadmium, and testis injury occurs at high but even low levels of exposure. Cadmium reproductive toxicity is mediated by multiple mechanisms, including structural damage to testis vasculature and blood-testis barrier, inflammation, cytotoxicity on Sertoli and Leydig cells, oxidative stress mainly by means of mimicry and interference with essential ions, apoptosis, interference with selected signaling pathways and epigenetic regulation of genes involved in the regulation of reproductive function, and disturbance of the hypothalamus-pituitary-gonadal axis. The current review outlines epidemiological observational findings from environmental and occupational exposure in humans, and reports experimental studies in humans and animals. Lastly, a focus on the pathogenetic mechanisms of cadmium toxicity and on the specific mechanisms of cadmium sensitivity and resistance, particularly assessed in animal models, is included. Despite convincing experimental findings in animals and supporting evidences in humans identifying cadmium as reproductive toxicant, observational findings are controversial, suffering from heterogeneity of study design and pattern of exposure, and from co-exposure to multiple pollutants.
Collapse
Affiliation(s)
| | | | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy.
| | - Ciro Salzano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy.
| | - Daniele Gianfrilli
- Dipartimento di Medicina Sperimentale, Università di Roma "La Sapienza", Rome, Italy.
| | | | - Andrea Lenzi
- Dipartimento di Medicina Sperimentale, Università di Roma "La Sapienza", Rome, Italy.
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy.
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy.
| |
Collapse
|
44
|
Demanelis K, Virani S, Colacino JA, Basu N, Nishijo M, Ruangyuttikarn W, Swaddiwudhipong W, Nambunmee K, Rozek LS. Cadmium exposure and age-associated DNA methylation changes in non-smoking women from northern Thailand. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx006. [PMID: 29492308 PMCID: PMC5804546 DOI: 10.1093/eep/dvx006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/08/2017] [Accepted: 06/12/2017] [Indexed: 05/19/2023]
Abstract
DNA methylation changes with age, and may serve as a biomarker of aging. Cadmium (Cd) modifies cellular processes that promote aging and disrupts methylation globally. Whether Cd modifies aging processes by influencing establishment of age-associated methylation marks is currently unknown. In this pilot study, we characterized methylation profiles in > 450 000 CpG sites in 40 non-smoking women (age 40-80) differentially exposed to environmental Cd from Thailand. Based on specific gravity adjusted urinary Cd, we classified them as high (HE) and low (LE) exposed and age-matched within 5 years. Urinary Cd was defined as below 2 µg/l in the LE group. We predicted epigenetic age (DNAm-age) using two published methods by Horvath and Hannum and examined the difference between epigenetic age and chronologic age (Δage). We assessed differences by Cd exposure using linear mixed models adjusted for estimated white blood cell proportions, BMI, and urinary creatinine. We identified 213 age-associated CpG sites in our population (P < 10-4). Counterintuitively, the mean Δage was smaller in HE vs. LE (Hannum: 3.6 vs. 7.6 years, P = 0.0093; Horvath: 2.4 vs. 4.5 years, P = 0.1308). The Cd exposed group was associated with changes in methylation (P < 0.05) at 12, 8, and 20 age-associated sites identified in our population, Hannum, and Horvath. From the results of this pilot study, elevated Cd exposure is associated with methylation changes at age-associated sites and smaller differences between DNAm-age and chronologic age, in contrast to expected age-accelerating effects. Cd may modify epigenetic aging, and biomarkers of aging warrant further investigation when examining Cd and its relationship with chronic disease and mortality.
Collapse
Affiliation(s)
- Kathryn Demanelis
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48104, USA
| | - Shama Virani
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48104, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48104, USA
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, H9X3V9, Canada
| | - Muneko Nishijo
- Department of Public Health, Kanazawa Medical University Hospital, Uchinada, 920-0293, Ishikawa, Japan
| | - Werawan Ruangyuttikarn
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Witaya Swaddiwudhipong
- Department of Community and Social Science, Mae Sot General Hospital, Mae Sot District, Tak Province 63110, Thailand
| | - Kowit Nambunmee
- School of Health Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Laura S. Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48104, USA
- Correspondence address. Department of Environmental Health Sciences, Office of Global Public Health, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109-2200, USA. Tel: 734-615-9816; E-mail:
| |
Collapse
|
45
|
Bommarito PA, Martin E, Fry RC. Effects of prenatal exposure to endocrine disruptors and toxic metals on the fetal epigenome. Epigenomics 2017. [PMID: 28234024 DOI: 10.2217/epi-20160112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Exposure to environmental contaminants during pregnancy has been linked to adverse outcomes at birth and later in life. The link between prenatal exposures and latent health outcomes suggests that these exposures may result in long-term epigenetic reprogramming. Toxic metals and endocrine disruptors are two major classes of contaminants that are ubiquitously present in the environment and represent threats to human health. In this review, we present evidence that prenatal exposures to these contaminants result in fetal epigenomic changes, including altered global DNA methylation, gene-specific CpG methylation and microRNA expression. Importantly, these changes may have functional cellular consequences, impacting health outcomes later in life. Therefore, these epigenetic changes represent a critical mechanism that warrants further study.
Collapse
Affiliation(s)
- Paige A Bommarito
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Martin
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Toxicology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| |
Collapse
|
46
|
Bommarito PA, Martin E, Fry RC. Effects of prenatal exposure to endocrine disruptors and toxic metals on the fetal epigenome. Epigenomics 2017; 9:333-350. [PMID: 28234024 DOI: 10.2217/epi-2016-0112] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exposure to environmental contaminants during pregnancy has been linked to adverse outcomes at birth and later in life. The link between prenatal exposures and latent health outcomes suggests that these exposures may result in long-term epigenetic reprogramming. Toxic metals and endocrine disruptors are two major classes of contaminants that are ubiquitously present in the environment and represent threats to human health. In this review, we present evidence that prenatal exposures to these contaminants result in fetal epigenomic changes, including altered global DNA methylation, gene-specific CpG methylation and microRNA expression. Importantly, these changes may have functional cellular consequences, impacting health outcomes later in life. Therefore, these epigenetic changes represent a critical mechanism that warrants further study.
Collapse
Affiliation(s)
- Paige A Bommarito
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Martin
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Curriculum in Toxicology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| |
Collapse
|
47
|
Cheng L, Zhang B, Zheng T, Hu J, Zhou A, Bassig BA, Xia W, Savitz DA, Buka S, Xiong C, Braun JM, Zhang Y, Zhou Y, Pan X, Wu C, Wang Y, Qian Z, Yang A, Romano ME, Shi K, Xu S, Li Y. Critical Windows of Prenatal Exposure to Cadmium and Size at Birth. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E58. [PMID: 28075368 PMCID: PMC5295309 DOI: 10.3390/ijerph14010058] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
Prenatal cadmium (Cd) exposure has been associated with adverse birth outcomes, but the findings of previous studies are inconsistent. We measured Cd concentrations in urine samples at or near 13, 24, and 35 gestational weeks from 282 women in Wuhan, China. We used generalized estimating equation models to assess the associations between maternal creatinine adjusted urinary Cd concentrations at each trimester and birth size. A significant inverse association was observed between higher maternal Cd levels measured during the 1st trimester and birth size in girls. For each log unit increase in Cd (µg/g creatinine) levels from the 1st trimester, there was a decrease in birth weight by 116.99 g (95% confidence interval (CI): -208.87, -25.11 g). The Cd levels from the 1st and 2nd trimesters were also borderline significantly associated with ponderal index in girls. Joint estimation of trimester-specific effects suggested that associations with Cd levels for ponderal index (pint = 0.02) were significantly different across trimesters, and differences for effects across trimesters for birth weight were marginally significant (pint = 0.08) in girls. No significant associations were observed between Cd levels from any trimester and birth size in boys. Maternal Cd exposure during earlier periods of pregnancy may have a larger impact on delayed fetal growth.
Collapse
Affiliation(s)
- Lu Cheng
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
- State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
| | - Bin Zhang
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
- State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430000, Hubei, China.
| | - Tongzhang Zheng
- Department of Epidemiology, Brown University, Providence, RI 02912, USA.
| | - Jie Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
- State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
| | - Aifen Zhou
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430000, Hubei, China.
| | - Bryan A Bassig
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
- State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
| | - David A Savitz
- Department of Epidemiology, Brown University, Providence, RI 02912, USA.
| | - Stephen Buka
- Department of Epidemiology, Brown University, Providence, RI 02912, USA.
| | - Chao Xiong
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430000, Hubei, China.
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI 02912, USA.
| | - Yaqi Zhang
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430000, Hubei, China.
| | - Yanqiu Zhou
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
- State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
| | - Xinyun Pan
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
- State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
| | - Chuansha Wu
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
- State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
| | - Youjie Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
- State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
| | - Zhengmin Qian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63103, USA.
| | - Aimin Yang
- College of Earth and Environmental Science, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Megan E Romano
- Department of Epidemiology, Brown University, Providence, RI 02912, USA.
| | - Kunchong Shi
- Department of Epidemiology, Brown University, Providence, RI 02912, USA.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
- State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
- State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
- Department of Epidemiology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
48
|
Chung CJ, Chang CH, Liou SH, Liu CS, Liu HJ, Hsu LC, Chen JS, Lee HL. Relationships among DNA hypomethylation, Cd, and Pb exposure and risk of cigarette smoking-related urothelial carcinoma. Toxicol Appl Pharmacol 2016; 316:107-113. [PMID: 28025111 DOI: 10.1016/j.taap.2016.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/06/2016] [Accepted: 12/22/2016] [Indexed: 01/14/2023]
Abstract
Cigarette smoking and environmental exposure to heavy metals are important global health issues, especially for urothelial carcinoma (UC). However, the effects of cadmium and lead exposure, as well as the levels of DNA hypomethylation, on UC risk are limited. We evaluated the possible exposure sources of Cd and Pb and the relationship among DNA hypomethylation, urinary Cd and Pb levels, and UC risk. We recruited 209 patients with UC and 417 control patients for a hospital-based case-control study between June 2011 and August 2014. We collected environmental exposure-related information with questionnaires. Blood and urine samples were analyzed to measure the Cd and Pb exposure and 5-methyl-2'-deoxycytidine levels as a proxy for DNA methylation. Multivariate logistic regression and 95% confidence intervals were applied to estimate the risk for UC. Study participants with high Cd and Pb exposure in blood or urine had significantly increased risk of UC, especially among the smokers. After adjusting for age and gender, the possible connections of individual cumulative cigarette smoking or herb medicine exposure with the increased levels of Cd and Pb were observed in the controls. Participants with 8.66%-12.39% of DNA hypomethylation had significantly increased risk of UC compared with those with ≥12.39% of DNA hypomethylation. Environmental factors including cigarette smoking and herb medicine may contribute to the internal dose of heavy metals levels. Repeat measurements of heavy metals with different study design, detailed dietary information, and types of herb medicine should be recommended for exploring UC carcinogenesis in future studies.
Collapse
Affiliation(s)
- Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Chao-Hsiang Chang
- Department of Urology, China Medical University and Hospital, Taichung, Taiwan; Department of Medicine, College of Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Saou-Hsing Liou
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chiu-Shong Liu
- Department of Family Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Huei-Ju Liu
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Li-Ching Hsu
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan
| | - Jhih-Sheng Chen
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
49
|
"Gap hunting" to characterize clustered probe signals in Illumina methylation array data. Epigenetics Chromatin 2016; 9:56. [PMID: 27980682 PMCID: PMC5142147 DOI: 10.1186/s13072-016-0107-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/25/2016] [Indexed: 12/16/2022] Open
Abstract
Background The Illumina 450k array has been widely used in epigenetic association studies. Current quality-control (QC) pipelines typically remove certain sets of probes, such as those containing a SNP or with multiple mapping locations. An additional set of potentially problematic probes are those with DNA methylation distributions characterized by two or more distinct clusters separated by gaps. Data-driven identification of such probes may offer additional insights for downstream analyses. Results We developed a procedure, termed “gap hunting,” to identify probes showing clustered distributions. Among 590 peripheral blood samples from the Study to Explore Early Development, we identified 11,007 “gap probes.” The vast majority (9199) are likely attributed to an underlying SNP(s) or other variant in the probe, although SNP-affected probes exist that do not produce a gap signals. Specific factors predict which SNPs lead to gap signals, including type of nucleotide change, probe type, DNA strand, and overall methylation state. These expected effects are demonstrated in paired genotype and 450k data on the same samples. Gap probes can also serve as a surrogate for the local genetic sequence on a haplotype scale and can be used to adjust for population stratification. Conclusions The characteristics of gap probes reflect potentially informative biology. QC pipelines may benefit from an efficient data-driven approach that “flags” gap probes, rather than filtering such probes, followed by careful interpretation of downstream association analyses. Our results should translate directly to the recently released Illumina EPIC array given the similar chemistry and content design. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0107-z) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Yang J, Huo W, Zhang B, Zheng T, Li Y, Pan X, Liu W, Chang H, Jiang M, Zhou A, Qian Z, Wan Y, Xia W, Xu S. Maternal urinary cadmium concentrations in relation to preterm birth in the Healthy Baby Cohort Study in China. ENVIRONMENT INTERNATIONAL 2016; 94:300-306. [PMID: 27289180 DOI: 10.1016/j.envint.2016.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Prenatal cadmium (Cd) exposure has been associated with adverse birth outcomes, but the findings of previous studies are inconsistent. The aim of this study was to evaluate the association between prenatal Cd exposure and birth outcomes. METHODS This study was conducted in 5364 pregnant women with a live singleton birth, who were recruited between September 2012 and October 2014 in the Healthy Baby Cohort (HBC) in Wuhan, China. Gestational age (in days) was estimated using both the woman's last menstrual period (LMP) and ultrasound data. All the birth outcomes including birth weight and birth length were measured in the hospital within one hour after birth through standardized procedures. Cd was measured in maternal urine collected before delivery with inductively coupled plasma mass spectrometry. RESULTS The geometric mean of Cd concentration in maternal urine was 0.55 (range 0.01-2.85) μg/g creatinine. We found each ln-unit increase in Cd concentration (μg/g creatinine) in maternal urine was associated with decreased gestational age [adjusted β=-0.77day; 95% confidence interval (CI): -1.15, -0.39 for all infants; -0.77; 95% CI: -1.29, -0.25 for boys; and -0.80; 95% CI: -1.35, -0.25 for girls]. Increased likelihood of preterm birth (PTB) was associated with ln-unit increase in urinary Cd (μg/g creatinine) [adjusted odds ratio (OR)=1.78; 95% CI: 1.45, 2.19 for all infants; 1.97; 95% CI: 1.46, 2.65 for boys; and 1.67; 95% CI: 1.24, 2.25 for girls]. Maternal urinary Cd was not significantly associated with low birth weight (LBW) and small for gestational age (SGA). CONCLUSIONS Maternal exposure to Cd during pregnancy was associated with decreased gestational age and increased likelihood of PTB.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenqian Huo
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bin Zhang
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Environmental Health Sciences, Brown School of Public Health, Providence, RI, USA
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xinyun Pan
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenyu Liu
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huailong Chang
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Minmin Jiang
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Aifen Zhou
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, Hubei, People's Republic of China
| | - Zhengmin Qian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO, USA
| | - Yanjian Wan
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|