1
|
Yu P, Xu R, Wu Y, Huang W, Coelho MSZS, Saldiva PHN, Ye T, Wen B, Liu Y, Yang Z, Li S, Abramson MJ, Guo Y. Cancer mortality risk from short-term PM 2.5 exposure and temporal variations in Brazil. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134606. [PMID: 38788590 DOI: 10.1016/j.jhazmat.2024.134606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Although some studies have found that short-term PM2.5 exposure is associated with lung cancer deaths, its impact on other cancer sites is unclear. To answer this research question, this time-stratified case-crossover study used individual cancer death data between January 1, 2000, and December 31, 2019, extracted from the Brazilian mortality information system to quantify the associations between short-term PM2.5 exposure and cancer mortality from 25 common cancer sites. Daily PM2.5 concentration was aggregated at the municipality level as the key exposure. The study included a total of 34,516,120 individual death records, with the national daily mean PM2.5 exposure 15.3 (SD 4.3) μg/m3. For every 10-μg/m3 increase in three-day average PM2.5 exposure, the odds ratio (OR) for all-cancer mortality was 1.04 (95% CI 1.03-1.04). Apart from all-cancer deaths, PM2.5 exposure may impact cancers of oesophagus (1.04, 1.00-1.08), stomach (1.05, 1.02-1.08), colon-rectum (1.04, 1.01-1.06), lung (1.04, 1.02-1.06), breast (1.03, 1.00-1.06), prostate (1.07, 1.04-1.10), and leukaemia (1.05, 1.01-1.09). During the study period, acute PM2.5 exposure contributed to an estimated 1,917,994 cancer deaths, ranging from 0 to 6,054 cases in each municipality. Though there has been a consistent downward trend in PM2.5-related all-cancer mortality risks from 2000 to 2019, the impact remains significant, indicating the continued importance of cancer patients avoiding PM2.5 exposure. This nationwide study revealed a notable association between acute PM2.5 exposure and heightened overall and site-specific cancer mortality for the first time to our best knowledge. The findings suggest the importance of considering strategies to minimize such exposure in cancer care guidelines. ENVIRONMENTAL IMPLICATION: The 20-year analysis of nationwide death records in Brazil revealed that heightened short-term exposure to PM2.5 is associated with increased cancer mortality at various sites, although this association has gradually decreased over time. Despite the declining impact, the research highlights the persistent adverse effects of PM2.5 on cancer mortality, emphasizing the importance of continued research and preventive measures to address the ongoing public health challenges posed by air pollution.
Collapse
Affiliation(s)
- Pei Yu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Rongbin Xu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yao Wu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Wenzhong Huang
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Micheline S Z S Coelho
- Laboratory of Urban Health Insper/Faculty of Medicine of the University of São Paulo, Brazil
| | - Paulo H N Saldiva
- Laboratory of Urban Health Insper/Faculty of Medicine of the University of São Paulo, Brazil
| | - Tingting Ye
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bo Wen
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yanming Liu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zhengyu Yang
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Michael J Abramson
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
2
|
Fu Y, Jia W, Zhang N, Wang Z, Zhang N, Wang T, Zhang N, Xu J, Yang X, Zhang Q, Li C, Zhang X, Yang W, Han B, Zhang L, Tang N, Bai Z. Sources, trigger points, and effect size of associations between PM 2.5-bound polycyclic aromatic hydrocarbons (PAHs) and fractional exhaled nitric oxide (FeNO): A panel study with 16 follow-up visits over 4 years. CHEMOSPHERE 2024; 360:142459. [PMID: 38810807 DOI: 10.1016/j.chemosphere.2024.142459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/03/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Exposure to fine particulate matter (PM2.5) is a significant concern for respiratory health. However, the sources, trigger points, and effect size of specific associations between PM2.5 components, particularly polycyclic aromatic hydrocarbons (PAHs) and the airway inflammatory marker fractional exhaled nitric oxide (FeNO) have not been fully explored. In this study, 69 healthy college students were enrolled and followed up 16 times from 2014 to 2018. Individual FeNO was measured and ambient air PM2.5 samples were collected for 7 consecutive days before each follow-up. PAHs were quantified using Gas Chromatography-Mass Spectrometry. Linear mixed-effect regression models were employed to evaluate the associations between PM2.5-bound PAHs and FeNO. Additionally, PMF (Positive Matrix Factorization) was utilized to identify sources of PM2.5-bound PAHs and assess their impact on FeNO. Throughout the study, the average (SD) of ΣPAHs concentrations was 78.50 (128.9) ng/m3. PM2.5 and PM2.5-bound PAHs were significantly associated with FeNO at various lag days. Single-day lag analyses revealed maximum effects of PM2.5 on FeNO, with an increase of 7.71% (95% CI: 4.67%, 10.83%) per interquartile range (IQR) (48.10 μg/m3) increase of PM2.5 at lag2, and ΣPAHs showed a maximum elevation in FeNO of 6.40% (95% CI: 2.33%, 10.63%) at lag4 per IQR (57.39 ng/m3) increase. Individual PAHs exhibited diversity peak effects on FeNO at lag3 (6 of 17), lag4 (9 of 17) in the single-day model, and lag0-5 (8 of 17) (from lag0-1 to lag0-6) in the cumulative model. Source apportionment indicated coal combustion as the primary contributor (accounting for 30.7%). However, a maximum effect on FeNO (an increase of 21.57% (95% CI: 13.58%, 30.13%) per IQR increase) was observed with traffic emissions at lag4. The findings imply that strategic regulation of particular sources of PAHs, like traffic emissions, during specific periods could significantly contribute to safeguarding public health.
Collapse
Affiliation(s)
- Yucong Fu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Wenhui Jia
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Ningyu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Zhiyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Nan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Changping Li
- Epidemiology and Biostatistics Institute, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xumei Zhang
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
3
|
Li Z, Wang Y, Wu W, Zhao Y, Wang S, Wang P, Lin X, Gong Y, Wu Z, Li X, Sun J, Zhao N, Huang Y, Hu S, Zhang W. The relative contribution of PM 2.5 components to the obstructive ventilatory dysfunction-insights from a large ventilatory function examination of 305,022 workers in southern China. ENVIRONMENT INTERNATIONAL 2024; 187:108721. [PMID: 38718675 DOI: 10.1016/j.envint.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND The new round of WHO/ILO Joint Estimates of the Work-related Burden of Disease assessment requires futher research to provide more evidence, especially on the health impact of ambient air pollution around the workplace. However, the evidence linking obstructive ventilatory dysfunction (OVD) to fine particulate matter (PM2.5) and its chemical components in workers is very limited. Evidence is even more scarce on the interactive effects between occupational factors and particle exposures. We aimed to fill these gaps based on a large ventilatory function examination of workers in southern China. METHODS We conducted a cross-sectional study among 363,788 workers in southern China in 2020. The annual average concentration of PM2.5 and its components were evaluated around the workplace through validated spatiotemporal models. We used mixed-effect models to evaluate the risk of OVD related to PM2.5 and its components. Results were further stratified by basic characteristics and occupational factors. FINDINGS Among the 305,022 workers, 119,936 were observed with OVD. We found for each interquartile range (IQR) increase in PM2.5 concentration, the risk of OVD increased by 27.8 (95 % confidence interval (CI): 26.5-29.2 %). The estimates were 10.9 % (95 %CI: 9.7-12.1 %), 15.8 % (95 %CI: 14.5-17.2 %), 2.6 % (95 %CI: 1.4-3.8 %), 17.1 % (95 %CI: 15.9-18.4 %), and 11 % (95 %CI: 9.9-12.2 %), respectively, for each IQR increment in sulfate, nitrate, ammonium salt, organic matter and black carbon. We observed greater effect estimates among females, younger workers, workers with a length of service of 24-45 months, and professional skill workers. Furthermore, it is particularly noteworthy that the noise-exposed workers, high-temperature-exposed workers, and less-dust-exposed workers were at a 5.7-68.2 % greater risk than others. INTERPRETATION PM2.5 and its components were significantly associated with an increased risk of OVD, with stronger links among certain vulnerable subgroups.
Collapse
Affiliation(s)
- Zhiqiang Li
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong, China; Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Ying Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Wenjing Wu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yanjie Zhao
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Shenghao Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Pengyu Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xian Lin
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yajun Gong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong, China
| | - Zhijia Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong, China
| | - Xinyue Li
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong, China; Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jie Sun
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Na Zhao
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong, China
| | - Yongshun Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong, China.
| | - Shijie Hu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong, China.
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
4
|
Lei J, Liu C, Meng X, Sun Y, Huang S, Zhu Y, Gao Y, Shi S, Zhou L, Luo H, Kan H, Chen R. Associations between fine particulate air pollution with small-airway inflammation: A nationwide analysis in 122 Chinese cities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123330. [PMID: 38199484 DOI: 10.1016/j.envpol.2024.123330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/24/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Alveolar nitric oxide is a non-invasive indicator of small-airway inflammation, a key pathophysiologic mechanism underlying lower respiratory diseases. However, no epidemiological studies have investigated the impact of fine particulate matter (PM2.5) exposure on the concentration of alveolar nitric oxide (CANO). To explore the associations between PM2.5 exposure in multiple periods and CANO, we conducted a nationwide cross-sectional study in 122 Chinese cities between 2019 and 2021. Utilizing a satellite-based model with a spatial resolution of 1 × 1 km, we matched long-term, mid-term, and short-term PM2.5 exposure for 28,399 individuals based on their home addresses. Multivariable linear regression models were applied to estimate the associations between PM2.5 at multiple exposure windows and CANO. Stratified analyses were also performed to identify potentially vulnerable subgroups. We found that per interquartile range (IQR) unit higher in 1-year average, 1-month average, and 7-day average PM2.5 concentration was significantly associated with increments of 17.78% [95% confidence interval (95%CI): 12.54%, 23.26%], 8.76% (95%CI: 7.35%, 10.19%), and 4.00% (95%CI: 2.81%, 5.20%) increment in CANO, respectively. The exposure-response relationship curves consistently increased with the slope becoming statistically significant beyond 20 μg/m3. Males, children, smokers, individuals with respiratory symptoms or using inhaled corticosteroids, and those living in Southern China were more vulnerable to PM2.5 exposure. In conclusion, our study provided novel evidence that PM2.5 exposure in long-term, mid-term, and short-term periods could significantly elevate small-airway inflammation represented by CANO. Our results highlight the significance of CANO measurement as a non-invasive tool for early screening in the management of PM2.5-related inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Jian Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Department of Occupational and Environmental Health, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yiqing Sun
- Eberly College of Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Suijie Huang
- Guangzhou Homesun Medical Technology Co., Ltd, Guangdong, 518040, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Lu Zhou
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Huihuan Luo
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Qu L, Chai T, Guo Z, Zhang Z, Huang Z, Li N. Studies on the airborne bacterial communities and antimicrobial resistance genes in duck houses based on metagenome and PCR analysis. Poult Sci 2024; 103:103365. [PMID: 38157791 PMCID: PMC10790083 DOI: 10.1016/j.psj.2023.103365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
The threat of antimicrobial resistance (AMR) is on the rise globally, especially with the development of animal husbandry and the increased demand for antibiotics. Livestock and poultry farms, as key sites for prevalence of antibiotic-resistant bacteria (ARB), can spread antimicrobial resistance genes (ARGs) through microbial aerosols and affect public health. In this study, total suspended particulate matter (TSP) and airborne culturable microorganisms were collected from duck houses in Tai'an, Shandong Province, and the bacterial communities and airborne ARGs were analyzed using metagenomics and PCR methods. The results showed that the bacterial communities in the air of duck houses were mainly Actinobacteria, Firmicutes, Proteobactria, Chlamydia, and Bcateroidetes at the phylum level. At the genus level, the air was dominated by Corynebacterium, Jeotgalicoccus, Staphylococcus, Brevibacterium, and Megacoccus, and contained some pathogenic bacteria such as Staphylococcus aureus, Corynebacterium diphtheriae, Klebsiella oxytoca, Acinetobacter baumannii, and Pseudomonas aeruginosa, which were also potential hosts for ARGs. The airborne ARGs were mainly macrolides (10.97%), penicillins (10.73%), cephalosporins (8.91%), streptozotocin (8.91%), and aminoglycosides (8.02%). PCR detected 27 ARGs in airborne culturable microorganisms, and comparative analysis between PCR and the metagenomic data revealed that a total of 9 ARGs were found to the same, including macrolides ErmA, ErmF, tetracyclines tetG, tetX, methicarbamazepines dfrA12, dfrA15, aminoglycosides APH3-VI, ANT2-Ⅰ, and sulfonamides sul2. Moreover, inhalation exposure modeling showed that the workers in duck houses inhaled higher concentrations of ARB, human pathogenic bacteria (HPB) and human pathogenic antibiotic-resistant bacteria (HPARB) than hospital workers. These results provide new insights into airborne microorganisms and ARGs in animal farms and lay the foundation for further study.
Collapse
Affiliation(s)
- Lei Qu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Tongjie Chai
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Zhiyun Guo
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Zhaopeng Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Ziqiu Huang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Ning Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China.
| |
Collapse
|
6
|
Kobayashi S, Yoda Y, Takagi H, Ito T, Wakamatsu J, Nakatsubo R, Horie Y, Hiraki T, Shima M. Short-term effects of the chemical components of fine particulate matter on pulmonary function: A repeated panel study among adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165195. [PMID: 37391138 DOI: 10.1016/j.scitotenv.2023.165195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
The effects of the chemical components of fine particulate matter (PM2.5) have been drawing attention. However, information regarding the impact of low PM2.5 concentrations is limited. Hence, we aimed to investigate the short-term effects of the chemical components of PM2.5 on pulmonary function and their seasonal differences in healthy adolescents living on an isolated island without major artificial sources of air pollution. A panel study was repeatedly conducted twice a year for one month every spring and fall from October 2014 to November 2016 on an isolated island in the Seto Inland Sea, which has no major artificial sources of air pollution. Daily measurements of peak expiratory flow (PEF) and forced expiratory volume in 1 s (FEV1) were performed in 47 healthy college students, and the concentrations of 35 chemical components of PM2.5 were analyzed every 24 h. Using a mixed-effects model, the relationship between pulmonary function values and concentrations of PM2.5 components was analyzed. Significant associations were observed between several PM2.5 components and decreased pulmonary function. Among the ionic components, sulfate was strongly related to decreases in PEF and FEV1 (-4.20 L/min [95 % confidence interval (CI): -6.40 to -2.00] and - 0.04 L [95 % CI: -0.05 to -0.02] per interquartile range increase, respectively). Among the elemental components, potassium induced the greatest reduction in PEF and FEV1. Therefore, PEF and FEV1 were significantly reduced as the concentrations of several PM2.5 components increased during fall, with minimal changes observed during spring. Several chemical components of PM2.5 were significantly associated with decreased pulmonary function among healthy adolescents. The concentrations of PM2.5 chemical components differed by season, suggesting the occurrence of distinct effects on the respiratory system depending on the type of component.
Collapse
Affiliation(s)
- Satoru Kobayashi
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshiko Yoda
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan.
| | - Hiroshi Takagi
- National Institute of Technology, Yuge College, Kamijima, Ehime 794-2593, Japan
| | - Takeshi Ito
- National Institute of Technology, Yuge College, Kamijima, Ehime 794-2593, Japan
| | - Junko Wakamatsu
- National Institute of Technology, Yuge College, Kamijima, Ehime 794-2593, Japan
| | - Ryohei Nakatsubo
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037, Japan
| | - Yosuke Horie
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037, Japan
| | - Takatoshi Hiraki
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037, Japan
| | - Masayuki Shima
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
7
|
Jiang Y, Nguyen TV, Jin J, Yu ZN, Song CH, Chai OH. Bergapten ameliorates combined allergic rhinitis and asthma syndrome after PM2.5 exposure by balancing Treg/Th17 expression and suppressing STAT3 and MAPK activation in a mouse model. Biomed Pharmacother 2023; 164:114959. [PMID: 37267637 DOI: 10.1016/j.biopha.2023.114959] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023] Open
Abstract
Combined allergic rhinitis and asthma syndrome (CARAS) causes chronic respiratory inflammation in allergic individuals. Long-term exposure to particulate matter 2.5 (PM2.5; particles 2.5 µm or less in diameter) can aggravate respiratory damage. Bergapten (5-methoxysporalen) is a furocoumarin mostly found in bergamot essential oil and has significant antioxidant, anticancer, and anti-inflammatory activity. This study created a model in which CARAS was exacerbated by PM2.5 exposure, in BALB/c mice and explored the potential of bergapten as a therapeutic agent. The bergapten medication increased ovalbumin (OVA)-specific immunoglobulin (Ig) G2a level in serum and decreased OVA-specific IgE and IgG1 expression. Clinical nasal symptoms diminished significantly, with weakened inflammatory reaction in both the nasal mucosa and lungs. Furthermore, bergapten controlled the T helper (Th)1 to Th2 ratio by increasing cytokines associated with Th1-like interleukin (IL)-12 and interferon gamma and decreasing the Th2 cytokines IL-4, IL-5, and IL-13. Factors closely related to the balance between regulatory T cells and Th17 (such as IL-10, IL-17, Forkhead box protein P3, and retinoic-related orphan receptor gamma) were also regulated. Notably, pro-inflammatory cytokines IL-6, IL-1β, and tumor necrosis factor-alpha were reduced by bergapten, which suppressed the activation of both the signal transducer and activator of transcription 3 signaling pathway and the mitogen-activated protein kinase signaling pathway. Therefore, bergapten might have potential as a therapeutic agent for CARAS.
Collapse
Affiliation(s)
- Yuna Jiang
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Juan Jin
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, the Republic of Korea.
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, the Republic of Korea.
| |
Collapse
|
8
|
Howlett-Downing C, Boman J, Molnár P, Shirinde J, Wichmann J. Health risk assessment of PM 2.5 and PM 2.5-bound trace elements in Pretoria, South Africa. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:342-358. [PMID: 36960711 DOI: 10.1080/10934529.2023.2186653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Exposure to outdoor air pollutants poses a risk for both non-carcinogenic and carcinogenic respiratory disease outcomes. A standardized health risk assessment (US EPA) utilizes air quality data, body mass and breathing rates to determine potential risk. This health risk assessment study assesses the hazard quotient (HQ) for total PM2.5 and trace elemental constituents (Br, Cl, K, Ni, S, Si, Ti and U) exposure in Pretoria, South Africa. The World Health Organization (WHO) air quality guideline (5 µg m-3) and the yearly South African National Ambient Air Quality Standard (NAAQS) (20 µg m-3) were the references dosages for total PM2.5. A total of 350 days was sampled in Pretoria, South Africa. The mean total PM2.5 concentration during the 34-month study period was 23.2 µg m-3 (0.7-139 µg m-3). The HQ for total PM2.5 was 1.17, 3.47 and 3.78 for adults, children and infants. Non-carcinogenic risks for trace elements K, Cl, S and Si were above 1 for adults. Seasonally, Si was the highest during autumn for adults (1.9) and during spring for S (5.5). The HQ values for K and Cl were highest during winter. The exposure to Ni posed a risk for cancer throughout the year and for As during winters.
Collapse
Affiliation(s)
- Chantelle Howlett-Downing
- Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Gezina, South Africa
| | - Johan Boman
- Atmospheric Science Division, Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Peter Molnár
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Joyce Shirinde
- Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Gezina, South Africa
| | - Janine Wichmann
- Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Gezina, South Africa
| |
Collapse
|
9
|
Sidwell A, Smith SC, Roper C. A comparison of fine particulate matter (PM 2.5) in vivo exposure studies incorporating chemical analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:422-444. [PMID: 36351256 DOI: 10.1080/10937404.2022.2142345] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The complex, variable mixtures present in fine particulate matter (PM2.5) have been well established, and associations between chemical constituents and human health are expanding. In the past decade, there has been an increase in PM2.5 toxicology studies that include chemical analysis of samples. This investigation is a crucial component for identifying the causal constituents for observed adverse health effects following exposure to PM2.5. In this review, investigations of PM2.5 that used both in vivo models were explored and chemical analysis with a focus on respiratory, cardiovascular, central nervous system, reproductive, and developmental toxicity was examined to determine if chemical constituents were considered in the interpretation of the toxicity findings. Comparisons between model systems, PM2.5 characteristics, endpoints, and results were made. A vast majority of studies observed adverse effects in vivo following exposure to PM2.5. While limited, investigations that explored connections between chemical components and measured endpoints noted significant associations between biological measurements and a variety of PM2.5 constituents including elements, ions, and organic/elemental carbon, indicating the need for such analysis. Current limitations in available data, including relatively scarce statistical comparisons between collected toxicity and chemical datasets, are provided. Future progress in this field in combination with epidemiologic research examining chemical composition may support regulatory standards of PM2.5 to protect human health.
Collapse
Affiliation(s)
- Allie Sidwell
- Department of Biology, University of Mississippi, Mississippi, MS, USA
| | - Samuel Cole Smith
- Department of Bio-Molecular Sciences, University of Mississippi, Mississippi, MS, USA
| | - Courtney Roper
- Department of Bio-Molecular Sciences, University of Mississippi, Mississippi, MS, USA
| |
Collapse
|
10
|
Zhang Q, Meng X, Shi S, Kan L, Chen R, Kan H. Overview of particulate air pollution and human health in China: Evidence, challenges, and opportunities. Innovation (N Y) 2022; 3:100312. [PMID: 36160941 PMCID: PMC9490194 DOI: 10.1016/j.xinn.2022.100312] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Ambient particulate matter (PM) pollution in China continues to be a major public health challenge. With the release of the new WHO air quality guidelines in 2021, there is an urgent need for China to contemplate a revision of air quality standards (AQS). In the recent decade, there has been an increase in epidemiological studies on PM in China. A comprehensive evaluation of such epidemiological evidence among the Chinese population is central for revision of the AQS in China and in other developing countries with similar air pollution problems. We thus conducted a systematic review on the epidemiological literature of PM published in the recent decade. In summary, we identified the following: (1) short-term and long-term PM exposure increase mortality and morbidity risk without a discernible threshold, suggesting the necessity for continuous improvement in air quality; (2) the magnitude of long-term associations with mortality observed in China are comparable with those in developed countries, whereas the magnitude of short-term associations are appreciably smaller; (3) governmental clean air policies and personalized mitigation measures are potentially effective in protecting public and individual health, but need to be validated using mortality or morbidity outcomes; (4) particles of smaller size range and those originating from fossil fuel combustion appear to show larger relative health risks; and (5) molecular epidemiological studies provide evidence for the biological plausibility and mechanisms underlying the hazardous effects of PM. This updated review may serve as an epidemiological basis for China’s AQS revision and proposes several perspectives in designing future health studies. Acute effects of PM are smaller in China compared with developed countries Health effects caused by PM depend on particle composition, source, and size There are no thresholds for the health effects of PM Mechanistic studies support the biological plausibility of PM’s health effects
Collapse
Affiliation(s)
- Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lena Kan
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, MD 21205, USA
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.,Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|
11
|
Yu H, Xu T, Chen J, Yin W, Ye F. Association of inflammation and lung function decline caused by personal PM 2.5 exposure: a machine learning approach in time-series data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80436-80447. [PMID: 35716299 DOI: 10.1007/s11356-022-21457-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies focused on the association between lung function impairment and inflammation caused by fine particulate matter (PM2.5), but the causal relationships are difficult to clarify. In the current study, twenty healthy Chinese young adults who participated in 7 days of observation every four seasons were enrolled, and autoregression models (AM) and classification and regression trees (CART) in a machine learning framework were applied to analyze the association among PM2.5 exposure, inflammation, and lung function from a data structure perspective. There were strong cross-correlations between personal dose of PM2.5 (Dw) and lung functions (vital capacity (VC), forced vital capacity (FVC), etc.). These cross-correlation coefficients were associated with inflammatory indicators (uteroglobin (UG), serum amyloid (SAA), and fractional exhaled nitric oxide (FeNO)). CART reported that inflammatory indicators UG and SAA had the predictive ability of the directional association between Dw and FVC at 1-day lag and that high levels of UG and SAA predicted that PM2.5 exposure induced lung function decline. Consistently, lower lung function indicators at a 2-day lag after personal PM2.5 exposure predicted the high value of inflammatory indicator FeNO. Taken together, we applied machine learning algorithms to analyze repeated measurement data, finding that inflammation and lung function decline caused by PM2.5 could affect each other.
Collapse
Affiliation(s)
- Hao Yu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 440305, Guangdong, People's Republic of China
| | - Tian Xu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan), and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
| | - Juan Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan), and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
| | - Wenjun Yin
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan), and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
| | - Fang Ye
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan), and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
12
|
Marques-da-Silva D, Videira PA, Lagoa R. Registered human trials addressing environmental and occupational toxicant exposures: Scoping review of immunological markers and protective strategies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103886. [PMID: 35598754 DOI: 10.1016/j.etap.2022.103886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Exposure to pollution is a worldwide societal challenge participating in the etiology and progression of different diseases. However, the scarce information hinders our understanding of the actual level of human exposure and its specific effects. Inadequate and excessive immune responses underlie diverse chronic diseases. Yet, it is unclear which and how toxicant exposures affect the immune system functions. There is a multiplicity of immunological outcomes and biomarkers being studied in human trials related to exposure to different toxicants but still without clear evidence of their value as biomarkers of exposure or effect. The main aim of this study was to collect scientific evidence and identify relevant immunological biomarkers used at the clinical level for toxicant exposures. We used the platform clinical trials.gov as a database tool. First, we performed a search combining research items related to toxicants and immunological parameters. The resulting117 clinical trials were examined for immune-related outcomes and specific biomarkers evaluated in subjects exposed to occupational and environmental toxicants. After categorization, relevant immunological outcomes and biomarkers were identified related to systemic and airway inflammation, modulation of immune cells, allergy and autoimmunity. In general, the immune markers related to inflammation are more frequently investigated for exposure to pollutants, namely IL-6, C-reactive protein (CRP) and nitric oxide (NO). Nevertheless, the data also indicated that prospective biomarkers of effect are gaining ground and a guiding representation of the established and novel biomarkers is suggested for upcoming trials. Finally, potential protective strategies to mitigate the adverse effects of specific toxicants are underlined for future studies.
Collapse
Affiliation(s)
- Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, 2411-901 Leiria, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Paula Alexandra Videira
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
13
|
Mohd Isa KN, Jalaludin J, Mohd Elias S, Mohamed N, Hashim JH, Hashim Z. Evaluation of the Relationship between Fractional Exhaled Nitric Oxide (FeNO) with Indoor PM 10, PM 2.5 and NO 2 in Suburban and Urban Schools. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084580. [PMID: 35457448 PMCID: PMC9031949 DOI: 10.3390/ijerph19084580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022]
Abstract
Numerous epidemiological studies have evaluated the association of fractional exhaled nitric oxide (FeNO) and indoor air pollutants, but limited information available of the risks between schools located in suburban and urban areas. We therefore investigated the association of FeNO levels with indoor particulate matter (PM10 and PM2.5), and nitrogen dioxide (NO2) exposure in suburban and urban school areas. A comparative cross-sectional study was undertaken among secondary school students in eight schools located in the suburban and urban areas in the district of Hulu Langat, Selangor, Malaysia. A total of 470 school children (aged 14 years old) were randomly selected, their FeNO levels were measured, and allergic skin prick tests were conducted. The PM2.5, PM10, NO2, and carbon dioxide (CO2), temperature, and relative humidity were measured inside the classrooms. We found that the median of FeNO in the school children from urban areas (22.0 ppb, IQR = 32.0) were slightly higher as compared to the suburban group (19.5 ppb, IQR = 24.0). After adjustment of potential confounders, the two-level hierarchical multiple logistic regression models showed that the concentrations of PM2.5 were significantly associated with elevated of FeNO (>20 ppb) in school children from suburban (OR = 1.42, 95% CI = 1.17−1.72) and urban (OR = 1.30, 95% CI = 1.10−1.91) areas. Despite the concentrations of NO2 being below the local and international recommendation guidelines, NO2 was found to be significantly associated with the elevated FeNO levels among school children from suburban areas (OR = 1.11, 95% CI = 1.06−1.17). The findings of this study support the evidence of indoor pollutants in the school micro-environment associated with FeNO levels among school children from suburban and urban areas.
Collapse
Affiliation(s)
- Khairul Nizam Mohd Isa
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (K.N.M.I.); (S.M.E.); (Z.H.)
- Environmental Health Research Cluster (EHRc), Environmental Healthcare Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (K.N.M.I.); (S.M.E.); (Z.H.)
- Correspondence: ; Tel.: +603-97692397
| | - Saliza Mohd Elias
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (K.N.M.I.); (S.M.E.); (Z.H.)
| | - Norlen Mohamed
- Environmental Health Unit, Level 2, E3, Disease Control Division, Ministry of Health, Putrajaya 62590, Wilayah Persekutuan Putrajaya, Malaysia;
| | - Jamal Hisham Hashim
- Department of Health Sciences, Faculty of Engineering and Life Science, Universiti Selangor, Shah Alam Campus, Seksyen 7, Shah Alam 40000, Selangor, Malaysia;
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (K.N.M.I.); (S.M.E.); (Z.H.)
| |
Collapse
|
14
|
Ye Z, Wang B, Mu G, Zhou Y, Qiu W, Yang S, Wang X, Zhang Z, Chen W. Short-term effects of real-time individual fine particulate matter exposure on lung function: a panel study in Zhuhai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65140-65149. [PMID: 34231152 DOI: 10.1007/s11356-021-15246-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Fine particulate matter (PM2.5) is still the primary air pollutant in most Chinese cities and its adverse effects on lung function have been widely reported. However, short-term effects of individual exposure to PM2.5 on pulmonary expiration flow indices remain largely unknown. In this study, we examined the short-term effects of real-time individual exposure to PM2.5 on lung function in a panel of 115 healthy adults. We measured individual real-time PM2.5 exposure and lung function. Environmental PM2.5 concentrations in the same period were collected from the nearest monitoring station. Generalized linear model was used to assess the effects of individual PM2.5 exposure on lung function after adjusting for potential confounders. Individual PM2.5 exposure ranged from 18.5 to 42.4 μg/m3 with fluctuations over time and ambient PM2.5 concentrations presented a moderate trend of fluctuation at the same day. Except forced expiratory volume in 1 s (FEV1) decline related to 2-h moving average PM2.5 exposure, no significant associations between individual PM2.5 exposure and other volume indices including forced vital capacity (FVC) and FEV1/FVC ratio were observed. The adverse effects of individual PM2.5 exposure on pulmonary expiration flow indices including peak expiratory flow (PEF), maximal mid-expiratory flow (MMF) and forced expiratory flow at 50%, and 75% of vital capacity (FEF50% and FEF75%) were observed to be strongest at 2 moving average hours and could last for 24 h. Stratified analysis showed greater and longer effects among participants who were aged over 40 years, males, or smokers. These findings suggested that individual PM2.5 exposure was significantly associated with altered lung function, especially with pulmonary expiration flow indices decline, which was strongest at 2 moving average hours and could last for 24 h.
Collapse
Affiliation(s)
- Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ge Mu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weihong Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shijie Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhuang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
15
|
Chen J, Qu W, Sun L, Chen J, Kong W, Wang F, Pan W, Liu L, Wu M, Ding F, Hu H, Ding X, Wei H, Zou Y, Qian X, Wang M, Wu J, Tao J, Tan J, Da Z, Zhang M, Li J, Liang J, Feng X, Geng L, Sun L. The relationship of polluted air and drinking water sources with the prevalence of systemic lupus erythematosus: a provincial population-based study. Sci Rep 2021; 11:18591. [PMID: 34545152 PMCID: PMC8452734 DOI: 10.1038/s41598-021-98111-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
Environmental exposures interact with genetic factors has been thought to influence susceptibility of systemic lupus erythematosus (SLE) development. To evaluate the effects of environmental exposures on SLE, we conducted a population-based cohort study across Jiangsu Province, China, to examine the associations between the living environment including air and water pollution, population density, economic income level, etc. and the prevalence and mortality of hospitalized SLE (h-SLE) patients. A total of 2231 h-SLE patients were retrieved from a longitudinal SLE database collected by the Jiangsu Lupus Collaborative Group from 1999 to 2009. The results showed that: It existed regional differences on the prevalence of h-SLE patients in 96 administrative districts; The distribution of NO2 air concentration monitored by atmospheric remote sensors showed that three of the ultra-high-prevalence districts were located in the concentrated chemical industry emission area; h-SLE patient prevalence was positively correlated with the excessive levels of nitrogen in drinking water; The positive ratio of pericarditis and proteinuria was positively correlated with the prevalence of h-SLE patients and pollution not only induced a high h-SLE patient prevalence but also a higher mortality rate, which might be attributed to NOx pollution in the air and drinking water. In summary, our data suggested that NOx in air and drinking water may be one of the important predispositions of SLE, especially for patients with renal involvement.
Collapse
Affiliation(s)
- Jiaqi Chen
- School of Computer and Information, Hohai University, Nanjing, China
| | - Wenqiang Qu
- School of Computer and Information, Hohai University, Nanjing, China
| | - Li Sun
- School of the Environment, Nanjing University, Nanjing, China
| | - Jiansheng Chen
- School of Earth Science and Engineering, Hohai University, Nanjing, China
| | - Wei Kong
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Fan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Wenyou Pan
- Department of Rheumatology, Huai'an First People's Hospital, Huai'an, China
| | - Lin Liu
- Department of Rheumatology, Xuzhou Central Hospital, Xuzhou, China
| | - Min Wu
- Department of Rheumatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fuwan Ding
- Department of Endocrinology, Yancheng Third People's Hospital, Yancheng, China
| | - Huaixia Hu
- Department of Rheumatology, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Xiang Ding
- Department of Rheumatology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Hua Wei
- Department of Rheumatology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yaohong Zou
- Department of Rheumatology, Wuxi People's Hospital, Wuxi, China
| | - Xian Qian
- Department of Rheumatology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Meimei Wang
- Department of Rheumatology, Southeast University Zhongda Hospital, Nanjing, China
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Tao
- Department of Rheumatology, Wuxi TCM Hospital, Wuxi, China
| | - Jun Tan
- Department of Rheumatology, Zhenjiang First People's Hospital, Zhenjiang, China
| | - Zhanyun Da
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Miaojia Zhang
- Department of Rheumatology, Jiangsu Province Hospital, Nanjing, China
| | - Jing Li
- Department of Rheumatology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Liang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Linyu Geng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
16
|
Ullah HMA, Kwon TH, Park S, Kim SD, Rhee MH. Isoleucilactucin Ameliorates Coal Fly Ash-Induced Inflammation through the NF-κB and MAPK Pathways in MH-S Cells. Int J Mol Sci 2021; 22:ijms22179506. [PMID: 34502415 PMCID: PMC8430556 DOI: 10.3390/ijms22179506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023] Open
Abstract
We investigated whether isoleucilactucin, an active constituent of Ixeridium dentatum, reduces inflammation caused by coal fly ash (CFA) in alveolar macrophages (MH-S). The anti-inflammatory effects of isoleucilactucin were assessed by measuring the concentration of nitric oxide (NO) and the expression of pro-inflammatory mediators in MH-S cells exposed to CFA-induced inflammation. We found that isoleucilactucin reduced CFA-induced NO generation dose-dependently in MH-S cells. Moreover, isoleucilactucin suppressed CFA-activated proinflammatory mediators, including cyclooxygenase-2 (COX2) and inducible NO synthase (iNOS), and the proinflammatory cytokines such as interleukin-(IL)-1β, IL-6, and tumor necrosis factor (TNF-α). The inhibiting properties of isoleucilactucin on the nuclear translocation of phosphorylated nuclear factor-kappa B (p-NF-κB) were observed. The effects of isoleucilactucin on the NF-κB and mitogen-activated protein kinase (MAPK) pathways were also measured in CFA-stimulated MH-S cells. These results indicate that isoleucilactucin suppressed CFA-stimulated inflammation in MH-S cells by inhibiting the NF-κB and MAPK pathways, which suggest it might exert anti-inflammatory properties in the lung.
Collapse
Affiliation(s)
- H. M. Arif Ullah
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (H.M.A.U.); (S.D.K.)
| | - Tae-Hyung Kwon
- Department of Research and Development, Chuncheon Bio-Industry Foundation (CBF), Chuncheon 24232, Korea
- Correspondence: (T.-H.K.); (M.H.R.); Tel.: +82-33-258-6993 (T.-H.K.); +82-53-950-5967 (M.H.R.)
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea;
| | - Sung Dae Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (H.M.A.U.); (S.D.K.)
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (H.M.A.U.); (S.D.K.)
- Correspondence: (T.-H.K.); (M.H.R.); Tel.: +82-33-258-6993 (T.-H.K.); +82-53-950-5967 (M.H.R.)
| |
Collapse
|
17
|
PM 2.5 Exacerbates Oxidative Stress and Inflammatory Response through the Nrf2/NF-κB Signaling Pathway in OVA-Induced Allergic Rhinitis Mouse Model. Int J Mol Sci 2021; 22:ijms22158173. [PMID: 34360939 PMCID: PMC8348225 DOI: 10.3390/ijms22158173] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Air pollution-related particulate matter (PM) exposure reportedly enhances allergic airway inflammation. Some studies have shown an association between PM exposure and a risk for allergic rhinitis (AR). However, the effect of PM for AR is not fully understood. An AR mouse model was developed by intranasal administration of 100 μg/mouse PM with a less than or equal to 2.5 μm in aerodynamic diameter (PM2.5) solution, and then by intraperitoneal injection of ovalbumin (OVA) with alum and intranasal challenging with 10 mg/mL OVA. The effects of PM2.5 on oxidative stress and inflammatory response via the Nrf2/NF-κB signaling pathway in mice with or without AR indicating by histological, serum, and protein analyses were examined. PM2.5 administration enhanced allergic inflammatory cell expression in the nasal mucosa through increasing the expression of inflammatory cytokine and reducing the release of Treg cytokine in OVA-induced AR mice, although PM2.5 exposure itself induced neither allergic responses nor damage to nasal and lung tissues. Notably, repeated OVA-immunization markedly impaired the nasal mucosa in the septum region. Moreover, AR with PM2.5 exposure reinforced this impairment in OVA-induced AR mice. Long-term PM2.5 exposure strengthened allergic reactions by inducing the oxidative through malondialdehyde production. The present study also provided evidence, for the first time, that activity of the Nrf2 signaling pathway is inhibited in PM2.5 exposed AR mice. Furthermore, PM2.5 exposure increased the histopathological changes of nasal and lung tissues and related the inflammatory cytokine, and clearly enhanced PM2.5 phagocytosis by alveolar macrophages via activating the NF-κB signaling pathway. These obtained results suggest that AR patients may experience exacerbation of allergic responses in areas with prolonged PM2.5 exposure.
Collapse
|
18
|
Wang Y, Zhao Y, Xue L, Wu S, Wang B, Li G, Huang J, Guo X. Effects of air purification of indoor PM 2.5 on the cardiorespiratory biomarkers in young healthy adults. INDOOR AIR 2021; 31:1125-1133. [PMID: 33682970 DOI: 10.1111/ina.12815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/28/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Ambient fine particulate matter (PM2.5 ), as one of the predominant air pollutants, has achieved effective control in recent years in China. Whether the use of indoor air purifiers is still necessary needs further exploration. A randomized crossover trial was conducted in 54 healthy students in Beijing, China. Participants were randomized assigned to the use of real or sham high-efficiency particulate air filter (HEPA) for a week and changed the status after a washout period. Health measurements of cardiorespiratory biomarkers were performed at the end of each period. Linear mixed-effects models were used to evaluate the association between PM2.5 exposure and cardiorespiratory biomarkers. Compared with sham air purification, average diastolic blood pressure (DBP), fractional exhaled nitric oxide (FeNO), and 8-isoprostane (8-isoPGF2α) levels decreased significantly in the real purification. The effects of indoor air purification on lung function indicators including forced expiratory volume in one second (FEV1 ), peak expiratory flow (PEF), and forced expiratory flow between the 25th and 75th percentile of forced vital capacity (FEF25%-75% ) were also significant. Our findings showed a protective effect of indoor HEPA air purifiers on cardiorespiratory health of young healthy adults reflected by the decreased blood pressure, respiratory inflammation, and systematic oxidative stress and improved lung function.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing, China
| | - Yan Zhao
- Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing, China
| | - Lijun Xue
- Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health School of Public Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bin Wang
- Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing, China
| | - Jing Huang
- Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing, China
| |
Collapse
|
19
|
Xu H, Mao Y, Hu Y, Xu B. Association between exposure to polyfluoroalkyl chemicals and increased fractional exhaled nitric oxide in adults. ENVIRONMENTAL RESEARCH 2021; 198:110450. [PMID: 33188757 DOI: 10.1016/j.envres.2020.110450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Perfluoroalkyl chemicals (PFCs) are widely detected in the environment and human body, and they have been linked to asthma and a number of respiratory responses in children and mice. However, no previous studies have investigated the association between exposure to PFCs and airway inflammation in adults. OBJECTIVES To evaluate the associations between serum PFCs and fractional exhaled nitric oxide (FeNO), a biomarker of airway inflammation, in adults. METHODS A cross-sectional study of 3630 adults aged 20-79 years who participated in the National Health and Nutrition Examination Survey (NHANES, 2007-2012) was conducted. Serum concentrations of five major PFCs were measured using SPE-HPLC-TIS-MS/MS method, including perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorodecanoic acid (PFDE). The detection rates of them were all >85%. Weighted multivariable linear regression and Bayesian kernel machine regression (BKMR) analyses were applied to examine the associations between serum PFCs and FeNO. RESULTS After adjusted for potential confounding factors, linear regression analyses found that compared with their lowest tertiles, highest tertiles of PFOS, PFDE and PFOA were significantly associated with 5.02% (95% CI: 1.40%, 8.77%), 3.77% (95% CI: 0.30%, 7.36%) and 6.34% (95% CI: 2.81%, 10.01%) increases in FeNO, respectively. The second tertile of PFNA was significantly correlated with a 4.79% (95% CI: 1.41%, 8.29%) increase in FeNO compared with the lowest tertile. In the BKMR analysis, the mixture effect of PFCs on FeNO increased significantly when the PFC levels were at or above the 60th percentiles compared to those at their medians. PFOS and PFOA displayed significant positive single-exposure effects on FeNO when all the other PFCs are set at a particular threshold. CONCLUSIONS This study provided preliminary evidence that serum PFCs were positively associated with increased FeNO in adults.
Collapse
Affiliation(s)
- Huadong Xu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Yu Mao
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yanan Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Bucai Xu
- The Longgang People's Hospital, Wenzhou Medical University, No.238 Longxiang Road, Longgang City, Zhejiang, 325800, China.
| |
Collapse
|
20
|
Vilcassim MJR, Callahan AE, Zierold KM. Travelling to polluted cities: a systematic review on the harm of air pollution on international travellers' health. J Travel Med 2021; 28:6210993. [PMID: 33823002 DOI: 10.1093/jtm/taab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023]
Abstract
RATIONALE FOR REVIEW In 2019, approximately, 1.4 billion people travelled internationally. Many individuals travel to megacities where air pollution concentrations can vary significantly. Short-term exposure to air pollutants can cause morbidity and mortality related to cardiovascular and respiratory disease, with the literature clearly reporting a strong association between short-term exposure to particulate matter ≤2.5 μm and ozone with adverse health outcomes in resident populations. However, limited research has been conducted on the health impacts of short-term exposure to air pollution in individuals who travel internationally. The objective of this systematic review was to review the evidence for the respiratory and cardiovascular health impacts from exposure to air pollution during international travel to polluted cities in adults aged ≥18 years old. KEY FINDINGS We searched PubMed, Scopus and EMBASE for studies related to air pollution and the health impacts on international travellers. Of the initially identified 115 articles that fit the search criteria, 6 articles were selected for the final review. All six studies found indications of adverse health impacts of air pollution exposure on international travellers, with most of the changes being reversible upon return to their home country/city. However, none of these studies contained large populations nor investigated vulnerable populations, such as children, elderly or those with pre-existing conditions. CONCLUSIONS More research is warranted to clearly understand the impacts of air pollution related changes on travellers' health, especially on vulnerable groups who may be at higher risk of adverse impacts during travel to polluted cities.
Collapse
Affiliation(s)
- M J Ruzmyn Vilcassim
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amy E Callahan
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristina M Zierold
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
21
|
He ZZ, Guo PY, Xu SL, Zhou Y, Jalaludin B, Leskinen A, Knibbs LD, Heinrich J, Morawska L, Yim SHL, Bui D, Komppula M, Roponen M, Hu L, Chen G, Zeng XW, Yu Y, Yang BY, Dong G. Associations of Particulate Matter Sizes and Chemical Constituents with Blood Lipids: A Panel Study in Guangzhou, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5065-5075. [PMID: 33764049 DOI: 10.1021/acs.est.0c06974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Existing evidence is scarce concerning the various effects of different PM sizes and chemical constituents on blood lipids. A panel study that involved 88 healthy college students with five repeated measurements (440 blood samples in total) was performed. We measured mass concentrations of particulate matter with diameters ≤ 2.5 μm (PM2.5), ≤1.0 μm (PM1.0), and ≤0.5 μm (PM0.5) as well as number concentrations of particulate matter with diameters ≤ 0.2 μm (PN0.2) and ≤0.1 μm (PN0.1). We applied linear mixed-effect models to assess the associations between short-term exposure to different PM size fractions and PM2.5 constituents and seven lipid metrics. We found significant associations of greater concentrations of PM in different size fractions within 5 days before blood collection with lower high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A (ApoA1) levels, higher apolipoprotein B (ApoB) levels, and lower ApoA1/ApoB ratios. Among the PM2.5 constituents, we observed that higher concentrations of tin and lead were significantly associated with decreased HDL-C levels, and higher concentrations of nickel were associated with higher HDL-C levels. Our results suggest that short-term exposure to PM in different sizes was deleteriously associated with blood lipids. Some constituents, especially metals, might be the major contributors to the detrimental effects.
Collapse
Affiliation(s)
- Zhi-Zhou He
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Peng-Yue Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Bin Jalaludin
- Centre for Air Quality and Health Research and Evaluation, Glebe, NSW 2037, Australia
- Population Health, South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
- School of Public Health and Community Medicine, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Ari Leskinen
- Finnish Meteorological Institute, Kuopio 70211, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Herston, Queensland 4006, Australia
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich 80336, Germany
- Comprehensive Pneumology Center Munich, German Center for Lung Research, Munich 80336, Germany
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology (QUT), GP.O. Box 2434, Brisbane, Queensland 4001, Australia
| | - Steve Hung-Lam Yim
- Department of Geography and Resource Management, Stanley Ho Big Data Decision Analytics Research Centre, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, China
| | - Dinh Bui
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population & Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mika Komppula
- Finnish Meteorological Institute, Kuopio 70211, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, FI 70211, Finland
| | - Liwen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Bo-Yi Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Guanghui Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| |
Collapse
|
22
|
Ye JJ, Wang SS, Fang Y, Zhang XJ, Hu CY. Ambient air pollution exposure and risk of chronic kidney disease: A systematic review of the literature and meta-analysis. ENVIRONMENTAL RESEARCH 2021; 195:110867. [PMID: 33582130 DOI: 10.1016/j.envres.2021.110867] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/07/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Ambient air pollution has been identified as one of the leading causes of global burden of disease. The relationship between ambient air pollution exposure and risk of chronic kidney disease (CKD) has stimulated increasing scientific interest in the past few years. However, evidence from human epidemiological studies is still limited and inconsistent. We performed an updated systematic review and meta-analysis to clarify the potential association comprehensively. Selected electronic databases were searched for related English language studies until March 1, 2020 with a final follow-up in December 31, 2020. Risk of bias assessment for individual studies were assessed using the OHAT (Office of Health Assessment and Translation) risk-of-bias rating tool. Confidence rating and level-of-evidence conclusions were developed for bodies of evidence for a given ambient air pollutant. Summary effect estimates were calculated using random-effects meta-analyses when three or more studies are identified for the same air pollutant-CKD combination. A total of 13 studies were finally identified in our study. The meta-analytic estimates (ORs) for risk of CKD were 1.15 (95% CI: 1.07, 1.24) for each 10 μg/m3 increase in PM2.5, 1.25 (95% CI: 1.11, 1.40) for each 10 μg/m3 increase in PM10, 1.10 (95% CI: 1.03, 1.17) for each 10 ppb increase in NO2, 1.06 (95% CI: 0.98, 1.15) for each 1 ppb increase in SO2 and 1.04 (95% CI: 1.00, 1.08) for each 0.1 ppm increase in CO, respectively. The level of evidence was appraised as moderate for four of the five tested air pollutant-CKD combinations using an adaptation of the GRADE (Grading of Recommendations Assessment, Development and Evaluation) tool. In conclusion, this study suggests that certain ambient air pollutant exposure was significantly associated with an increased risk of CKD. Given the limitations, the results of this study should be interpreted with caution, and further well-designed epidemiological studies are needed to draw a definite evidence of a causal relationship.
Collapse
Affiliation(s)
- Jia-Jia Ye
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Shu-Si Wang
- Department of Healthcare-associated Infection Management, Hefei Stomatological Hospital, Anhui Medical University Hefei Oral Clinic College, 265 Changjiang Middle Road, Hefei, 230001, China
| | - Yuan Fang
- Department of Public Health, Erasmus University Medical Center, P.O. Box 2040, 3000, CA Rotterdam, the Netherlands
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
23
|
Chen T, Chen F, Wang K, Ma X, Wei X, Wang W, Huang P, Yang D, Xia Z, Zhao Z. Acute respiratory response to individual particle exposure (PM 1.0, PM 2.5 and PM 10) in the elderly with and without chronic respiratory diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116329. [PMID: 33370612 DOI: 10.1016/j.envpol.2020.116329] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Limited data were on the acute respiratory responses in the elderly in response to personal exposure of particulate matter (PM). In order to evaluate the changes of airway inflammation and pulmonary functions in the elderly in response to individual exposure of particles (PM1.0, PM2.5 and PM10), we analyzed 43 elderly subjects with either asthma, chronic obstructive pulmonary disease (COPD) or Asthma COPD Overlap (ACO) and 40 age-matched subjects without asthma nor COPD in an urban community in Shanghai, China. Data were collected at the baseline and in 6 follow-ups from August 2016 to December 2018, once every 3 months except for the last twice with a 6-month interval. In each follow-up, pulmonary functions, fractional exhaled nitric oxide (FeNO), 7-day continuous personal exposure to airborne particles were measured. Multivariate linear mixed effect regression models were applied to investigate the quantitative changes of pulmonary functions and FeNO in two respective groups. The results showed that on average 4.7 follow-up visits were completed in each participant. In subjects with CRDs, an inter-quartile range (IQR) increase of personal exposure to PM1.0, PM2.5 and PM10 was significantly associated with an average increase of FeNO(Lag1) of 6.7 ppb (95%CI 1.2, 9.9 ppb), 6.2 ppb (95%CI 1.5, 12.0 ppb) and 5.6 ppb (95%CI 1.5, 11.0 ppb), respectively, and an average decrease of FEV1(Lag2) of -3.6 L (95%CI -6.0, -1.1 L), -3.6 L (95%CI -6.4, -0.8 L) and -3.2 L (95%CI -5.8, -0.6 L), respectively, in the single-pollutant model. These associations remained consistent in the two-pollutant models adjusting for gaseous air pollutants. Stratified analysis showed that subjects with lower BMI, females and non-allergies were more sensitive to particle exposure. No robust significant effects were observed in the subjects without CRDs. Our study provided data on the susceptibility of the elderly with CRDs to particle exposure of PM1.0 and PM2.5, and the modification effects by BMI, gender and history of allergies.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Fei'er Chen
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China
| | - Kan Wang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xuedong Ma
- Shanghai Minhang District Gumei Community Health Center affiliated to Fudan University, Shanghai, 201102, China
| | - Xinping Wei
- Shanghai Minhang District Gumei Community Health Center affiliated to Fudan University, Shanghai, 201102, China
| | - Weigang Wang
- Shanghai Minhang District Gumei Community Health Center affiliated to Fudan University, Shanghai, 201102, China
| | - Pengyu Huang
- Shanghai Minhang District Gumei Community Health Center affiliated to Fudan University, Shanghai, 201102, China
| | - Dong Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhaolin Xia
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China.
| |
Collapse
|
24
|
Michikawa T, Yamazaki S, Ueda K, Yoshino A, Sugata S, Saito S, Hoshi J, Nitta H, Takami A. Effects of exposure to chemical components of fine particulate matter on mortality in Tokyo: A case-crossover study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142489. [PMID: 33017765 DOI: 10.1016/j.scitotenv.2020.142489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate matter (PM2.5) is composed of a variety of chemical components, and the dependency of the health effects of total PM2.5 on specific components is still under discussion. We hypothesised that specific PM2.5 components are responsible for the health effects, and investigated the association between PM2.5 components and mortality in 23 Tokyo wards. We obtained mortality data from the Ministry of Health, Labour and Welfare for the period from April 2013 to March 2017. At a monitoring site within the study area, we collected daily samples of PM2.5 on a filter, and determined the daily mean concentrations of total carbon (organic carbon and elemental carbon) and ions such as nitrate and sulphate. A case-crossover design was employed, and a conditional logistic regression model was used to estimate the strength of the association. Over the study period, we identified 280,460 total non-accidental deaths, and the average daily mean concentration of total PM2.5 was 16.0 (standard deviation = 8.9) μg/m3. We observed a positive association of total PM2.5 with total, cardiovascular, and respiratory mortality. After adjustment for total PM2.5 and its components associated with mortality in the single-component models, the percentage increase per interquartile range (2.3 μg/m3) increase in the average total carbon concentration of the case- and previous-day was 2.1% (95% confidence interval = 1.0 to 3.1%) for total mortality. Carbon elements were associated with respiratory but not cardiovascular mortality. Our results suggest that specific components of PM2.5 account for its adverse health effects.
Collapse
Affiliation(s)
- Takehiro Michikawa
- Department of Environmental and Occupational Health, School of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan; Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Shin Yamazaki
- Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Kayo Ueda
- Environmental Health Sciences, Kyoto University Graduate School of Global Environmental Studies, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Ayako Yoshino
- Centre for Regional Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Seiji Sugata
- Centre for Regional Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Shinji Saito
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto-ku, Tokyo 136-0075, Japan.
| | - Junya Hoshi
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto-ku, Tokyo 136-0075, Japan.
| | - Hiroshi Nitta
- Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Akinori Takami
- Centre for Regional Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| |
Collapse
|
25
|
Lin YK, Cheng CP, Kim H, Wang YC. Risk of ambulance services associated with ambient temperature, fine particulate and its constituents. Sci Rep 2021; 11:1651. [PMID: 33462328 PMCID: PMC7813819 DOI: 10.1038/s41598-021-81197-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
Short-term adverse health effects of constituents of fine particles with aerodynamic diameters less than or equal to 2.5 μm (PM2.5) have been revealed. This study aimed to evaluate the real-time health outcome of ambulance services in association with ambient temperature and mass concentrations of total PM2.5 level and constituents in Kaohsiung City, an industrialized city with the worst air quality in Taiwan. Cumulative 6-day (lag0-5) relative risk (RR) and 95% confidence interval (CI) of daily ambulance services records of respiratory distress, coma and unconsciousness, chest pain, headaches/dizziness/vertigo/fainting/syncope, lying at public, and out-of-hospital cardiac arrest (OHCA) in association with ambient temperature and mass concentrations of total PM2.5 level and constituents (nitrate, sulfate, organic carbon (OC), and elemental carbon (EC)) from 2006 to 2010 were evaluated using a distributed lag non-linear model with quasi-Poisson function. Ambulance services of chest pain and OHCA were significantly associated with extreme high (30.8 °C) and low (18.2 °C) temperatures, with cumulative 6-day RRs ranging from 1.37 to 1.67 at the reference temperature of 24–25 °C. Daily total PM2.5 level had significant effects on ambulance services of lying at public and respiratory distress. After adjusting the cumulative 6-day effects of temperature and total PM2.5 level, RRs of ambulance services of lying at public associated with constituents at 90th percentile versus 25th percentile were 1.35 (95% CI: 1.08, 1.68) for sulfate and 1.20 (95% CI: 1.02, 1.41) for EC, while RR was 1.31 (95% CI: 1.09–1.58) for ambulance services of headache/dizziness/vertigo/fainting/syncope in association with OC at 90th percentile versus 25th percentile. Cause-specific ambulance services had various significant association with daily temperature, total PM2.5 level, and concentrations of constituents. Elemental carbon may have stronger associations with increased ambulance services than other constituents.
Collapse
Affiliation(s)
- Yu-Kai Lin
- Department of Health and Welfare, University of Taipei College of City Management, 101 Zhongcheng Road Sec. 2, Taipei, 111, Taiwan
| | - Chia-Pei Cheng
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, 320, Taiwan
| | - Ho Kim
- Department of Epidemiology and Biostatistics, School of Public Health, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yu-Chun Wang
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, 320, Taiwan. .,Research Center for Environmental Changes, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
26
|
Wu N, Lu B, Chen J, Li X. Size distributions of particle-generated hydroxyl radical (·OH) in surrogate lung fluid (SLF) solution and their potential sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115582. [PMID: 33017744 DOI: 10.1016/j.envpol.2020.115582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/03/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Although it is known that increases in ambient particulate matter (PM) levels are associated with elevated occurrence of adverse health outcomes, the understanding of the mechanisms of PM-related health effects is limited by our knowledge of how particle size and composition are altered subsequent to inhalation through respiratory-deposited processing. Here we present a particle-generated hydroxyl radical (·OH) study of the size-resolved particles as particles are inhaled in the human respiratory tract (RT), and we show that accumulation-mode particles are significant factors (71-75%) in ·OH generation of lung-deposited particles using Multiple-Path Particle Dosimetry (MPPD) model. The ability of PM to catalyze ·OH generation is mainly related to transition metals, particularly towards the upper regions of the RT (75%), and to quinones deeper in the lung (42-46%). Identification of this generation ability induced by chemical composition has shown that four potential sources (biomass burning, incomplete combustion, mobile & industry, and mineral dust) are responsible for ·OH generation. With ·OH-forming ability after PM inhalation implicated as the first step towards revealing the subsequent toxic processes, this work draws a connection between the detailed ·OH chemistry occurring on size-resolved particles and a possible toxicological mechanism based on chemical composition and sources.
Collapse
Affiliation(s)
- Na Wu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200032, PR China
| | - Bingqing Lu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200032, PR China
| | - Jianmin Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200032, PR China
| | - Xiang Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200032, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
27
|
Assessing the Respiratory Effects of Air Pollution from Biomass Cookstoves on Pregnant Women in Rural India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010183. [PMID: 33383756 PMCID: PMC7795669 DOI: 10.3390/ijerph18010183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022]
Abstract
Background: In India, biomass fuel is burned in many homes under inefficient conditions, leading to a complex milieu of particulate matter and environmental toxins known as household air pollution (HAP). Pregnant women are particularly vulnerable as they and their fetus may suffer from adverse consequences of HAP. Fractional exhaled nitric oxide (FeNO) is a noninvasive, underutilized tool that can serve as a surrogate for airway inflammation. We evaluated the prevalence of respiratory illness, using pulmonary questionnaires and FeNO measurements, among pregnant women in rural India who utilize biomass fuel as a source of energy within their home. Methods: We prospectively studied 60 pregnant women in their 1st and 2nd trimester residing in villages near Nagpur, Central India. We measured FeNO levels in parts per billion (ppb), St. George’s Respiratory Questionnaire (SGRQ-C) scores, and the Modified Medical Research Council (mMRC) Dyspnea Scale. We evaluated the difference in the outcome distributions between women using biomass fuels and those using liquefied petroleum gas (LPG) using two-tailed t-tests. Results: Sixty-five subjects (32 in Biomass households; 28 in LPG households; 5 unable to complete) were enrolled in the study. Age, education level, and second-hand smoke exposure were comparable between both groups. FeNO levels were higher in the Biomass vs. LPG group (25.4 ppb vs. 8.6 ppb; p-value = 0.001). There was a difference in mean composite SGRQ-C score (27.1 Biomass vs. 10.8 LPG; p-value < 0.001) including three subtotal scores for Symptoms (47.0 Biomass vs. 20.2 LPG; p-value< 0.001), Activity (36.4 Biomass vs. 16.5 LPG; p-value < 0.001) and Impact (15.9 Biomass vs. 5.2 LPG; p-value < 0.001). The mMRC Dyspnea Scale was higher in the Biomass vs. LPG group as well (2.9 vs. 0.5; p < 0.001). Conclusion: Increased FeNO levels and higher dyspnea scores in biomass-fuel-exposed subjects confirm the adverse respiratory effects of this exposure during pregnancy. More so, FeNO may be a useful, noninvasive biomarker of inflammation that can help better understand the physiologic effects of biomass smoke on pregnant women. In the future, larger studies are needed to characterize the utility of FeNO in a population exposed to HAP.
Collapse
|
28
|
Kocot K, Barański K, Melaniuk-Wolny E, Zajusz-Zubek E, Kowalska M. Acute FeNO and Blood Pressure Responses to Air Pollution Exposure in Young Adults during Physical Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17239012. [PMID: 33287310 PMCID: PMC7731248 DOI: 10.3390/ijerph17239012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/22/2023]
Abstract
During physical exercise, the absorbed dose of air pollutants increases. Acute effects of exposure to air pollutants during exercise in healthy young adults remain poorly documented. The aim of this study was to assess the acute responses in fractionated exhaled nitric oxide (FeNO) and blood pressure to air pollution exposure during exercise in young adults with different physical activity levels (low or high). In this study, 76 healthy university students participating in physical activity classes (low level of physical activity) and attending sports training (high level of physical activity) completed two indoor exercise trials when air pollutant concentrations were high (exposure trial) and when the quality of the air was good (control trial). We monitored indoor particulate matter with diameter <10 µm and <2.5 µm (PM10 and PM2.5) and outdoor PM10, nitric oxides (NO2, NOx, NO), and sulfur dioxide (SO2) concentrations. Systolic and diastolic blood pressure (SBP and DBP), heart rate (HR), oxygen saturation (SpO2), and FeNO were measured at baseline and after 45-60 min of physical activity. There were no significant differences between physiological responses to training performed under different exposure conditions in blood pressure, HR, and SpO2. Significant positive correlations between post-exercise ΔFeNO during exposure trials and ambient air pollutants were found. FeNO increase during the exposure trial was associated with a higher physical activity level and higher outdoor PM10 and NO2 concentrations. In young and healthy adults, some differences in physiological responses to physical activity between polluted and control environments could be observed. Participants with a high physical activity level were more likely to have an increase in FeNO after exercise in a polluted environment but not after the control exercise trials.
Collapse
Affiliation(s)
- Krzysztof Kocot
- Department of Epidemiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland; (K.B.); (M.K.)
- Correspondence:
| | - Kamil Barański
- Department of Epidemiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland; (K.B.); (M.K.)
| | - Edyta Melaniuk-Wolny
- Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology in Gliwice, 44-100 Gliwice, Poland; (E.M.-W.); (E.Z.-Z.)
| | - Elwira Zajusz-Zubek
- Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology in Gliwice, 44-100 Gliwice, Poland; (E.M.-W.); (E.Z.-Z.)
| | - Małgorzata Kowalska
- Department of Epidemiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland; (K.B.); (M.K.)
| |
Collapse
|
29
|
Hu Q, Ma X, Yue D, Dai J, Zhao L, Zhang D, Ciren D, Lin J, You B, Zhai Y, Yuan L, Lin W. Linkage between Particulate Matter Properties and Lung Function in Schoolchildren: A Panel Study in Southern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9464-9473. [PMID: 32628453 DOI: 10.1021/acs.est.9b07463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While several scientific studies have linked PM2.5 to decreased lung function, there is still some degree of uncertainty regarding which particulate physicochemical properties are most harmful. We followed a panel of 57 healthy schoolchildren (857 person-days) to investigate the associations between a wide variety of PM2.5 and lung function in Heshan, China in 2016 for three periods. We monitored the daily concentrations of mass, chemical composition, size, number, surface area, and volume of particulate mixture. Associations of lung function with various particle metrics were estimated using generalized estimating equations and unconstrained distributed lag models. Random forest model was used to compare the relative importance of exposure metrics. Immediate (lag 0) associations of PM2.5 and carbonaceous aerosols with reduced FEV1 and MMEF, and accumulation-mode particles with FEV1 were found. Slightly delayed (lag 1, 2) effects on PEF were particularly prominent for Aitken-mode particles. Possible cumulative (lags 0-2) effects of PM2.5 and carbonaceous aerosols on PEF and Aitken-mode particles on FEV1, MMEF, and PEF were observed. This study provides comprehensive evidence that the physicochemical properties of particulate mixtures are associated with reduced lung function in children. Organic carbon (OC) may be an important risk factor for the decreased lung function related to PM exposure.
Collapse
Affiliation(s)
- Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Xiaoyan Ma
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Dingli Yue
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, P. R. China
| | - Jiajia Dai
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Lu Zhao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Dan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Deji Ciren
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Jianqing Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Boning You
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Yuhong Zhai
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, P. R. China
| | - Luan Yuan
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, P. R. China
| | - Weiwei Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| |
Collapse
|
30
|
Shang J, Zhang Y, Schauer JJ, Tian J, Hua J, Han T, Fang D, An J. Associations between source-resolved PM 2.5 and airway inflammation at urban and rural locations in Beijing. ENVIRONMENT INTERNATIONAL 2020; 139:105635. [PMID: 32413647 DOI: 10.1016/j.envint.2020.105635] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND A large number of research studies have explored the health effects of exposure to atmospheric particulate matter. However, limited quantitative evidence has linked specific sources of personal PM2.5 directly to adverse health effects. This study was conducted in order to examine the association between airway inflammation and personal exposure to PM2.5 mass, components, and sources among two healthy cohorts living in both urban and rural areas of Beijing, China. METHODS We conducted a follow-up study during the summer of 2016 and the winter of 2016/2017 among 92 students and 43 guards. 24-h personal and ambient exposure to PM2.5 and fractional exhaled nitric oxide (FeNO) were measured at least twice for each participant. Chemical components of 385 personal PM2.5 exposure samples were analyzed, and pollution sources were resolved by a positive matrix factorization (PMF) receptor model. We have constructed linear mixed effect models to evaluate the association between ambient/personal PM2.5 mass, chemical constituents, and source specific PM2.5 with FeNO after controlling for temperature, relative humidity, sites, season, and potential individual confounders. RESULTS Interquartile range (IQR) increase in household heating sources was associated with increased FeNO (2.72%; 95% CI = 1.26-4.17%) across two sites. IQR increase in roadway transport was associated with increased FeNO (9.84%; 95% CI = 2.69-17%) in urban areas; IQR increase in Secondary inorganic sources and Industrial/Combustion sources were associated with increased FeNO (7.96%; 95% CI = 1.47-14.4%% and 7.85%; 95% CI = 0.0676-15.6%, respectively) in rural areas. Personal exposure to EC, OC, and some trace elements (Se, Pb, Bi, Cs) were also estimated to be significantly associated with the increase of FeNO. In addition, there was no significant difference (P > 0.05) between the effects of ambient and personal PM2.5 mass. CONCLUSIONS Although personal PM2.5 mass was not significantly associated with the health effects, airway inflammation can be linked to source-resolved exposures.
Collapse
Affiliation(s)
- Jing Shang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen, China; Institute of Bishan Eco-Environment, Bishan, Chongqing, China.
| | - James J Schauer
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Jingyu Tian
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jinxi Hua
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Han
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China; Environmental Meteorology Forecast Center of Beijing-Tianjin-Hebei, China Meteorological Administration, Beijing 100089, China
| | - Dongqing Fang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; Meteorological Observation Center, China Meteoological Administration, Beijing, China
| | - Jianxiong An
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University, Beijing, China
| |
Collapse
|
31
|
Dombek T, Poitras E, Hand J, Schichtel B, Harrington JM, Levine KE. Total sulfur analysis of fine particulate mass on nylon filters by ICP-OES. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:762-768. [PMID: 33016392 DOI: 10.1002/jeq2.20066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
Sulfur (S) and sulfate (SO4 2- ) in fine particulate matter (PM2.5 ) are monitored by the Interagency Monitoring of Protected Visual Environments (IMPROVE) network at remote and rural sites across the United States. Within the IMPROVE network, S is determined from X-ray fluorescence (XRF) spectroscopy from a Teflon filter, and SO4 2- is determined via ion chromatography (IC) from a nylon filter. Differences in S and SO4 2- estimates may indicate the presence of organosulfur (OS) species or biases between sampling and analytical methods. To reduce potential biases, an inductively coupled plasma-optical emission spectroscopy (ICP-OES) method was developed to allow for analysis of SO4 2- and S from a single filter extract. Sulfur (ICP-OES) and SO4 2- (IC) estimates from 2016 IMPROVE filters correlated strongly, suggesting that, on average, ICP-OES accurately estimated S. However, observed differences between slopes suggested the presence of water-soluble OS species, especially during summer. Organosulfur species are important indicators of secondary organic aerosols formed through reactions of biogenic and anthropogenic pollutants and can be quantified through laboratory techniques such as reverse-phase liquid chromatography (RPLC) or hydrophilic liquid interaction chromatography (HILIC) coupled to electrospray ionization-high-resolution tandem mass spectrometry (RPLC/ESI-HR-MS/MS and HILIC/ESI-HR-MS/MS, respectively), and field techniques using Aerodyne aerosol mass spectrometry (AMS). However, these methods are costly and introduce relatively large uncertainties when scaled for large networks such as IMPROVE. The method described in this report provides an inexpensive complement to XRF, which measures total S (insoluble and water-soluble S) to estimate water-soluble S and OS concentrations in PM.
Collapse
Affiliation(s)
- Tracy Dombek
- Analytical Sciences, RTI International, 3040 E. Cornwallis Rd., PO Box 12194, Research Triangle Park, NC, 27709-2194, USA
| | - Eric Poitras
- Analytical Sciences, RTI International, 3040 E. Cornwallis Rd., PO Box 12194, Research Triangle Park, NC, 27709-2194, USA
| | - Jenny Hand
- Cooperative Institute for Research in the Atmosphere, Colorado State Univ., Fort Collins, CO, 80523, USA
| | - Bret Schichtel
- National Park Service, Air Resources Division, Lakewood, CO, 80235, USA
| | - James M Harrington
- Analytical Sciences, RTI International, 3040 E. Cornwallis Rd., PO Box 12194, Research Triangle Park, NC, 27709-2194, USA
| | - Keith E Levine
- Analytical Sciences, RTI International, 3040 E. Cornwallis Rd., PO Box 12194, Research Triangle Park, NC, 27709-2194, USA
| |
Collapse
|
32
|
Wu B, Qi C, Wang L, Yang W, Zhou D, Wang M, Dong Y, Weng H, Li C, Hou X, Long X, Wang H, Chai T. Detection of microbial aerosols in hospital wards and molecular identification and dissemination of drug resistance of Escherichia coli. ENVIRONMENT INTERNATIONAL 2020; 137:105479. [PMID: 32070803 DOI: 10.1016/j.envint.2020.105479] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/29/2019] [Accepted: 01/09/2020] [Indexed: 05/22/2023]
Abstract
Antibiotic-resistant bacteria (ARB) present a global public health problem. Microorganisms are the main cause of hospital-acquired infections, and the biological contamination of hospital environments can cause the outbreak of a series of infectious diseases. Therefore, it is very important to understand the spread of antibiotic-resistant bacteria in hospital environments. This study examines the concentrations of aerobic bacteria and E. coli in ward environments and the airborne transmission of bacterial drug resistance. The results show that the three wards examined have an average aerobic bacterial concentration of 132 CFU∙m-3 and an average inhalable aerobic bacterial concentration of 73 CFU∙m-3, with no significant difference (P > 0.05) among the three wards. All isolated E. coli showed multi-drug resistance to not only third-generation cephalosporin antibiotics, but also quinolones, aminoglycosides, and sulfonamides. Furthermore, 51 airborne E. coli strains isolated from the air in the three wards and the corridor were screened for ESBLs, and 12 (23.53%) were ESBL-positive. The drug-resistance gene of the 12 ESBL-positive strains was mainly TEM gene, and the detection rate was 66.67% (8/12). According to a homology analysis with PFGE, 100% homologous E. coli from the ward at 5 m and 10 m outside the ward in the corridor shared the same drug-resistance spectrum, which further proves that airborne E. coli carrying a drug-resistance gene spreads out of the ward through gas exchange. This leads to biological pollution inside, outside, and around the ward, which poses a direct threat to the health of patients, healthcare workers, and surrounding residents. It is also the main reason for the antibiotic resistance in the hospital environment. More attention should be paid to comprehensive hygiene management in the surrounding environment of hospitals.
Collapse
Affiliation(s)
- Bo Wu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University; Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin, Shandong Province; 61 Daizong Road, Tai'an 271000, Shandong Province, China
| | | | | | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing 100071, China
| | - Meng Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University; Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin, Shandong Province; 61 Daizong Road, Tai'an 271000, Shandong Province, China
| | - Yunxiang Dong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University; Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin, Shandong Province; 61 Daizong Road, Tai'an 271000, Shandong Province, China
| | - Hongyu Weng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University; Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin, Shandong Province; 61 Daizong Road, Tai'an 271000, Shandong Province, China
| | - Changming Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University; Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin, Shandong Province; 61 Daizong Road, Tai'an 271000, Shandong Province, China
| | - Xiaohong Hou
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University; Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin, Shandong Province; 61 Daizong Road, Tai'an 271000, Shandong Province, China
| | - Xianrong Long
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University; Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin, Shandong Province; 61 Daizong Road, Tai'an 271000, Shandong Province, China
| | - Hairong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University; Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin, Shandong Province; 61 Daizong Road, Tai'an 271000, Shandong Province, China.
| | - Tongjie Chai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University; Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin, Shandong Province; 61 Daizong Road, Tai'an 271000, Shandong Province, China.
| |
Collapse
|
33
|
Wu B, Qin L, Wang M, Zhou T, Dong Y, Chai T. The composition of microbial aerosols, PM2.5, and PM10 in a duck house in Shandong province, China. Poult Sci 2020; 98:5913-5924. [PMID: 31237328 DOI: 10.3382/ps/pez365] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/07/2019] [Indexed: 12/21/2022] Open
Abstract
Poultry-emitted air pollutants, including microbial aerosols and particulate matter, have raised concerns due to their potential negative effects on human health and the environment. High concentrations of microbial aerosols can also significantly affect duck production performance, leading to immunosuppression and increased disease susceptibility. We determined the concentrations, distributions, and biological components of the microbial aerosols and particulate matter in a duck house environment. The concentration ranges of the bacteria, fungi, Gram-negative bacteria, Escherichia coli, and endotoxin in the duck houses were 3.3 to 5.2 × 104 CFU/m3, 3.8 to 11.9 × 103 CFU/m3, 2.1 to 3.6 × 103 CFU/m3, 1.3 to 2.7 × 102 CFU/m3, and 0.65 to 2.2 × 103 EU/m3, respectively. We also found the endotoxin levels were higher than the standard that can cause pneumonia (2,000 EU/m3). The concentration ranges of the PM2.5 and PM10 samples were 1.1 to 1.6 × 102 μg/m3 and 1.2 to 1.9 × 102 μg/m3, respectively. At the phylum level, the top 5 bacteria identified in the PM2.5 fraction were Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, and Fusobacteria, with Actinobacteria (50.55%) as the most abundant. At the genus level, 293 bacterial groups were identified. Actinobacteria (39.01%) was the most abundant phylum, followed by Firmicutes (5.44%) and Proteobacteria (4.56%). The bacterial distributions that differed between the PM2.5 and PM10 samples were Lactobacillales, Bacilli, Firmicutes, and Bacteroidetes; the fungi that differed were Microbotryomycetes, Sporidiobolales, Agaricomycetes, and Polyporates. Microbial allergens and pathogens were also identified. Corynebacterium had a relative abundance of more than 30% in the PM2.5 and PM10 distributions. Aspergillus was the main fungal allergen and opportunistic pathogen, with a relative abundance of 10%. In conclusion, our research supports that the microbial composition in the duck house environment poses a potential threat to the health of both the ducks and the duck house workers.
Collapse
Affiliation(s)
- Bo Wu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Road, Tai'an 271000, Shandong Province, China.,Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an 271000, Shandong Province, China
| | - Liwen Qin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Road, Tai'an 271000, Shandong Province, China.,Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an 271000, Shandong Province, China
| | - Meng Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Road, Tai'an 271000, Shandong Province, China
| | - Tong Zhou
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Road, Tai'an 271000, Shandong Province, China
| | - Yunxiang Dong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Road, Tai'an 271000, Shandong Province, China
| | - Tongjie Chai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Road, Tai'an 271000, Shandong Province, China.,Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an 271000, Shandong Province, China
| |
Collapse
|
34
|
Zhao T, Markevych I, Standl M, Schikowski T, Berdel D, Koletzko S, Jörres RA, Nowak D, Heinrich J. Short-term exposure to ambient ozone and inflammatory biomarkers in cross-sectional studies of children and adolescents: Results of the GINIplus and LISA birth cohorts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113264. [PMID: 31563778 DOI: 10.1016/j.envpol.2019.113264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND While exposure to ambient particulate matter (PM) and nitrogen dioxide (NO2) is thought to be associated with diseases via inflammatory response, the association between exposure to ozone, an oxidative pollutant, and inflammation has been less investigated. AIM We analyzed associations between short-term exposure to ozone and three inflammatory biomarkers among children and adolescents. METHODS These cross-sectional analyses were based on two follow-ups of the GINIplus and LISA German birth cohorts. We included 1330 10-year-old and 1591 15-year-old participants. Fractional exhaled nitric oxide (FeNO) and high-sensitivity C-reactive protein (hs-CRP) were available for both age groups while interleukin (IL)-6 was measured at 10 years only. Maximum 8-h averages of ozone and daily average concentrations of NO2 and PM with an aerodynamic diameter <10 μm (PM10) were adopted from two background monitoring stations 0 (same day), 1, 2, 3, 5, 7, 10 and 14 days prior to the FeNO measurement or blood sampling. To assess associations, we utilized linear regression models for FeNO, and logistic regressions for IL-6 and hs-CRP, adjusting for potential covariates and co-pollutants NO2 and PM10. RESULTS We found that short-term ozone exposure was robustly associated with higher FeNO in adolescents at age 15, but not at age 10. No consistent associations were observed between ozone and IL-6 in children aged 10 years. The relationship between hs-CRP levels and ozone was J-shaped. Relatively low ozone concentrations (e.g., <120 μg/m³) were associated with reduced hs-CRP levels, while high concentrations (e.g., ≥120 μg/m³) tended to be associated with elevated levels for both 10- and 15-year-old participants. CONCLUSIONS Our study demonstrates significant associations between short-term ozone exposure and FeNO at 15 years of age and a J-shaped relationship between ozone and hs-CRP. The finding indicates that high ozone exposure may favor inflammatory responses in adolescents, especially regarding airway inflammation.
Collapse
Affiliation(s)
- Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Iana Markevych
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Dietrich Berdel
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Sibylle Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital Munich, University Hospital, LMU Munich, Munich, Germany; Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Rudolf A Jörres
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
35
|
Chi R, Li H, Wang Q, Zhai Q, Wang D, Wu M, Liu Q, Wu S, Ma Q, Deng F, Guo X. Association of emergency room visits for respiratory diseases with sources of ambient PM 2.5. J Environ Sci (China) 2019; 86:154-163. [PMID: 31787180 DOI: 10.1016/j.jes.2019.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have reported associations of short-term exposure to different sources of ambient fine particulate matter (PM2.5) and increased mortality or hospitalizations for respiratory diseases. Few studies, however, have focused on the short-term effects of source-specific PM2.5 on emergency room visits (ERVs) of respiratory diseases. Source apportionment for PM2.5 was performed with Positive Matrix Factorization (PMF) and generalized additive model was applied to estimate associations between source-specific PM2.5 and respiratory disease ERVs. The association of PM2.5 and total respiratory ERVs was found on lag4 (RR = 1.011, 95%CI: 1.002, 1.020) per interquartile range (76 μg/m3) increase. We found PM2.5 to be significantly associated with asthma, bronchitis and chronic obstructive pulmonary disease (COPD) ERVs, with the strongest effects on lag5 (RR = 1.072, 95%CI: 1.024, 1.119), lag4 (RR = 1.104, 95%CI: 1.032, 1.176) and lag3 (RR = 1.091, 95%CI: 1.047, 1.135), respectively. The estimated effects of PM2.5 changed little after adjusting for different air pollutants. Six primary PM2.5 sources were identified using PMF analysis, including dust/soil (6.7%), industry emission (4.5%), secondary aerosols (30.3%), metal processing (3.2%), coal combustion (37.5%) and traffic-related source (17.8%). Some of the sources were identified to have effects on ERVs of total respiratory diseases (dust/soil, secondary aerosols, metal processing, coal combustion and traffic-related source), bronchitis ERVs (dust/soil) and COPD ERVs (traffic-related source, industry emission and secondary aerosols). Different sources of PM2.5 contribute to increased risk of respiratory ERVs to different extents, which may provide potential implications for the decision making of air quality related policies, rational emission control and public health welfare.
Collapse
Affiliation(s)
- Rui Chi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Hongyu Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Qian Wang
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Qiangrong Zhai
- Emergency Department, Peking University Third Hospital, Beijing 100191, China
| | - Daidai Wang
- Emergency Department, Peking University Third Hospital, Beijing 100191, China
| | - Meng Wu
- Emergency Department, Peking University Third Hospital, Beijing 100191, China
| | - Qichen Liu
- Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Qingbian Ma
- Emergency Department, Peking University Third Hospital, Beijing 100191, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
36
|
Zhang L, Morisaki H, Wei Y, Li Z, Yang L, Zhou Q, Zhang X, Xing W, Hu M, Shima M, Toriba A, Hayakawa K, Tang N. Characteristics of air pollutants inside and outside a primary school classroom in Beijing and respiratory health impact on children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113147. [PMID: 31522002 DOI: 10.1016/j.envpol.2019.113147] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/28/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the spatial and temporal distributions of particulate and gaseous air pollutants in a primary school in Beijing and assessed their health impact on the children. The results show that air quality inside the classroom was greatly affected by the input of outdoor pollutants; high levels of pollution were observed during both the heating and nonheating periods and indicate that indoor and outdoor air pollution posed a threat to the children's health. Traffic sources near the primary school were the main contributors to indoor and outdoor pollutants during both periods. Moreover, air quality in this primary school was affected by coal combustion and atmospheric reactions during the heating and nonheating periods, respectively. Based on the estimation by exposure-response functions and the weighting of indoor and outdoor pollutants during different periods, the levels of PM2.5, PM 10 and O3 at school had adverse respiratory health effects on children. Longer exposures during the nonheating period contributed to higher health risks. These results emphasized that emission sources nearby had a direct impact on air quality in school and children's respiratory health. Therefore, measures should be taken for double control on air pollution inside and outside the classroom to protect children from it.
Collapse
Affiliation(s)
- Lulu Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hiroshi Morisaki
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lu Yang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Quanyu Zhou
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Wanli Xing
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing, 100871, China
| | - Masayuki Shima
- Department of Public Health, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Akira Toriba
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Ning Tang
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
37
|
Jiang Y, Niu Y, Xia Y, Liu C, Lin Z, Wang W, Ge Y, Lei X, Wang C, Cai J, Chen R, Kan H. Effects of personal nitrogen dioxide exposure on airway inflammation and lung function. ENVIRONMENTAL RESEARCH 2019; 177:108620. [PMID: 31400563 DOI: 10.1016/j.envres.2019.108620] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Few epidemiological studies have evaluated the respiratory effects of personal exposure to nitrogen dioxide (NO2), a major traffic-related air pollutant. The biological pathway for these effects remains unknown. OBJECTIVES To evaluate the short-term effects of personal NO2 exposure on lung function, fractional exhaled nitric oxide (FeNO) and DNA methylation of genes involved. METHODS We conducted a longitudinal panel study among 40 college students with four repeated measurements in Shanghai from May to October in 2016. We measured DNA methylation of the key encoding genes of inducible nitric oxide synthase (NOS2A) and arginase (ARG2). We applied linear mixed-effect models to assess the effects of NO2 on respiratory outcomes. RESULTS Personal exposure to NO2 was 27.39 ± 23.20 ppb on average. In response to a 10-ppb increase in NO2 exposure, NOS2A methylation (%5 mC) decreased 0.19 at lag 0 d, ARG2 methylation (%5 mC) increased 0.21 and FeNO levels increased 2.82% at lag 1 d; and at lag 2 d the percentage of forced vital capacity, forced expiratory volume in 1 s and peak expiratory flow in predicted values decreased 0.12, 0.37 and 0.67, respectively. The model performance was better compared with those estimated using fixed-site measurements. These effects were robust to the adjustment for co-pollutants and weather conditions. CONCLUSIONS Our study suggests that short-term personal exposure to NO2 is associated with NOS2A hypomethylation, ARG2 hypermethylation, respiratory inflammation and lung function impairment. The use of personal measurements may better predict the respiratory effects of NO2.
Collapse
Affiliation(s)
- Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yihui Ge
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China.
| |
Collapse
|
38
|
Zhang Q, Wang W, Niu Y, Xia Y, Lei X, Huo J, Zhao Q, Zhang Y, Duan Y, Cai J, Ying Z, Li W, Chen R, Fu Q, Kan H. The effects of fine particulate matter constituents on exhaled nitric oxide and DNA methylation in the arginase-nitric oxide synthase pathway. ENVIRONMENT INTERNATIONAL 2019; 131:105019. [PMID: 31330363 DOI: 10.1016/j.envint.2019.105019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/13/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) has been widely associated with airway inflammation represented by increased fractional concentration of exhaled nitric oxide (FeNO). However, it remains unclear whether various PM2.5 constituents have different impacts on FeNO and its production process from the arginase (ARG)-nitric oxide synthase (NOS) pathway. OBJECTIVES To investigate the acute effects of PM2.5 constituents on FeNO and DNA methylation of genes involved. METHODS We conducted a longitudinal panel study among 43 young adults in Shanghai, China from May to October in 2016. We monitored the concentrations of 25 constituents of PM2.5. We applied the linear mixed-effect model to evaluate the associations of PM2.5 constituents with FeNO and DNA methylation of the ARG2 and NOS2A genes. RESULTS Following PM2.5 exposure, NOS2A methylation decreased and ARG2 methylation increased only on the concurrent day, whereas FeNO increased most prominently on the second day. Nine constituents (OC, EC, K, Fe, Zn, Ba, Cr, Se, and Pb) showed consistent associations with elevated FeNO and decreased NOS2A methylation or increased ARG2 methylation in single-constituent models and models adjusting for PM2.5 total mass and collinearity. An interquartile range increase of these constituents was associated with respective decrements of 0.27-1.20 in NOS2A methylation (%5mC); increments of 0.48-1.56 in ARG2 methylation (%5mC); and increments of 7.12%-17.54% in FeNO. CONCLUSIONS Our results suggested that OC, EC, and some metallic elements may be mainly responsible for the development and epigenetic regulation of airway inflammatory response induced by short-term PM2.5 exposure.
Collapse
Affiliation(s)
- Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Juntao Huo
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qianbiao Zhao
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Yihua Zhang
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhekang Ying
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China.
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
| |
Collapse
|
39
|
Zhang Y, Zhang H, Mao Z, Gao C. ROS-Responsive Nanoparticles for Suppressing the Cytotoxicity and Immunogenicity Caused by PM2.5 Particulates. Biomacromolecules 2019; 20:1777-1788. [DOI: 10.1021/acs.biomac.9b00174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yixian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Norbäck D, Lu C, Zhang Y, Li B, Zhao Z, Huang C, Zhang X, Qian H, Sun Y, Sundell J, Juan W, Liu W, Deng Q. Onset and remission of childhood wheeze and rhinitis across China - Associations with early life indoor and outdoor air pollution. ENVIRONMENT INTERNATIONAL 2019; 123:61-69. [PMID: 30496983 DOI: 10.1016/j.envint.2018.11.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Few longitudinal studies exist on childhood exposure to indoor and outdoor air pollution and respiratory illness in China. We studied associations between indoor and outdoor environment and prevalence, onset and remission of wheeze and rhinitis among children across China. METHODS Children (3-6 y) were recruited from randomized day care centres in six cities. The main data analysis was restricted to children not moving since birth (N = 17,679). Data on wheeze, rhinitis and the home environment were assessed by a parental questionnaire. Prevalence in the first two years of life (baseline) and the last year (follow-up) was used to calculate onset and remission. Outdoor PM2.5, PM10, and NO2 at the day care centre were modelled from monitoring station data. Associations were calculated by multilevel logistic regression. RESULTS Prenatal NO2 was associated with decreased remission of wheeze and increased prevalence and increased onset of rhinitis. Prenatal PM2.5 was associated with increased prevalence of wheeze. Postnatal NO2 and postnatal PM10 were associated with increased prevalence and lower remission of wheeze and rhinitis. Mould, window pane condensation, renovation and cockroaches at home were associated with increased prevalence and increased onset of wheeze and rhinitis. Gas cooking was associated with increased onset of rhinitis. Children of mothers with industrial work had more wheeze. CONCLUSIONS Outdoor PM2.5, PM10 and NO2 can increase childhood wheeze and rhinitis. Dampness and mould can increase onset and decrease remission. Crowdedness, cockroaches at home and emissions from new building materials and gas cooking can be risk factors for wheeze and rhinitis.
Collapse
Affiliation(s)
- Dan Norbäck
- XiangYa School of Public Health, Central South University, Changsha, Hunan, China; School of Energy Science and Engineering, Central South University, Changsha, Hunan, China; Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, Hunan, China; School of Energy Science and Engineering, Central South University, Changsha, Hunan, China
| | - Yinping Zhang
- School of Architecture, Tsinghua University, Beijing, China
| | - Baizhan Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing, China
| | - Zhuohui Zhao
- Department of Environmental Health, Fudan University, Shanghai, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Hua Qian
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Yuexia Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jan Sundell
- XiangYa School of Public Health, Central South University, Changsha, Hunan, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Wang Juan
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing, China
| | - Wei Liu
- School of Architecture, Tsinghua University, Beijing, China
| | - Qihong Deng
- XiangYa School of Public Health, Central South University, Changsha, Hunan, China; School of Energy Science and Engineering, Central South University, Changsha, Hunan, China.
| |
Collapse
|
41
|
Zhang Y, Liu M, Fan R, Zhou Q, Yang J, Yang S, Wang C, Kou J. Walnut protein isolates attenuate particulate matter-induced lung and cardiac injury in mice and zebra fish. RSC Adv 2019; 9:40736-40744. [PMID: 35542651 PMCID: PMC9076285 DOI: 10.1039/c9ra06002b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/11/2019] [Indexed: 01/31/2023] Open
Abstract
Air pollution is an increasingly serious problem, and the fine particles of air pollution can cause diseases of the respiratory, cardiovascular, and immune systems. Walnut protein isolates (WPIs) are peptides purified from walnut protein hydrolysates that have very high antioxidant and 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) scavenging activities. In this study, mice and zebra fish were used to test the effect of WPIs on the acute lung injury (ALI) and heart injury induced by particulate matter (PM). The WPIs protected against ALI in the PM-induced ALI mouse model by inhibiting myeloperoxidase (MPO), nitric oxide (NO), interleukin 1β(IL-1β), and interleukin 6(IL-6) in ALI mouse bronchoalveolar lavage fluid (BALF) and pro-inflammatory cytokine production and acyl carrier protein (ACP) level. In the zebra fish model, the WPIs promoted the secretion of PM into the intestinal tract, protected against the heart injury caused by PM, and promoted the phagocytosis of zebra fish macrophages. Therefore, WPIs are potential candidates to be a health-promoting product with no toxicity. This study supports new prospects for WPI development and shows WPIs may be potential candidates for healthy products.![]()
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Mingchuan Liu
- R&D Center
- Sinphar Tian-Li Pharmaceutical Co., Ltd
- Yuhang Economic & Technological Development Zone
- Hangzhou 311100
- China
| | - Ruiping Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Qianliu Zhou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Jinping Yang
- R&D Center
- Sinphar Tian-Li Pharmaceutical Co., Ltd
- Yuhang Economic & Technological Development Zone
- Hangzhou 311100
- China
| | - Shengjie Yang
- R&D Center
- Sinphar Tian-Li Pharmaceutical Co., Ltd
- Yuhang Economic & Technological Development Zone
- Hangzhou 311100
- China
| | - Chaojih Wang
- R&D Center
- Sinphar Tian-Li Pharmaceutical Co., Ltd
- Yuhang Economic & Technological Development Zone
- Hangzhou 311100
- China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- China
| |
Collapse
|
42
|
Chen X, Chen W, Wang Y, Han Y, Zhu T. Responses of healthy young males to fine-particle exposure are modified by exercise habits: a panel study. Environ Health 2018; 17:88. [PMID: 30545423 PMCID: PMC6293663 DOI: 10.1186/s12940-018-0437-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 12/04/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Aerobic exercise benefits health but increases inhalation of fine particles (PM2.5) in ambient air. Acute cardiopulmonary responses to PM2.5 exposure in individuals with different exercise habits, especially in areas with severe air pollution, are not well understood. METHODS To examine acute cardiopulmonary responses to PM2.5 exposure modified by exercise habits, a panel of 20 healthy non-smoking male subjects, recruited in Beijing, China, completed seven visits. The exercise frequency per week and preferred exercise place were recorded using a baseline questionnaire to describe exercise habits. Fractional exhaled nitric oxide (FeNO), cytokines in exhaled breath condensate, blood pressure, and pulse-wave analysis (PWA) indices were measured during each visit as biomarkers of acute cardiopulmonary responses. The hourly average mass concentration of PM2.5 and black carbon (BC), and the number concentrations of ultrafine particles (UFP) and accumulation mode particles (AMP) were monitored throughout the follow-up period at an outdoor fixed monitoring station beginning 14 days prior to each visit. Linear mixed-effects models were used to evaluate the associations between acute changes in biomarker levels and exposure to PM2.5 and its constituents. The primary aim was to assess the modification of long-term exercise habits on these associations. RESULTS FeNO concentration, systolic blood pressure, ejection duration, aortic augmentation pressure, and aortic pressure index were positively associated with exposure to PM2.5 and its constituents. However, no associations with cytokine levels or diastolic blood pressure were observed. In a stratified analysis, we found that acute cardiopulmonary responses were modified by exercise habit. Specifically, the interquartile ranges (IQR) of increases in the 6-12-h moving average (MA) PM2.5 and AMP exposure were associated with 19-21% and 24-26% increases in FeNO, respectively, in subjects with high exercise frequency; these associations were significantly stronger than those in subjects with low exercise frequency. An IQR increase in 3-11-d MA AMP exposure was associated with a 10-26% increase in aortic augmentation pressure in subjects with low exercise frequency; this association was significantly stronger than that in subjects with high exercise frequency. An IQR increase in 9-13-d MA UFP exposure was associated with a 13-17% increase in aortic augmentation pressure in subjects who preferred outdoor exercise; this association was stronger than that in subjects who preferred indoor exercise. CONCLUSIONS In highly polluted areas, frequent exercise might protect against PM2.5-associated arterial stiffness but exacerbate airway inflammation.
Collapse
Affiliation(s)
- Xi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 China
- Center of Research and Innovation, Shenzhen Institute of Building Research Co., Ltd., Shenzhen, 518049 China
| | - Wu Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 China
| | - Yanwen Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 China
| | - Yiqun Han
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 China
- The Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| |
Collapse
|
43
|
Exposure to Household Air Pollution from Biomass Cookstoves and Levels of Fractional Exhaled Nitric Oxide (FeNO) among Honduran Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112544. [PMID: 30428575 PMCID: PMC6267103 DOI: 10.3390/ijerph15112544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/26/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
Household air pollution is estimated to be responsible for nearly three million premature deaths annually. Measuring fractional exhaled nitric oxide (FeNO) may improve the limited understanding of the association of household air pollution and airway inflammation. We evaluated the cross-sectional association of FeNO with exposure to household air pollution (24-h average kitchen and personal fine particulate matter and black carbon; stove type) among 139 women in rural Honduras using traditional stoves or cleaner-burning Justa stoves. We additionally evaluated interaction by age. Results were generally consistent with a null association; we did not observe a consistent pattern for interaction by age. Evidence from ambient and household air pollution regarding FeNO is inconsistent, and may be attributable to differing study populations, exposures, and FeNO measurement procedures (e.g., the flow rate used to measure FeNO).
Collapse
|
44
|
Wang J, Zhang WJ, Xiong W, Lu WH, Zheng HY, Zhou X, Yuan J. PM 2.5 stimulated the release of cytokines from BEAS-2B cells through activation of IKK/NF- κB pathway. Hum Exp Toxicol 2018; 38:311-320. [PMID: 30354488 DOI: 10.1177/0960327118802628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Previous studies indicated that exposure to fine particulate matter (PM2.5) was related to pulmonary inflammatory diseases through activation of nuclear factor kappa B (NF-κB) signaling pathway to trigger cytokine secretions in human lung carcinoma cells. To investigate the potential mechanisms underlying expression of cytokines via activated NF-κB by PM2.5, human bronchial epithelial cells (BEAS-2B cells) were treated with PM2.5 extracts at different concentrations (6, 13, 25, 50, 100, 200, and 400 µg mL-1) for 6 and 24 h. We found that 100 µg mL-1 PM2.5 increased interleukin 6 (IL-6) and IL-8 expression at 24 h (p < 0.05 or p < 0.01). Moreover, 100 µg mL-1 PM2.5 upregulated phosphorylated IκB kinase (IKK), p65, and IκBα at 6 h, which could be reversed by the IKK inhibitor Bay11-7082 (p < 0.05 or p < 0.01). The p65 subunit of NF-κB was translocated into the nucleus of the cells treated with 100 µg mL-1 PM2.5 at 6 and 24 h. Bay11-7082 partly inhibited PM2.5-induced increases of IL-6 and IL-8 secretion. The results indicated that PM2.5 extract increased IL-6 and IL-8 levels in BEAS-2B cells through activation of IKK/NF-κB pathway. Our study will contribute to better understanding of the mechanism of PM2.5-induced pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- J Wang
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - W J Zhang
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - W Xiong
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - W H Lu
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - H Y Zheng
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - X Zhou
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Both authors have contributed equally to this work
| | - J Yuan
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Both authors have contributed equally to this work
| |
Collapse
|
45
|
Chen C, Xu D, He MZ, Wang Y, Du Z, Du Y, Qian Y, Ji D, Li T. Fine Particle Constituents and Mortality: A Time-Series Study in Beijing, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11378-11386. [PMID: 30169957 PMCID: PMC6548719 DOI: 10.1021/acs.est.8b00424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is a rising concern that fine particle (PM2.5) compositions may play an important role in explaining PM2.5-related mortality risks. However, PM2.5 constituents responsible for these risks have not yet been determined. To date, there are few PM2.5 constituent health studies in developing countries. We adopted a time-series approach, using generalized linear regression models to examine associations between short-term exposure to PM2.5 constituents and mortality. We analyzed data stratified by sex and by age groups (<65, 65-74, and >74) from 2013 to 2015 in Beijing, China. We also investigated seasonal patterns of such associations. For a 0 day lag, interquartile range increases in potassium, calcium, magnesium, and organic carbon were associated with 0.51% (95% CI: 0.17-0.85), 2.07% (95% CI: 0.71-3.44), 0.26% (95% CI: 0.08-0.44), and 2.65% (95% CI: 0.18-5.18) increases in respiratory mortality, and sulfate with a 1.57% (95% CI: 0.04-3.12) increase in cardiovascular mortality. In the season-stratified analysis, the association of some constituents (potassium, calcium, magnesium, nitrate, sulfate, and organic carbon) with respiratory mortality appeared to be stronger in cold seasons than in warm seasons. Older adults (65-74) may be susceptible to certain compositions. Our findings provide evidence that link PM2.5 constituents with mortality and suggest that adverse effects vary among constituents in different seasons.
Collapse
Affiliation(s)
- Chen Chen
- Department of Environmental Health Risk Assessment, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Dandan Xu
- Department of Environmental Health Risk Assessment, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mike Z. He
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York 10032, United States
| | - Yanwen Wang
- Department of Environmental Health Risk Assessment, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zonghao Du
- Department of Environmental Health Risk Assessment, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanjun Du
- Department of Environmental Health Risk Assessment, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Tiantian Li
- Department of Environmental Health Risk Assessment, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Corresponding Author: Telephone: 008613671359855. . Mailing address: No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| |
Collapse
|
46
|
Ladva CN, Golan R, Liang D, Greenwald R, Walker DI, Uppal K, Raysoni AU, Tran V, Yu T, Flanders WD, Miller GW, Jones DP, Sarnat JA. Particulate metal exposures induce plasma metabolome changes in a commuter panel study. PLoS One 2018; 13:e0203468. [PMID: 30231074 PMCID: PMC6145583 DOI: 10.1371/journal.pone.0203468] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/21/2018] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Advances in liquid chromatography-mass spectrometry (LC-MS) have enabled high-resolution metabolomics (HRM) to emerge as a sensitive tool for measuring environmental exposures and corresponding biological response. Using measurements collected as part of a large, panel-based study of car commuters, the current analysis examines in-vehicle air pollution concentrations, targeted inflammatory biomarker levels, and metabolomic profiles to trace potential metabolic perturbations associated with on-road traffic exposures. METHODS A 60-person panel of adults participated in a crossover study, where each participant conducted a highway commute and randomized to either a side-street commute or clinic exposure session. In addition to in-vehicle exposure characterizations, participants contributed pre- and post-exposure dried blood spots for 2-hr changes in targeted proinflammatory and vascular injury biomarkers and 10-hr changes in the plasma metabolome. Samples were analyzed on a Thermo QExactive MS system in positive and negative electrospray ionization (ESI) mode. Data were processed and analyzed in R using apLCMS, xMSanalyzer, and limma. Features associated with environmental exposures or biological endpoints were identified with a linear mixed effects model and annotated through human metabolic pathway analysis in mummichog. RESULTS HRM detected 10-hr perturbations in 110 features associated with in-vehicle, particulate metal exposures (Al, Pb, and Fe) which reflect changes in arachidonic acid, leukotriene, and tryptophan metabolism. Two-hour changes in proinflammatory biomarkers hs-CRP, IL-6, IL-8, and IL-1β were also associated with 10-hr changes in the plasma metabolome, suggesting diverse amino acid, leukotriene, and antioxidant metabolism effects. A putatively identified metabolite, 20-OH-LTB4, decreased after in-vehicle exposure to particulate metals, suggesting a subclinical immune response. CONCLUSIONS Acute exposures to traffic-related air pollutants are associated with broad inflammatory response, including several traditional markers of inflammation.
Collapse
Affiliation(s)
- Chandresh Nanji Ladva
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Rachel Golan
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Donghai Liang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Roby Greenwald
- Department of Environmental Health, Georgia State University, Atlanta, GA, United States of America
| | - Douglas I. Walker
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Amit U. Raysoni
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - ViLinh Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Tianwei Yu
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - W. Dana Flanders
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Gary W. Miller
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dean P. Jones
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Jeremy A. Sarnat
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
47
|
Identification of abnormally expressed lncRNAs induced by PM2.5 in human bronchial epithelial cells. Biosci Rep 2018; 38:BSR20171577. [PMID: 29899163 PMCID: PMC6131355 DOI: 10.1042/bsr20171577] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 01/17/2023] Open
Abstract
To investigate the effect of stimulation of human bronchial epithelial cells (HBECs) by arterial traffic ambient PM2.5 (TAPM2.5) and wood smoke PM2.5 (WSPM2.5) on the expression of long non-coding RNAs (lncRNAs) in order to find new therapeutic targets for treatment of chronic obstructive pulmonary disease (COPD). HBECs were exposed to TAPM2.5 and WSPM2.5 at a series of concentrations. The microarray analysis was used to detect the lncRNA and mRNA expression profiles. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and gene ontology (GO) enrichment were conducted to analyze the differentially expressed lncRNAs and mRNAs. Quantitative real-time PCR (qRT-PCR) was performed to confirm the differential expression of lncRNAs. Western blot was performed to study the expression of autophagy and apoptosis-associated proteins. Flow cytometry was used to detect the apoptotic cells. The results indicated that fine particulate matter (PM2.5)-induced cell damage of HBECs occurred in a dose-dependent manner. The microarray analysis indicated that treatment with TAPM2.5 and WSPM2.5 led to the alteration of lncRNA and mRNA expression profiles. LncRNA maternally expressed gene 3 (MEG3) was significantly up-regulated in HBECs after PM2.5 treatment. The results of Western blot showed that PM2.5 induced cell apoptosis and autophagy by up-regulating apoptosis-associated gene, caspase-3, and down-regulating autophagy-associated markers, Bcl-2 and LC3 expression. In addition, we demonstrated that TAPM2.5 and WSPM2.5 accelerated apoptosis of human bronchial (HBE) cells, silencing of MEG3 suppressed apoptosis and autophagy of HBE cells. These findings suggested that the lncRNA MEG3 mediates PM2.5-induced cell apoptosis and autophagy, and probably through regulating the expression of p53.
Collapse
|
48
|
Chen C, Cai J, Wang C, Shi J, Chen R, Yang C, Li H, Lin Z, Meng X, Zhao A, Liu C, Niu Y, Xia Y, Peng L, Zhao Z, Chillrud S, Yan B, Kan H. Estimation of personal PM 2.5 and BC exposure by a modeling approach - Results of a panel study in Shanghai, China. ENVIRONMENT INTERNATIONAL 2018; 118:194-202. [PMID: 29885590 DOI: 10.1016/j.envint.2018.05.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Epidemiologic studies of PM2.5 (particulate matter with aerodynamic diameter ≤2.5 μm) and black carbon (BC) typically use ambient measurements as exposure proxies given that individual measurement is infeasible among large populations. Failure to account for variation in exposure will bias epidemiologic study results. The ability of ambient measurement as a proxy of exposure in regions with heavy pollution is untested. OBJECTIVE We aimed to investigate effects of potential determinants and to estimate PM2.5 and BC exposure by a modeling approach. METHODS We collected 417 24 h personal PM2.5 and 130 72 h personal BC measurements from a panel of 36 nonsmoking college students in Shanghai, China. Each participant underwent 4 rounds of three consecutive 24-h sampling sessions through December 2014 to July 2015. We applied backwards regression to construct mixed effect models incorporating all accessible variables of ambient pollution, climate and time-location information for exposure prediction. All models were evaluated by marginal R2 and root mean square error (RMSE) from a leave-one-out-cross-validation (LOOCV) and a 10-fold cross-validation (10-fold CV). RESULTS Personal PM2.5 was 47.6% lower than ambient level, with mean (±Standard Deviation, SD) level of 39.9 (±32.1) μg/m3; whereas personal BC (6.1 (±2.8) μg/m3) was about one-fold higher than the corresponding ambient concentrations. Ambient levels were the most significant determinants of PM2.5 and BC exposure. Meteorological and season indicators were also important predictors. Our final models predicted 75% of the variance in 24 h personal PM2.5 and 72 h personal BC. LOOCV analysis showed an R2 (RMSE) of 0.73 (0.40) for PM2.5 and 0.66 (0.27) for BC. Ten-fold CV analysis showed a R2 (RMSE) of 0.73 (0.41) for PM2.5 and 0.68 (0.26) for BC. CONCLUSION We used readily accessible data and established intuitive models that can predict PM2.5 and BC exposure. This modeling approach can be a feasible solution for PM exposure estimation in epidemiological studies.
Collapse
Affiliation(s)
- Chen Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Cuicui Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Jingjin Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Changyuan Yang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Huichu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Ang Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Li Peng
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Zhuohui Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Steven Chillrud
- Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, USA
| | - Beizhan Yan
- Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, USA
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China.
| |
Collapse
|
49
|
Associations of Annual Ambient Fine Particulate Matter Mass and Components with Mitochondrial DNA Abundance. Epidemiology 2018; 28:763-770. [PMID: 28953603 DOI: 10.1097/ede.0000000000000717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Fine particulate matter (PM2.5) represents a mixture of components with potentially different toxicities. However, little is known about the relative effects of PM2.5 mass and PM2.5 components on mitochondrial DNA (mtDNA) abundance, which may lie on the pathway of PM2.5-associated disease. METHODS We studied 646 elderly male participants in the Normative Aging Study from Greater Boston to investigate associations of long-term exposure to PM2.5 mass and PM2.5 components with mtDNA abundance. We estimated concentrations of pollutants for the 365-day preceding examination at each participant's address using spatial- and temporal-resolved chemical transport models. We measured blood mtDNA abundance using RT-PCR. We applied a shrinkage and selection method (adaptive LASSO) to identify components most predictive of mtDNA abundance, and fit multipollutant linear mixed-effects models with subject-specific intercept to estimate the relative effects of individual PM component. RESULTS MtDNA abundance was negatively associated with PM2.5 mass in the previous year and-after adjusting for PM2.5 mass-several PM2.5 components, including organic carbon, sulfate (marginally), and nitrate. In multipollutant models including as independent variables PM2.5 mass and PM2.5 components selected by LASSO, nitrate was associated with mtDNA abundance. An SD increase in annual PM2.5-associated nitrate was associated with a 0.12 SD (95% confidence intervals [CI] = -0.18, -0.07) decrease in mtDNA abundance. Analyses restricted to PM2.5 annual concentration below the current 1-year U.S. Environmental Protection Agency standard produced similar results. CONCLUSIONS Long-term exposures to PM2.5-associated nitrate were related to decreased mtDNA abundance independent of PM2.5 mass. Mass alone may not fully capture the potential of PM2.5 to oxidize the mitochondrial genome.See video abstract at, http://links.lww.com/EDE/B274.
Collapse
|
50
|
Shang J, Khuzestani RB, Huang W, An J, Schauer JJ, Fang D, Cai T, Tian J, Yang S, Guo B, Zhang Y. Acute changes in a respiratory inflammation marker in guards following Beijing air pollution controls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1539-1549. [PMID: 29929263 DOI: 10.1016/j.scitotenv.2017.12.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 05/21/2023]
Abstract
The adverse respiratory health effects of PM2.5 have been studied. However, the epidemiological evidence for the association of specific PM2.5 sources with health outcomes is still limited. This study investigated the association between PM2.5 components and sources with a biomarker of acute respiratory inflammation (FeNO) in guards. Personal exposure was estimated by microenvironment samplers and FeNO measurements were carried out before, during and after the Victory Day Military Parade in Beijing. Four sources were determined by factor analysis, including urban pollution, dust, alloy steel abrasion and toxic metals. A mixed-effect model was used to estimate the associations of FeNO with PM2.5 sources and chemical constituents, controlling for age, BMI, smoke activity, physical activity, waist circumference, temperature and relative humidity. In summary, large concentration decreases in PM2.5 concentration and PM2.5 chemical constituents were observed in both roadside and indoor environments during the air control periods, immediately followed by statistically significant decreases in FeNO of roadside guards and patrol guards. Besides, statistically significant increases in FeNO were found to be associated with interquartile range (IQR) increases in some pollutants, with an increase of 1.45ppb (95% CI: 0.69, 2.20), 0.65ppb (95% CI: 0.13, 1.17), 1.48ppb (95% CI: 0.60, 2.35), 0.82ppb (95% CI: 0.44, 1.20), 0.77ppb (95% CI: 0.42, 1.11) in FeNO for mass, sulfate, BC, Ca2+ and Sm, respectively. In addition, compared to alloy steel abrasion and toxic metals, urban pollution and dust factors were more associated with acute airway inflammation for highly-exposed populations.
Collapse
Affiliation(s)
- Jing Shang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Reza Bashiri Khuzestani
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Huang
- Institute for Environmental Reference Materials of Ministry of Environmental Protection, Beijing, China
| | - Jianxiong An
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University, Beijing 100012, China
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Dongqing Fang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqi Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Tian
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujian Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Shandong 250100, China
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Huairou Eco-Environmental Observatory, Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|