1
|
Moro PA, Maida F, Solimini R, Spizzichino L, Pauwels CGGM, Pieper E, Havermans A. Urgent health concerns: Clinical issues associated with accidental ingestion of new metal-blade-containing sticks for heated tobacco products. Tob Prev Cessat 2024; 10:TPC-10-31. [PMID: 39006098 PMCID: PMC11243506 DOI: 10.18332/tpc/190634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Recently, a concerning pattern has emerged in clinical settings, drawing attention to the potential health risks associated with the accidental ingestion, mostly by children, of a new Heated Tobacco Product (HTP) stick, which contains a sharp metal blade inside. METHODS Following a webinar of the Joint Action on Tobacco Control 2 project, where data on adverse health incidents related to novel tobacco and nicotine products from EU Member States were presented, the Milan Poison Control Center (PCC) conducted a case series study on the accidental ingestion of blade-containing HTP sticks in Italy, between July 2023 and February 2024. The data in the medical records were analyzed to identify the age distribution, clinical presentation symptoms, performed diagnostic procedures, and medical management. RESULTS Overall, 40 cases of accidental ingestion of HTP sticks were identified and are described. A total of 33 (82.5%) children (infants and toddlers, mean age 12.3 ± 3.3 months) were hospitalized. Of these, 29 underwent abdominal X-rays, two children underwent esophagogastroduodenoscopy, and one child suffered from cut injuries to the tonsillar pillar and genian mucosa, requiring anesthesia for fibroscopy. The observed clinical cases associated with new HTP sticks containing a metal blade occurred over just eight months. This issue required the immediate implementation of corrective measures to mitigate health risks. The Ministry of Health issued an alert regarding the dangers related to the accidental ingestion of the stick and imposed more visible warnings on the package. CONCLUSIONS It is of the utmost importance to raise awareness among both the general public and medical practitioners to prevent further cases of accidental ingestion of HTP sticks by infants and toddlers, and ensure a prompt and informed response in emergency situations.
Collapse
Affiliation(s)
| | | | - Renata Solimini
- Istituto Superiore di Sanità, National Centre on Addiction and Doping, Rome, Italy
| | | | - Charlotte G G M Pauwels
- Centre for Health Protection, RIVM, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Elke Pieper
- Federal Institute for Risk Assessment (BfR), Unit Product Research and Nanotechnology, Department Chemicals and Product Safety, Berlin, Germany
| | - Anne Havermans
- Centre for Health Protection, RIVM, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
3
|
Mondal T, Nautiyal A, Ghosh S, Loffredo CA, Mitra D, Saha C, Dey SK. An evaluation of DNA double strand break formation and excreted guanine species post whole body PET/CT procedure. JOURNAL OF RADIATION RESEARCH 2021; 62:590-599. [PMID: 34037214 PMCID: PMC8273794 DOI: 10.1093/jrr/rrab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Ionizing radiation-induced oxidation and formation of deoxyribonucleic acid (DNA) double strand breaks (DSBs) are considered the exemplar of genetic lesions. Guanine bases are most prone to be oxidized when DNA and Ribonucleic acid (RNA) are damaged. The repair processes that are initiated to correct this damage release multiple oxidized guanine species into the urine. Hence, the excretion of guanine species can be related with the total repair process. Our study quantified the total DSBs formation and the amount of guanine species in urine to understand the DNA break and repair process after whole body (WB) exposure to 18F-FDG positron emission tomography/computed tomography (PET/CT). A total of 37 human participants were included with control and test groups and the average radiation dose was 27.50 ± 2.91 mSv. γ-H2AX foci assay in the collected blood samples was performed to assess the DSBs, and excreted guanine species in urine were analyzed by a competitive ELISA method. We observed a significant increase of DNA damage that correlated well with the increasing dose (p-value 0.009) and body weight (p-value 0.05). In the test group, excreted guanine species in urine sample significantly increased (from 24.29 ± 5.82 to 33.66 ± 7.20 mg/mmol creatinine). A minimum (r2 = 0.0488) correlation was observed between DSBs formation and excreted guanine species. A significant difference of DNA damage and 8-OHdG formation was seen in the test group compared to controls. Larger population studies are needed to confirm these observations, describe the fine-scale timing of changes in the biomarker levels after exposure, and further clarify any potential risks to patients from PET/CT procedures.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700064, India
| | - Amit Nautiyal
- Institute of Nuclear Medicine & Molecular Imaging, AMRI Hospitals, Dhakuria, Kolkata 700029, India
| | - Somiranjan Ghosh
- Department of Biology, Howard University, Washington, DC 20059, USA
| | | | - Deepanjan Mitra
- Institute of Nuclear Medicine & Molecular Imaging, AMRI Hospitals, Dhakuria, Kolkata 700029, India
| | - Chabita Saha
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700064, India
| | - Subrata Kumar Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700064, India
| |
Collapse
|
4
|
McCollum ED, Park DE, Watson NL, Fancourt NSS, Focht C, Baggett HC, Brooks WA, Howie SRC, Kotloff KL, Levine OS, Madhi SA, Murdoch DR, Scott JAG, Thea DM, Awori JO, Chipeta J, Chuananon S, DeLuca AN, Driscoll AJ, Ebruke BE, Elhilali M, Emmanouilidou D, Githua LP, Higdon MM, Hossain L, Jahan Y, Karron RA, Kyalo J, Moore DP, Mulindwa JM, Naorat S, Prosperi C, Verwey C, West JE, Knoll MD, O'Brien KL, Feikin DR, Hammitt LL. Digital auscultation in PERCH: Associations with chest radiography and pneumonia mortality in children. Pediatr Pulmonol 2020; 55:3197-3208. [PMID: 32852888 PMCID: PMC7692889 DOI: 10.1002/ppul.25046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Whether digitally recorded lung sounds are associated with radiographic pneumonia or clinical outcomes among children in low-income and middle-income countries is unknown. We sought to address these knowledge gaps. METHODS We enrolled 1 to 59monthold children hospitalized with pneumonia at eight African and Asian Pneumonia Etiology Research for Child Health sites in six countries, recorded digital stethoscope lung sounds, obtained chest radiographs, and collected clinical outcomes. Recordings were processed and classified into binary categories positive or negative for adventitial lung sounds. Listening and reading panels classified recordings and radiographs. Recording classification associations with chest radiographs with World Health Organization (WHO)-defined primary endpoint pneumonia (radiographic pneumonia) or mortality were evaluated. We also examined case fatality among risk strata. RESULTS Among children without WHO danger signs, wheezing (without crackles) had a lower adjusted odds ratio (aOR) for radiographic pneumonia (0.35, 95% confidence interval (CI): 0.15, 0.82), compared to children with normal recordings. Neither crackle only (no wheeze) (aOR: 2.13, 95% CI: 0.91, 4.96) or any wheeze (with or without crackle) (aOR: 0.63, 95% CI: 0.34, 1.15) were associated with radiographic pneumonia. Among children with WHO danger signs no lung recording classification was independently associated with radiographic pneumonia, although trends toward greater odds of radiographic pneumonia were observed among children classified with crackle only (no wheeze) or any wheeze (with or without crackle). Among children without WHO danger signs, those with recorded wheezing had a lower case fatality than those without wheezing (3.8% vs. 9.1%, p = .03). CONCLUSIONS Among lower risk children without WHO danger signs digitally recorded wheezing is associated with a lower odds for radiographic pneumonia and with lower mortality. Although further research is needed, these data indicate that with further development digital auscultation may eventually contribute to child pneumonia care.
Collapse
Affiliation(s)
- Eric D McCollum
- Global Program in Respiratory Sciences, Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Daniel E Park
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia, USA
| | | | - Nicholas S S Fancourt
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Henry C Baggett
- Global Disease Detection Center, US Centers for Disease Control and Prevention Collaboration, Thailand Ministry of Public Health, Mueang Nonthaburi, Nonthaburi, Thailand.,Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - W Abdullah Brooks
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka and Matlab, Bangladesh
| | - Stephen R C Howie
- Medical Research Council Unit, Basse, The Gambia.,Department of Paediatrics, University of Auckland, Auckland, New Zealand.,Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Orin S Levine
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Shabir A Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases Unite, University of the Witwatersrand, Johannesburg, South Africa
| | - David R Murdoch
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Microbiology Unit, Canterbury Health Laboratories, Christchurch, New Zealand
| | - J Anthony G Scott
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Donald M Thea
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Juliet O Awori
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Chipeta
- Department of Paediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia
| | - Somchai Chuananon
- Global Disease Detection Center, US Centers for Disease Control and Prevention Collaboration, Thailand Ministry of Public Health, Mueang Nonthaburi, Nonthaburi, Thailand
| | - Andrea N DeLuca
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda J Driscoll
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Bernard E Ebruke
- Medical Research Council Unit, Basse, The Gambia.,International Foundation Against Infectious Disease in Nigeria, Abuja, Nigeria
| | - Mounya Elhilali
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dimitra Emmanouilidou
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Melissa M Higdon
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lokman Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka and Matlab, Bangladesh
| | - Yasmin Jahan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka and Matlab, Bangladesh
| | - Ruth A Karron
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joshua Kyalo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - David P Moore
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa.,Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Justin M Mulindwa
- Department of Paediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia
| | - Sathapana Naorat
- Global Disease Detection Center, US Centers for Disease Control and Prevention Collaboration, Thailand Ministry of Public Health, Mueang Nonthaburi, Nonthaburi, Thailand
| | - Christine Prosperi
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Charl Verwey
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa.,Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - James E West
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maria Deloria Knoll
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Katherine L O'Brien
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Daniel R Feikin
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Laura L Hammitt
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| |
Collapse
|
6
|
Mondal T, Nautiyal A, Agrawal M, Mitra D, Goel A, Kumar Dey S. 18F-FDG-induced DNA damage, chromosomal aberrations, and toxicity in V79 lung fibroblast cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:503105. [PMID: 31699341 DOI: 10.1016/j.mrgentox.2019.503105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022]
Abstract
18F-FDG PET/CT imaging is used in the diagnosis of diseases, including cancers. The principal photons used for imaging are 511 ke V gamma photons resulting from positron annihilation. The absorbed dose varies among body organs, depending on administered radioactivity and biological clearance. We have attempted to evaluate DNA double-strand breaks (DSB) and toxicity induced in V79 lung fibroblast cells in vitro by 18F-FDG, at doses which might result from PET procedures. Cells were irradiated by 18F-FDG at doses (14.51 and 26.86 mGy), comparable to absorbed doses received by critical organs during PET procedures. The biological endpoints measured were formation of γ-H2AX foci, mitochondrial stress, chromosomal aberrations, and cell cycle perturbation. Irradiation induced DSB (γH2AX assay), mitochondrial depolarization, and both chromosome and chromatid types of aberrations. At higher radiation doses, increased aneuploidy and reduced mitotic activity were also seen. Thus, significant biological effects were observed at the doses delivered by the 18F-FDG exposure and the effects increased with dose.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, BF-142, Sector-I, Salt Lake, Kolkata, 700 064, West Bengal, India
| | - Amit Nautiyal
- Institute of Nuclear Medicine & Molecular Imaging, Advance Medicare & Research Institute, P-4&5, Gariahat Road Block-A, Scheme-L11, Dhakuria, Kolkata, 700029, West Bengal, India
| | - Milee Agrawal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, BF-142, Sector-I, Salt Lake, Kolkata, 700 064, West Bengal, India
| | - Deepanjan Mitra
- Institute of Nuclear Medicine & Molecular Imaging, Advance Medicare & Research Institute, P-4&5, Gariahat Road Block-A, Scheme-L11, Dhakuria, Kolkata, 700029, West Bengal, India
| | - Alpana Goel
- Amity Institute of Nuclear Science & Technology, Amity University, Noida, Delhi, India
| | - Subrata Kumar Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, BF-142, Sector-I, Salt Lake, Kolkata, 700 064, West Bengal, India.
| |
Collapse
|