1
|
Zhang L, Ke X, Liu S, You J, Wang X, Li N, Yin C, Zhang Y, Bai Y, Wang M, Zheng S. A longitudinal study on the effect of PM 2.5 components on blood pressure in the hypertensive patients from 2011 to 2019. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117054. [PMID: 39305771 DOI: 10.1016/j.ecoenv.2024.117054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/17/2024]
Abstract
Extensive research has established the link between PM2.5 exposure and blood pressure (BP) levels among normal individuals. However, the association between PM2.5 components and BP levels in hypertensive patients has not been fully explored. In this study, 12 971 hypertensive cases from Jinchang cohort (in Jinchang City, China) with nearly 9 years of follow-up were enrolled. Based on the linear mixed-effect model, the effects of fine particulate matter (PM2.5) and five major components [sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), black carbon (BC) and organic matter (OM)]on BP [systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and pulse pressure (PP)]were evaluated by single-component model, component-joint model and component-residual model, respectively. A positive correlation was found between PM2.5 as well as its components (SO42-, NO3-, NH4+, BC and OM) exposure and BP levels. The effects of SO42-, BC and OM on BP were observed to be the most robust among the three models. Based on the results of interaction effects and stratified analysis, the effect of BC exposure on SBP, and the effect of PM2.5 and its five components on PP were greater in female than in males. Compared with elderly hypertensive patients, OM had more significant effects on SBP, DBP and MAP in young and (or) middle-aged hypertensive patients. During the heating season, the effect of PM2.5 and its components on BP was grater compared to the non-heating season. Meanwhile, PM2.5 and its components have a greater influence on BP in patients with hypertension combined with diabetes. Therefore, the findings suggested that both PM2.5 exposure and its components had a significant effect on BP in patients with hypertension. Women and young and middle-aged hypertensive patient were the sensitive population. The implementation of source control and reduction of PM2.5 emission (mainly for SO42-, BC and OM) may be of great significance to control BP level and could reduce the risk of cardiovascular disease in patients with hypertension.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Ximeng Ke
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shaodong Liu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jinlong You
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xue Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Na Li
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang 737102, China
| | - Chun Yin
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang 737102, China
| | - Yaqun Zhang
- Gansu Academy of Eco-environmental Sciences, Lanzhou 730020, China
| | - Yana Bai
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Minzhen Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Shan Zheng
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Wu R, Kang N, Zhang C, Song Y, Liao W, Hong Y, Hou J, Zhang K, Tian H, Lin H, Wang C. Long-term exposure to PM 2.5 and its components is associated with elevated blood pressure and hypertension prevalence: Evidence from rural adults. J Adv Res 2024; 60:173-181. [PMID: 37517519 PMCID: PMC11156605 DOI: 10.1016/j.jare.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023] Open
Abstract
INTRODUCTION The toxicity of fine particulate matter (PM2.5) is determined by its components, while the evidence regarding associations of PM2.5 components with blood pressure (BP) is limited, especially in rural areas. OBJECTIVES This study aimed to explore the associations of PM2.5 and its chemical components with systolic BP (SBP), diastolic BP (DBP), pulse pressure (PP), mean artery pressure (MAP) levels and hypertension prevalence, and to identify key components in Chinese rural areas. METHODS 39,211 adults from the Henan Rural Cohort were included during 2015-2017. Different periods of PM2.5 and chemical components were estimated by hybrid satellite model. The single-pollutant, component-PM2.5 model, component-residual model and component-proportion model were applied to explore the associations of pollutants with BP levels and hypertension prevalence. Exposure-response (E-R) relationships, stratified analyses and sensitivity analyses were used to explore these associations further. RESULTS 12,826 (32.71%) were identified with hypertension. For each 1 μg/m3 increase of pollutants, the adjusted odds ratio (OR) for hypertension prevalence was 1.03 for PM2.5 mass, 1.40 for BC, 1.16 for NH4+, 1.08 for NO3-, 1.17 for OM, 1.12 for SO42- and 1.25 for SOIL in the single-pollutant model. BC and SOIL were statistically significant in the component-PM2.5 model, component-residual model and component-proportion model. Similarly, associations of these pollutants with elevated BP levels were also found in aforementioned four models. These pollutants produced a stronger association with SBP than DBP, PP and MAP. Most of associations were non-linear in E-R relationships. The groups of older, the men, with lower per capita monthly income, lower educational level and higher BMI were more vulnerable to these pollutants in stratified analyses. The results remained stable in sensitivity analyses. CONCLUSION Long-term exposure to PM2.5 and its components, especially BC and SOIL, was associated with elevated BP and hypertension prevalence in rural adults, and decreasing pollutants may provide additional benefits.
Collapse
Affiliation(s)
- Ruiyu Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Caiyun Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu Song
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yueling Hong
- Department of Zhengzhou Center for Disease Control and Prevention, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY, USA
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing, PR China
| | - Hualiang Lin
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
3
|
Fu L, Guo Y, Zhu Q, Chen Z, Yu S, Xu J, Tang W, Wu C, He G, Hu J, Zeng F, Dong X, Yang P, Lin Z, Wu F, Liu T, Ma W. Effects of long-term exposure to ambient fine particulate matter and its specific components on blood pressure and hypertension incidence. ENVIRONMENT INTERNATIONAL 2024; 184:108464. [PMID: 38324927 DOI: 10.1016/j.envint.2024.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Epidemiological evidence on the association of PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) and its specific components with hypertension and blood pressure is limited. METHODS We applied information of participants from the World Health Organization's (WHO) Study on Global Ageing and Adult Health (SAGE) to estimate the associations of long-term PM2.5 mass and its chemical components exposure with blood pressure (BP) and hypertension incidence in Chinese adults ≥ 50 years during 2007-2018. Generalized linear mixed model and Cox proportional hazard model were applied to investigate the effects of PM2.5 mass and its chemical components on the incidence of hypertension and BP, respectively. RESULTS Each interquartile range (IQR = 16.80 μg/m3) increase in the one-year average of PM2.5 mass concentration was associated with a 17 % increase in the risk of hypertension (HR = 1.17, 95 % CI: 1.10, 1.24), and the population attributable fraction (PAF) was 23.44 % (95 % CI: 14.69 %, 31.55 %). Each IQR μg/m3 increase in PM2.5 exposure was also related to increases of systolic blood pressure (SBP) by 2.54 mmHg (95 % CI:1.99, 3.10), and of diastolic blood pressure (DBP) by 1.36 mmHg (95 % CI: 1.04, 1.68). Additionally, the chemical components of SO42-, NO3-, NH4+, OM, and BC were also positively associated with an increased risk of hypertension incidence and elevated blood pressure. CONCLUSIONS These results indicate that long-term exposure to PM2.5 mass and its specific components may be major drivers of escalation in hypertension diseases.
Collapse
Affiliation(s)
- Li Fu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Tianhe District Center for Disease Control and Prevention, Guangzhou 510655, China
| | - Yanfei Guo
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai 200336, China; General Practice/Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Qijiong Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhiqing Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Siwen Yu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jiahong Xu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Weiling Tang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Cuiling Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jianxiong Hu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Fan Wu
- Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Chen R, Zhang K, Li X, Li J, Jiang Q. Short-term effects of PM 2.5 and its components exposure on endothelial function in Chinese elders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167909. [PMID: 37866598 DOI: 10.1016/j.scitotenv.2023.167909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Particulate matter (PM2.5) and its components have been studied widely around the world and are associated with many adverse health events (e.g. cardiovascular diseases and death). Flow-mediated dilation (FMD) is a non-invasive assessment that is able to detect endothelial damage at an early stage, therefore, improving the prognosis of atherosclerotic cardiovascular disease. The current study used data from Shanghai to explore the relationship between PM2.5 and its components and FMD using multiple statistical models. The results of the analysis of 812 patients' data (age ≥ 65) suggested that as PM2.5 level rises, endothelial function reduces. Among the five PM2.5 components included in this study, black carbon was shown by both models to be the dominating factor three days post-exposure (lag3). However, results from lag4 and lag5 were inconclusive in the two models with some evidence proposing the significance of sulphate, organic matter, and ammonium. Our results are in concordance with previous literature and further prove the significance of black carbon as an individual pollutant in the atmosphere. More research is needed to confirm the role of sulphate, organic matter, and ammonium as independent pollutants in relation to health.
Collapse
Affiliation(s)
- Rukun Chen
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Kai Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoguang Li
- Department of Thyroid Breast and Vascular Surgery, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jutang Li
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qixia Jiang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Wang X, Li A, Zhao M, Xu J, Mei Y, Xu Q. Differential effects of PM 2.5 and its carbon components on blood pressure in hypertensive and non-hypertensive populations: a panel study in Beijing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123226-123236. [PMID: 37981604 DOI: 10.1007/s11356-023-30532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/13/2023] [Indexed: 11/21/2023]
Abstract
Published literature considering the association between ambient air pollution and blood pressure is highly inconsistent, which may be explained by the different proportions of susceptible subpopulations. We hypothesized that hypertensive patients are more sensitive to air pollution due to the disruption of neurohumoral system. The study aimed to reveal the association between PM2.5 and its carbon components and blood pressure, and whether this association is modified by hypertension status. We conducted a panel study in Beijing, China. Four repeated measurements were performed from 2016 to 2018. Linear mixed-effects models and generalized additive mixed models were performed to investigate the associations between PM2.5 and its carbon components and blood pressure. Subgroup analyses were performed by hypertension status to reveal potential effect modification. Among hypertensive patients, for every 1 μg/m3 increment of PM2.5, TC, OC, and EC in 1-day to 2-day MA, SBP increased from 0.16 mmHg (95% CI, 0.03 to 0.29) to 6.75 mmHg (95% CI, 2.82 to 10.68), and PP increased from 0.14 mmHg (95% CI, 0.02 to 0.26) to 6.03% (95% CI, 2.46 to 9.59%), but no significant association was observed among non-hypertensive subjects. The p values for the interaction between pollutants and hypertension status in 1-day to 2-day MA were less than 0.05. These findings suggest that hypertensive patients may be more susceptible to the adverse effects of air pollution than non-hypertensive subjects, which might provide guidance to hypertensive patients living in areas with high levels of particle pollution.
Collapse
Affiliation(s)
- Xue Wang
- Department of Allergy and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Immunologic Diseases, Beijing, 100730, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
6
|
Fu J, Fei F, Wang S, Zhao Q, Yang X, Zhong J, Hu K. Short-term effects of fine particulate matter constituents on mortality considering the mortality displacement in Zhejiang province, China. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131723. [PMID: 37257377 DOI: 10.1016/j.jhazmat.2023.131723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Evidence linking mortality and short-term exposure to particulate matter (PM2.5) constituents was sparse. The mortality displacement was often unconsidered and may induce incorrect risk estimation. OBJECTIVES To assess the short-term effects of PM2.5 constituents on all-cause mortality considering the mortality displacement. METHODS Daily data on all-cause mortality and PM2.5 constituents, including sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), organic matters (OM), and black carbon (BC), were collected from 2009 to 2020. The mortality effect of PM2.5 and its constituents was estimated using a distributed lag non-linear model. Stratified analyses were performed by age, sex, and season. RESULTS Per interquartile range increases in SO42-, NO3-, NH4+, OM, and BC were associated with the 1.42% (95%CI: 0.98, 1.87), 3.76% (3.34, 4.16), 2.26% (1.70, 2.83), 2.36% (2.02, 2.70), and 1.26% (0.91, 1.61) increases in all-cause mortality, respectively. Mortality displacements were observed for PM2.5, SO42-, NH4+, OM, and BC, with their overall effects lasting for 7-15 days. Stratified analyses revealed a higher risk for old adults (>65 years) and females, with stronger effects in the cold season. CONCLUSIONS Short-term exposures to PM2.5 constituents were positively associated with increased risks of mortality. The mortality displacement should be considered in future epidemiological studies on PM constituents. DATA AVAILABILITY Data will be made available on request.
Collapse
Affiliation(s)
- Jingqiao Fu
- Ocean College, Zhejiang University, Zhoushan 316021, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou 310015, China; Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Fangrong Fei
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Shiyi Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Shandong University, Jinan 250012, China
| | - Xuchao Yang
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| | - Jieming Zhong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Kejia Hu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou 310015, China; Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Wang J, Du W, Lei Y, Duan W, Mao K, Wang Z, Pan B. Impacts of household PM 2.5 pollution on blood pressure of rural residents: Implication for clean energy transition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163749. [PMID: 37120026 DOI: 10.1016/j.scitotenv.2023.163749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
High blood pressure associated with PM2.5 exposure is of great concern, especially for rural residents exposed to high PM2.5 levels. However, the impact of short-term exposure to high PM2.5 on blood pressure (BP) has not been well elucidated. Thus, this study aims to focus on the association between short-term PM2.5 exposure with BP of rural residents and its variation between summer and winter. Our results showed that the summertime PM2.5 exposure concentration was 49.3 ± 20.6 μg/m3, among which, mosquito coil users had 1.5-folds higher PM2.5 exposure than non-mosquito coil users (63.6 ± 21.7 vs 43.0 ± 16.7 μg/m3, p < 0.05). The mean systolic and diastolic BP (SBP and DBP, respectively) of rural participants were 122 ± 18.2 and 76.2 ± 11.2 mmHg in summer, respectively. The PM2.5 exposure, SBP, and DBP in summer were 70.7 μg/m3, 9.0 mmHg, and 2.8 mmHg lower than that in winter, respectively. Furthermore, the correlation between PM2.5 exposure and SBP was stronger in winter than that in summer, possibly due to higher PM2.5 exposure levels in winter. The transition of household energy from solid fuels in winter to clean fuels in summer would be benefit to the decline of PM2.5 exposure as well as BP. Results from this study suggested that the reduction of PM2.5 exposure would have positive effect on human health.
Collapse
Affiliation(s)
- Jinze Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Yali Lei
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Wenyan Duan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| |
Collapse
|
8
|
Zhang F, Tang H, Zhao D, Zhang X, Zhu S, Zhao G, Zhang X, Li T, Wei J, Li D, Zhu W. Short-term exposure to ambient particulate matter and mortality among HIV/AIDS patients: Case-crossover evidence from all counties of Hubei province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159410. [PMID: 36257445 DOI: 10.1016/j.scitotenv.2022.159410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) has been a worrisome public health problem in the world. However, evidence for associations between short-term exposure to particulate matter (PM) and mortality among HIV/AIDS patients is scarce. METHODS We collected daily death records in people with HIV/AIDS from all counties (N = 103) of Hubei province, China from 2018 to 2019. The county-level daily concentrations of PM1, PM2.5 and PM10 in the same period were extracted from ChinaHighAirPollutants dataset. A time-stratified case-crossover design with conditional logistic regression analysis was performed to assess the associations between PM and mortality. RESULTS Each 1 μg/m3 increased in PM1 corresponded with 0.89 % elevated in all-cause deaths (ACD) at lag 0-4 days. The largest effects of PM1, PM2.5 and PM10 on AIDS-related deaths (ARD) were detected at lag 0-4 days, and PM1 [percent changes in odds ratio: 2.51 % (95 % CIs: 0.82, 4.22)] appeared greater health hazards than PM2.5 [1.24 % (95 % CIs: 0.33, 2.15)] as well as PM10 [0.65 % (95 % CIs: 0.01, 1.30)]. In subgroup analyses, the significant associations of PM1/PM2.5 and ACD were only found in male and the cold season. We also observed the effects of PM1 and PM10 on ARD were significantly stronger (P for interaction <0.05) in males than females. In addition, we caught sight of HIV/AIDS patients aged over 60 years old were more susceptible to ARD caused by PM than younger population. CONCLUSIONS Our study suggested PM1 was positively linked with the risk of ACD and ARD. Male patients with HIV/AIDS were more significantly susceptible to PM1, PM2.5 and PM10. PM1/PM2.5 appeared stronger associations with ARD in HIV/AIDS patients aged over 60 years old and in the cold season.
Collapse
Affiliation(s)
- Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Hen Tang
- Institute of Chronic Infectious Disease Prevention and Control, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Dingyuan Zhao
- Institute of Chronic Infectious Disease Prevention and Control, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Xupeng Zhang
- Department of Public Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Gaichan Zhao
- Department of Public Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Tianzhou Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA.
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China.
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
9
|
Li Z, Peng S, Chen M, Sun J, Liu F, Wang H, Xiang H. Associations of fine particulate matter and its metal constituents with blood pressure: A panel study during the seventh World Military Games. ENVIRONMENTAL RESEARCH 2023; 217:114739. [PMID: 36368372 DOI: 10.1016/j.envres.2022.114739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Evidence is needed to elucidate the association of blood pressure (BP) changes with metal constituents in fine particulate matter (PM2.5). Therefore, we designed a longitudinal panel study enrolling 70 healthy students from Wuhan University in the context of the seventh World Military Games (the 7th WMG) from September 2019 to January 2020. A total of eight visits were conducted before, during, and after the 7th WMG. During every visit, each participant was asked to carry a personal PM2.5 monitor to measure hourly PM2.5 levels for three consecutive days. Questionnaire investigation and physical examination were completed on the fourth day. We analyzed ten metal constituents of ambient PM2.5 collected from the fixed station, and blood pressure was recorded during each visit. The linear mixed-effects models were performed to evaluate associations of metal constituents and blood pressure measurements. We observed a dramatic variation of PM2.5 concentration ranging from 7.38 to 132.04 μg/m3. A 10 μg/m3 increment of PM2.5 was associated with an increase of 0.64 mmHg (95% CI: 0.44, 0.84) in systolic BP (SBP), 0.40 mmHg (0.26, 0.54) in diastolic BP (DBP), 0.31 mmHg (0.15, 0.47) in pulse pressure (PP) and 0.44 mmHg (0.26, 0.62) in mean artery pressure (MAP), respectively. For metal constituents in PM2.5, robust positive associations were observed between BP and selenium, manganese, arsenic, cadmium, and thallium. For example, for an IQR (0.93 ng/m3) increment of selenium, SBP and MAP elevated by 0.98 mmHg (0.09, 1.87) and 0.71 mmHg (0.03, 1.39), respectively. Aluminum was found to be robustly associated with decreased SBP, DBP, and MAP. The study indicated that exposure to PM2.5 total mass and metal constituents including selenium, manganese, arsenic, cadmium, and thallium were associated with the elevated BP.
Collapse
Affiliation(s)
- Zhaoyuan Li
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Shouxin Peng
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Meijin Chen
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Jinhui Sun
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Feifei Liu
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Huaiji Wang
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China.
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
10
|
Niu W, Wang W, Huang C, Zhang Z, Ma L, Li R, Cherrie J, Miller MR, Loh M, Chen J, Lin C, Wu S, Guo X, Deng F. Cardiopulmonary benefits of respirator intervention against near road ambient particulate matters in healthy young adults: A randomized, blinded, crossover, multi-city study. CHEMOSPHERE 2022; 308:136437. [PMID: 36126736 DOI: 10.1016/j.chemosphere.2022.136437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Wearing a respirator is generally the most convenient individual intervention against ambient particulate matter (PM), and therefore there has been considerable research into its effectiveness. However, the effects of respirator intervention under different PM concentration settings have been insufficiently elucidated. We conducted a randomized, blinded, crossover intervention study in four representative cities in China in which 128 healthy university students spent 2-h walking along a busy road wearing either a real or a sham respirator and then spent the next 5-h indoors away from traffic pollution. Lung function, blood pressure, and heart rate variability were continuously measured throughout the visit. Linear mixed-effect models were fitted to evaluate the protective effects of respirator intervention on the cardiopulmonary indicators. Results showed that the beneficial effects of respirator intervention were only occasionally significant at specific time points or in specific cities or in selected parameters. Overall, respirator intervention was associated with reduced SBP (6.2 vs. 11.5 mmHg compared to baseline, p < 0.05) and increased LF (44 vs. 35 ms2 compared to baseline, p < 0.05) over the 2-h walk, but no significant effects were found over the 7-h period. Respirators have significant effect modifications on the associations between PM2.5/PM10 and the cardiopulmonary indicators, but the directions of effects were inconsistent. The intercity difference in the effects of respirator intervention was found significant, with Taiyuan and Shanghai to be the two cities with lower personal PM concentrations but more pronounced benefits. In conclusion, reducing personal exposure to PM can have some beneficial effects in some scenarios. However, respirators may not provide sufficient protection from air pollution overall, and we should avoid over-reliance on respirators and accelerate efforts to reduce emissions of pollutants in the first place. Despite standardized procedures, we found inconsistency in results across cities, consistent with the previous literature.
Collapse
Affiliation(s)
- Wei Niu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Shanxi, 030001, China
| | - Le Ma
- School of Public Health, Xi'an Jiaotong University, Shaanxi, 710061, China; Heriot Watt University, Riccarton, Edinburgh, EH14 4AS, UK; Institute of Occupational Medicine, Research Avenue North Riccarton, Edinburgh, EH14 4AP, UK
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - John Cherrie
- Heriot Watt University, Riccarton, Edinburgh, EH14 4AS, UK
| | - Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, 47 Little France Crescent Edinburgh, EH16 4TJ, UK
| | - Miranda Loh
- Institute of Occupational Medicine, Research Avenue North Riccarton, Edinburgh, EH14 4AP, UK
| | - Jiahui Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Chun Lin
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, NINE, 9 Little France Road, Edinburgh Bioquarter, Edinburgh, EH16 4UX, UK
| | - Shaowei Wu
- School of Public Health, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
11
|
Zhou P, Hu J, Yu C, Bao J, Luo S, Shi Z, Yuan Y, Mo S, Yin Z, Zhang Y. Short-term exposure to fine particulate matter constituents and mortality: case-crossover evidence from 32 counties in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2527-2538. [PMID: 35713841 DOI: 10.1007/s11427-021-2098-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
A growing number of studies associated increased mortality with exposures to specific fine particulate (PM2.5) constituents, while great heterogeneity exists between locations. In China, evidence linking PM2.5 constituents and mortality was extensively sparse. This study primarily aimed to quantify short-term associations between PM2.5 constituents and non-accidental mortality among the Chinese population. We collected daily mortality records from 32 counties in China between January 1, 2011, and December 31, 2013. Daily concentrations of main PM2.5 constituents (organic carbon (OC), elemental carbon (EC), nitrate (NO3-), sulfate (SO42-), and ammonium (NH4+)) were estimated using the modified Community Multiscale Air Quality model. Time-stratified case-crossover design with conditional logistic regression models was adopted to estimate mortality risks associated with short-term exposures to PM2.5 mass and its constituents. Stratification analyses were done by sex, age, and season. A total of 116,959 non-accidental deaths were investigated. PM2.5 concentrations on the day of death were averaged at 75.7 µg m-3 (control day: 75.6 µg m-3), with an interquartile range (IQR) of 65.2 µg m-3. Per IQR rise in PM2.5, EC, OC, NO3-, SO42-, and NH4+ at lag-04 day was associated with an increase in non-accidental mortality of 2.4% (95% confidence interval, (1.0-3.7), 1.7% (0.8-2.7), 2.9% (1.6-4.3), 2.1% (0.4-3.9), 1.0% (0.2-1.9), and 1.6% (0.3-2.9), respectively. Both PM2.5 mass and its constituents were strongly associated with elevated cardiovascular mortality risks, but only PM2.5, EC, and OC were positively associated with respiratory mortality at lag-3 day. PM2.5 mass and its constituents associated effects on mortality varied among sex- and age-specific subpopulations. Differences in the seasonal pattern of associations exist among PM2.5 constituents, with stronger effects related to EC and NO3- in warm months but SO42- and NH4+ in cold months. Short-term exposures to PM2.5 compositions were positively associated with increased risks of mortality, particularly those constituents from combustion-related sources.
Collapse
Affiliation(s)
- Peixuan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Junzhe Bao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Siqi Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhihao Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yang Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shaocai Mo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhouxin Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
12
|
Song J, An Z, Zhu J, Li J, Qu R, Tian G, Wang G, Zhang Y, Li H, Jiang J, Wu H, Wang Y, Wu W. Subclinical cardiovascular outcomes of acute exposure to fine particulate matter and its constituents: A glutathione S-transferase polymorphism-based longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157469. [PMID: 35868381 DOI: 10.1016/j.scitotenv.2022.157469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
To explore the acute subclinical cardiovascular effects of fine particulate matter (PM2.5) and its constituents, a longitudinal study with 61 healthy young volunteers was conducted in Xinxiang, China. Linear mixed-effect models were used to analyze the association of PM2.5 and its constituents with cardiovascular outcomes, respectively, including blood pressure (BP), heart rate (HR), serum levels of high-sensitivity C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tissue-type plasminogen activator (t-PA), and platelet-monocyte aggregation (PMA). Additionally, the modifying effects of glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) polymorphisms were examined. A 10 μg/m3 increase in PM2.5 was associated with -1.04 (95 % CI: -1.86 to -0.22) mmHg and -0.90 (95 % CI: -1.69 to -0.11) mmHg decreases in diastolic BP (DBP) and mean arterial BP (MABP) along with 1.83 % (95 % CI: 0.59-3.08 %), 5.93 % (95 % CI: 0.70-11.16 %) increases in 8-OHdG and hs-CRP, respectively. Ni content was positively associated with the 8-OHdG levels whereas several other metals presented negative association with 8-OHdG and HR. Intriguingly, GSTT1+/GSTTM1+ subjects showed higher susceptibility to PM2.5-induced alterations of DBP and PMA, and GSTT1-/GSTM1+ subjects showed higher alteration on t-PA. Taken together, our findings indicated that short-term PM2.5 exposure induced oxidative stress, systemic inflammation, autonomic alterations, and fibrinolysis in healthy young subjects. Among multiple examined metal components Ni appeared to positively associated with systematic oxidative stress. In addition, GST-sufficient subjects might be more prone to PM2.5-induced autonomic alterations.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jingfang Zhu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Ge Tian
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Gui Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yinbiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
13
|
Zhang Q, Meng X, Shi S, Kan L, Chen R, Kan H. Overview of particulate air pollution and human health in China: Evidence, challenges, and opportunities. Innovation (N Y) 2022; 3:100312. [PMID: 36160941 PMCID: PMC9490194 DOI: 10.1016/j.xinn.2022.100312] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Ambient particulate matter (PM) pollution in China continues to be a major public health challenge. With the release of the new WHO air quality guidelines in 2021, there is an urgent need for China to contemplate a revision of air quality standards (AQS). In the recent decade, there has been an increase in epidemiological studies on PM in China. A comprehensive evaluation of such epidemiological evidence among the Chinese population is central for revision of the AQS in China and in other developing countries with similar air pollution problems. We thus conducted a systematic review on the epidemiological literature of PM published in the recent decade. In summary, we identified the following: (1) short-term and long-term PM exposure increase mortality and morbidity risk without a discernible threshold, suggesting the necessity for continuous improvement in air quality; (2) the magnitude of long-term associations with mortality observed in China are comparable with those in developed countries, whereas the magnitude of short-term associations are appreciably smaller; (3) governmental clean air policies and personalized mitigation measures are potentially effective in protecting public and individual health, but need to be validated using mortality or morbidity outcomes; (4) particles of smaller size range and those originating from fossil fuel combustion appear to show larger relative health risks; and (5) molecular epidemiological studies provide evidence for the biological plausibility and mechanisms underlying the hazardous effects of PM. This updated review may serve as an epidemiological basis for China’s AQS revision and proposes several perspectives in designing future health studies. Acute effects of PM are smaller in China compared with developed countries Health effects caused by PM depend on particle composition, source, and size There are no thresholds for the health effects of PM Mechanistic studies support the biological plausibility of PM’s health effects
Collapse
Affiliation(s)
- Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lena Kan
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, MD 21205, USA
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.,Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|
14
|
Ramon M, Ribeiro AP, Theophilo CYS, Moreira EG, de Camargo PB, de Bragança Pereira CA, Saraiva EF, dos Reis Tavares A, Dias AG, Nowak D, Ferreira ML. Assessment of four urban forest as environmental indicator of air quality: a study in a brazilian megacity. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01296-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Song J, Qu R, Sun B, Chen R, Kan H, An Z, Jiang J, Li J, Zhang Y, Wu W. Associations of Short-Term Exposure to Fine Particulate Matter with Neural Damage Biomarkers: A Panel Study of Healthy Retired Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7203-7213. [PMID: 34964348 DOI: 10.1021/acs.est.1c03754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is associated with various adverse health effects, such as respiratory and cardiovascular diseases. This study aimed to evaluate the association of PM2.5 with neural damage biomarkers. A total of 34 healthy retirees were recruited from Xinxiang Medical University from December 2018 to April 2019. Concentrations of PM2.5 constituents including 24 metals and nonmetallic elements and 6 ions, and 5 biomarkers of neural damage including brain-derived neurotrophic factor (BDNF), neurofilament light chain (NfL), neuron-specific enolase (NSE), protein gene product 9.5 (PGP9.5), and S100 calcium-binding protein B (S100B) in serum were measured. A linear mixed-effect model was employed to estimate the association of PM2.5 and its constituents with neural damage biomarkers. Modification effects of glutathione S-transferase theta 1 gene (GSTT1) polymorphism, sex, education, and physical activity on PM2.5 exposure with neural damage were explored. PM2.5 and its key constituents were significantly associated with neural damage biomarkers. A 10 μg/m3 increase in PM2.5 concentration was associated with 2.09% (95% CI, 39.3-76.5%), 100% (95% CI, 1.73-198%), and 122% (95% CI, 20.7-222%) increments in BDNF, NfL, and PGP9.5, respectively. Several constituents such as Cu, Zn, Ni, Mn, Sn, V, Rb, Pb, Al, Be, Cs, Co, Th, U, Cl-, and F- were significantly associated with NfL. The estimated association of PM2.5 with NSE in GSTT1-sufficient volunteers was significantly higher than that in GSTT1-null volunteers. Therefore, short-term PM2.5 exposure was associated with neural damage, and GSTT1 expression levels modified the PM2.5-induced adverse neural effects.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Beibei Sun
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Renjie Chen
- School of Public Health, Fudan University, Shanghai 200437, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai 200437, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| |
Collapse
|
16
|
Fang J, Tang S, Deng F, Gao X, Wuchang C, Liu Y, Dong H, Du Y, Li T, Shi X. Associations of Carbonaceous Compounds and Water-Soluble Inorganic Ions in Ambient PM 2.5 with Renal Function in Older Individuals: The China BAPE Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:433-439. [PMID: 34913675 DOI: 10.1021/acs.est.1c04526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is proven to be associated with a decline in renal function. However, few studies have explored the acute renal damage from carbonaceous compounds and water-soluble inorganic ions (WSIIs), which constitute the bulk of total PM2.5 mass. We examined the acute effect of these constituents of ambient PM2.5 on renal function in older Chinese individuals. Seventy-one healthy people aged 60-69 years from Jinan, China, were enrolled and visited monthly and asked to complete survey questionnaires, undergo physical exams, and provide blood samples. The hourly concentrations of organic carbon, elemental carbon (EC), and WSIIs in ambient PM2.5 were collected from a fixed-site monitoring station. The association between PM2.5 constituents and estimated glomerular filtration rate (eGFR) was evaluated using linear mixed-effects models after controlling for a series of covariates. We observed that ambient carbonaceous compounds and WSIIs were associated with a significant decline in renal function. The interquartile range increased in the 24 h moving average of carbonaceous compounds, and WSIIs in ambient PM2.5 were associated with -13.11% [95% confidence interval (95% CI): -19.49, -6.21%] to -0.81% (95% CI: -4.17, 2.67%) changes in eGFR. We found significant associations between EC, chlorine (Cl-), sodium (Na+), and magnesium (Mg2+) and eGFR in single-pollutant, constituent-PM2.5, and residual-constituent models with a lag period of 0-24 h. This study demonstrated that carbonaceous compounds and WSIIs in PM2.5 were inversely associated with renal function.
Collapse
Affiliation(s)
- Jianlong Fang
- China CDC Key Lab oratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Song Tang
- China CDC Key Lab oratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fuchang Deng
- China CDC Key Lab oratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Gao
- School of Public Health, Peking University, Beijing 100191, China
| | - Chen Wuchang
- China CDC Key Lab oratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanyuan Liu
- China CDC Key Lab oratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haoran Dong
- China CDC Key Lab oratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanjun Du
- China CDC Key Lab oratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tiantian Li
- China CDC Key Lab oratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoming Shi
- China CDC Key Lab oratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
17
|
Zhang Y, Liu L, Zhang L, Yu C, Wang X, Shi Z, Hu J, Zhang Y. Assessing short-term impacts of PM 2.5 constituents on cardiorespiratory hospitalizations: Multi-city evidence from China. Int J Hyg Environ Health 2021; 240:113912. [PMID: 34968974 DOI: 10.1016/j.ijheh.2021.113912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Apart from concentrations of particulate mass, PM2.5-associated effects on health may largely depend on its chemical components. However, little is known regarding the underlying effects of specific PM2.5 constituents. The study included nearly 1 million hospital admissions from five Chinese cities during 2015-2017. Based on the modified Community Multiscale Air Quality model, our study simulated daily concentrations of PM2.5 and five main components. We used a time-stratified case-crossover design with conditional logistic regression models to estimate short-term effects of PM2.5 constituents on cause-specific hospital admissions. Per interquartile range increase in exposure to PM2.5, elemental carbon, organic carbon, nitrate, sulfate and ammonium at lag 04-day was related to an excess risk (ER%) for non-accidental admissions of 1.6% [95% confidence interval: 1.1-2.0], 1.9% [1.3-2.4], 1.0% [0.5-1.6], 1.2% [0.4-2.0], 1.2% [0.9-1.5] and 1.4% [0.9-1.9], respectively. Great heterogeneities of constituents-admission associations existed in diverse causes and constituents. This study provided multi-center high-quality evidence that hospital admissions, particularly those for ischemic heart disease (ER% ranging from 2.3 to 5.4% at lag 04-day) and pneumonia (1.9-5.1% at lag 4-day), could be triggered by short-term exposures to ambient PM2.5 constituents. Relatively stronger constituents-admission associations were found among females for respiratory causes and the elderly for cardiovascular causes.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Linjiong Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Liansheng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chuanhua Yu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, China; Institute of Global Health, Wuhan University, Wuhan, 430071, China
| | - Xuyan Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zhihao Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
18
|
Li Z, Liu Y, Lu T, Peng S, Liu F, Sun J, Xiang H. Acute effect of fine particulate matter on blood pressure, heart rate and related inflammation biomarkers: A panel study in healthy adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113024. [PMID: 34837873 PMCID: PMC8655618 DOI: 10.1016/j.ecoenv.2021.113024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 05/07/2023]
Abstract
Epidemiological evidence of short-term fine particulate matter (PM2.5) exposure on blood pressure (BP), heart rate (HR) and related inflammation biomarkers has been inconsistent. We aimed to explore the acute effect of PM2.5 on BP, HR and the mediation effect of related inflammation biomarkers. A total of 32 healthy college students were recruited to perform 4 h of exposure at two sites with different PM2.5 concentrations in Wuhan between May 2019 and June 2019. The individual levels of PM2.5 concentration, BP and HR were measured hourly for each participant. Blood was drawn from each participant after each visit and we measured the levels of inflammation markers, including serum high-sensitivity C-reactive protein and plasma fibrinogen. Linear mixed-effect models were to explore the acute effect of PM2.5 exposure on BP, HR, and related inflammation biomarkers. In addition, we evaluated related inflammation biomarkers as the mediator in the association of PM2.5 and cardiovascular health indicators. The results showed that a 10 μg/m3 increment in PM2.5 concentration was associated with an increase of 0.84 (95% CI: 0.54, 1.15) beats/min (bpm) in HR and a 3.52% (95% CI: 1.60%, 5.48%) increase in fibrinogen. The lag effect model showed that the strongest effect on HR was observed at lag 3 h of PM2.5 exposure [1.96 bpm (95% CI: 1.19, 2.75)], but for fibrinogen, delayed exposure attenuated the association. Increased fibrinogen levels may account for 39.07% (P = 0.44) of the elevated HR by PM2.5. Null association was observed when it comes to short-term PM2.5 exposure and BP. Short-term exposure to PM2.5 was associated with elevated HR and increased fibrinogen levels. But our finding was not enough to suggest that exposure to PM2.5 might induce adverse cardiovascular effects by the pathway of inflammation.
Collapse
Affiliation(s)
- Zhaoyuan Li
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Yisi Liu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Tianjun Lu
- Department of Earth Science and Geography, California State University Dominguez Hills, 1000 E. Victoria St, Carson, CA 90747, USA
| | - Shouxin Peng
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Feifei Liu
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Jinhui Sun
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China.
| |
Collapse
|
19
|
Yin G, Wu X, Wu Y, Li H, Gao L, Zhu X, Jiang Y, Wang W, Shen Y, He Y, Chen C, Niu Y, Zhang Y, Mao R, Zeng Y, Kan H, Chen Z, Chen R. Evaluating carbon content in airway macrophages as a biomarker of personal exposure to fine particulate matter and its acute respiratory effects. CHEMOSPHERE 2021; 283:131179. [PMID: 34146873 DOI: 10.1016/j.chemosphere.2021.131179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
It remains unclear whether carbon content in airway macrophages (AM) can predict personal short-term exposure to fine particulate matter (PM2.5) air pollution and its respiratory health effects. We aimed to evaluate the pathway from personal PM2.5 exposure to adverse respiratory outcomes through AM carbon content. We designed a longitudinal panel study with 3 scheduled follow-ups among 113 non-smoking patients of chronic obstructive pulmonary disease in Shanghai, China, from April 2017 to January 2019. We quantified AM carbon content from induced sputum by image analysis, tested lung function and measured sputum levels of 4 pro-inflammatory cytokines and 2 anti-inflammatory cytokines. We applied the "meet in the middle" approach incorporating linear mixed-effect models to evaluate the associations from external PM2.5 exposure to respiratory outcomes through AM carbon content. Our results indicated that personal exposure to PM2.5 within 24 h was significantly associated with decreased forced expiratory volume in 1s and anti-inflammatory cytokines, as well as increased macrophages and pro-inflammatory cytokines. These changes were accompanied by increased areas of AM carbon and higher percentage of AM area occupied by carbon, both of which were associated with increased levels of pro-inflammatory cytokines and decreased levels of anti-inflammatory cytokines. Exposure to ambient black carbon and organic carbon in PM2.5 within 2 days was significantly associated with increased AM carbon area and percentage of AM area occupied by carbon. Our findings reinforced the causality in respiratory health effects of PM2.5 in which increased AM carbon content might serve as a valid exposure biomarker.
Collapse
Affiliation(s)
- Guanjin Yin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Xiaodan Wu
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, 200032, China
| | - Yihan Wu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Hongjin Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Lei Gao
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, 200032, China
| | - Xinlei Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Yanling Shen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Yu He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Chen Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Yi Zhang
- Air Liquide (China) Holding Co., Ltd., Shanghai, 200233, China
| | - Ruolin Mao
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, 200032, China
| | - Yuzhen Zeng
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Zhihong Chen
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, 200032, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China.
| |
Collapse
|
20
|
Chen Y, Chen R, Chen Y, Dong X, Zhu J, Liu C, van Donkelaar A, Martin RV, Li H, Kan H, Jiang Q, Fu C. The prospective effects of long-term exposure to ambient PM 2.5 and constituents on mortality in rural East China. CHEMOSPHERE 2021; 280:130740. [PMID: 34162086 DOI: 10.1016/j.chemosphere.2021.130740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 06/13/2023]
Abstract
Few cohort studies explored the associations of long-term exposure to ambient fine particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) and its chemical constituents with mortality risk in rural China. We conducted a 12-year prospective study of 28,793 adults in rural Deqing, China from 2006 to 2018. Annual mean PM2.5 and its constituents, including black carbon (BC), organic carbon (OC), ammonium (NH4+), nitrate (NO3-), sulfate (SO42-), and soil dust were measured at participants' addresses at enrollment from a satellite-based exposure predicting model. Cox proportional hazard model was used to estimate hazard ratios (HRs) and 95% confidence intervals (95%CIs) of long-term exposure to PM2.5 for mortality. A total of 1960 deaths were identified during the follow-up. We found PM2.5, BC, OC, NH4+, NO3-, and SO42- were significantly associated with an increased risk of non-accidental mortality. The HR for non-accidental mortality was 1.17 (95%CI: 1.07, 1.28) for each 10 μg/m3 increase in PM2.5. As for constituents, the strongest association was found for BC (HR = 1.21, 95%CI: 1.11, 1.33), followed by NO3-, NH4+, SO42-, and OC (HR = 1.14-1.17 per interquartile range). A non-linear relationship was found between PM2.5 and non-accidental mortality. Similar associations were found for cardio-cerebrovascular and cancer mortality. Associations were stronger among men and ever smokers. Conclusively, we found long-term exposure to ambient PM2.5 and its chemical constituents (especially BC and NO3-) increased mortality risk. Our results suggested the importance of adopting effective targeted emission control to improve air quality for health protection in rural East China.
Collapse
Affiliation(s)
- Yun Chen
- School of Public Health, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1G 5Z3, Canada
| | - Xiaolian Dong
- Deqing County Center for Disease Control and Prevention, Deqing, 313299, China
| | - Jianfu Zhu
- Deqing County Center for Disease Control and Prevention, Deqing, 313299, China
| | - Cong Liu
- School of Public Health, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, B3H 4R2, Halifax, Nova Scotia, Canada; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, B3H 4R2, Halifax, Nova Scotia, Canada; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Haidong Kan
- School of Public Health, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| | - Qingwu Jiang
- School of Public Health, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Chaowei Fu
- School of Public Health, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Lei X, Chen R, Li W, Cheng Z, Wang H, Chillrud S, Yan B, Ying Z, Cai J, Kan H. Personal exposure to fine particulate matter and blood pressure: Variations by particulate sources. CHEMOSPHERE 2021; 280:130602. [PMID: 34162067 DOI: 10.1016/j.chemosphere.2021.130602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/27/2021] [Accepted: 04/13/2021] [Indexed: 06/13/2023]
Abstract
Fine particulate matter (PM2.5) is a complex mixture of components which has been associated with various cardiovascular effects, such as elevated blood pressure (BP). However, evidences on specific sources behind these effects remain uncertain. Based on 140 72-h personal measurements among a panel of 36 health college students in Shanghai, China, we assessed associations between source-apportioned PM2.5 exposure and BP changes. Based on personal filter samples, PM2.5 source apportionment was conducted using Positive Matrix Factorization (PMF) model. Linear mixed-effects models were applied to evaluate associations of source-specific PM2.5 exposure with BP changes. Seven sources were identified in PMF analysis. Among them, secondary sulfate (41%) and nitrate (24%) sources contributed most to personal PM2.5, followed by industrial emissions (15%), traffic-related source (10%), coal combustion (6.2%), dust (2.4%) and aged sea salt (1.1%). We found nitrate, traffic-related source and coal combustion were significantly associated with increased BP. For example, an interquartile range increase in PM2.5 from traffic-related source was significantly associated with increase in systolic BP [1.5 (95% CI: 0.26, 2.7) mmHg], diastolic BP [1.2 (95% CI: 0.10, 2.2) mmHg] and mean arterial pressure [1.2 (95% CI: 0.15, 2.2) mmHg]. This is the first investigation linking personal PM2.5 source profile and BP changes. This study provides evidence that several anthropogenic emissions (especially traffic-related emission) may be particularly responsible for BP increases, and highlights that the importance of development of health-oriented PM2.5 source control strategies.
Collapse
Affiliation(s)
- Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Research, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Zhen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Steven Chillrud
- Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Beizhan Yan
- Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Zhekang Ying
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, 200030, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China; Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Research, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Li B, Yang J, Dong H, Li M, Cai D, Yang Z, Zhang C, Wang H, Hu J, Bergmann S, Lin G, Wang B. PM 2.5 constituents and mortality from a spectrum of causes in Guangzhou, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112498. [PMID: 34265527 DOI: 10.1016/j.ecoenv.2021.112498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
As the major constituents of PM2.5, carbonaceous constituents and inorganic ions have attracted emerging attentions on their health risks, particularly on cardiorespiratory diseases. However, evidences on the risks of PM2.5 constituents on other diseases (eg. nervous disease, genitourinary disease, neoplasms and endocrine disease) remain scarce. In our study, we firstly calculated residuals of PM2.5 constituents regressed on PM2.5 to remove the confounding effect of PM2.5. Then, generalized additive model (GAM) was used to assess impacts of residuals of PM2.5 constituents on mortality from 36 diseases (10 broad categories and 26 subcategories) during 2011-2015 in Guangzhou, China. Results of constituent-residual models showed that only EC, OC and NO3- were significantly associated with all-cause mortality, with per IQR change in corresponding constituent residuals related to percentage changes of 1.69% (95% CI: 0.42, 2.97), 1.94% (95% CI: 0.37, 3.54) and 2.59% (95% CI: 1.02, 4.18) at lag 03 days. All these pollutants were significantly associated with elevated mortality risk of cardiovascular disease, but only EC was significantly associated with respiratory mortality, and NO3- with endocrine disease and neoplasm. For more specific causes, the highest effect estimates of EC and NO3-were both observed on mortality from other form of heart disease, and OC on intentional self-harm, with estimates of 11.45% (95% CI: 2.74, 20.91), 12.59% (95% CI: 1.41, 25.02) and 18.01% (95% CI: 2.14, 36.36), respectively. Our findings highlighted that stricter emission control measures are still warranted to reduce air pollution level and protect the public health.
Collapse
Affiliation(s)
- Bixia Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Jun Yang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; JNU-QUT Joint Laboratory for Air Quality Science and Management, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| | - Hang Dong
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, China
| | - Mengmeng Li
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dongjie Cai
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Zhou Yang
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chunlin Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; JNU-QUT Joint Laboratory for Air Quality Science and Management, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; JNU-QUT Joint Laboratory for Air Quality Science and Management, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Stéphanie Bergmann
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Guozhen Lin
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, China.
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; JNU-QUT Joint Laboratory for Air Quality Science and Management, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| |
Collapse
|
23
|
Zhou L, Tao Y, Li H, Niu Y, Li L, Kan H, Xie J, Chen R. Acute effects of fine particulate matter constituents on cardiopulmonary function in a panel of COPD patients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144753. [PMID: 33515878 DOI: 10.1016/j.scitotenv.2020.144753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Exposure to fine particulate matter (PM2.5) has been linked with adverse cardiorespiratory health conditions. However, evidence for PM2.5 constituents is still scarce, especially among patients with chronic obstructive pulmonary disease (COPD). OBJECTIVE To investigate the associations of short-term exposure to different chemical constituents of PM2.5 with measures of cardiac and lung function in COPD patients. METHODS We conducted a retrospective panel study among 100 COPD patients who received repeated measures of left ventricular ejection fraction (LVEF), forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and peak expiratory flow (PEF) in Shanghai, China from August 2014 to September 2019. Daily PM2.5 and PM2.5 constituents were obtained from fixed-site monitoring station. Linear mixed-effects models were used to estimate the associations of PM2.5. RESULTS We found water-soluble ions of PM2.5, mainly NO3-, SO42-, and NH4+ were robustly associated with reduced LVEF, and the reductions in LVEF associated with an IQR increase of them ranged from 1.8% to 2.0% (lag 1 d). Metal constituents such as Cu and As were associated with FEV1, FVC and PEF. The corresponding reductions in lung function parameters for an IQR increase of them ranged from 1.4% to 2.3% (lag 0 or 1 d). These associations remained relatively robust after adjusting for total PM2.5 mass and gaseous pollutants. CONCLUSIONS Our results suggest that water-soluble ions and several metal/metalloid elements might be important constituents in PM2.5 that were associated with reduced cardiorespiratory function among COPD patients.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yingmin Tao
- Division of General Practice, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China.
| | - Huichu Li
- Department of Environmental Health, Harvard T.H.Chan School of Public Health, Boston, MA, USA.
| | - Yue Niu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Liang Li
- Division of General Practice, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Juan Xie
- Division of General Practice, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China.
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
24
|
Guo P, He Z, Jalaludin B, Knibbs LD, Leskinen A, Roponen M, Komppula M, Jalava P, Hu L, Chen G, Zeng X, Yang B, Dong G. Short-Term Effects of Particle Size and Constituents on Blood Pressure in Healthy Young Adults in Guangzhou, China. J Am Heart Assoc 2021; 10:e019063. [PMID: 33942624 PMCID: PMC8200702 DOI: 10.1161/jaha.120.019063] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Background Although several studies have focused on the associations between particle size and constituents and blood pressure, results have been inconsistent. Methods and Results We conducted a panel study, between December 2017 and January 2018, in 88 healthy university students in Guangzhou, China. Weekly systolic blood pressure and diastolic blood pressure were measured for each participant for 5 consecutive weeks, resulting in a total of 440 visits. Mass concentrations of particles with an aerodynamic diameter of ≤2.5 µm (PM2.5), ≤1.0 µm (PM1.0), ≤0.5 µm (PM0.5), ≤0.2 µm (PM0.2), and number concentrations of airborne particulates of diameter ≤0.1 μm were measured. Linear mixed-effect models were used to estimate the associations between blood pressure and particles and PM2.5 constituents 0 to 48 hours before blood pressure measurement. PM of all the fractions in the 0.2- to 2.5-μm range were positively associated with systolic blood pressure in the first 24 hours, with the percent changes of effect estimates ranging from 3.5% to 8.8% for an interquartile range increment of PM. PM0.2 was also positively associated with diastolic blood pressure, with an increase of 5.9% (95% CI, 1.0%-11.0%) for an interquartile range increment (5.8 μg/m3) at lag 0 to 24 hours. For PM2.5 constituents, we found positive associations between chloride and diastolic blood pressure (1.7% [95% CI, 0.1%-3.3%]), and negative associations between vanadium and diastolic blood pressure (-1.6% [95% CI, -3.0% to -0.1%]). Conclusions Both particle size and constituent exposure are significantly associated with blood pressure in the first 24 hours following exposure in healthy Chinese adults.
Collapse
Affiliation(s)
- Peng‐Yue Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk AssessmentDepartment of Occupational and Environmental HealthSchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Zhi‐Zhou He
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk AssessmentDepartment of Occupational and Environmental HealthSchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Bin Jalaludin
- Centre for Air Quality and Health Research and EvaluationGlebeAustralia
- Ingham Institute for Applied Medial ResearchUniversity of New South WalesSydneyAustralia
| | - Luke D. Knibbs
- School of Public HealthThe University of QueenslandHerstonQueenslandAustralia
| | - Ari Leskinen
- Finnish Meteorological InstituteKuopioFinland
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Marjut Roponen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | | | - Pasi Jalava
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Li‐Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk AssessmentDepartment of Occupational and Environmental HealthSchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk AssessmentDepartment of Occupational and Environmental HealthSchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Xiao‐Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk AssessmentDepartment of Occupational and Environmental HealthSchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Bo‐Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk AssessmentDepartment of Occupational and Environmental HealthSchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Guang‐Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk AssessmentDepartment of Occupational and Environmental HealthSchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
25
|
Jiang Y, Zhu X, Chen C, Ge Y, Wang W, Zhao Z, Cai J, Kan H. On-field test and data calibration of a low-cost sensor for fine particles exposure assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111958. [PMID: 33503545 DOI: 10.1016/j.ecoenv.2021.111958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Accurate individual exposure assessment is crucial for evaluating the health effects of particulate matter (PM). Various portable monitors built upon low-cost optical sensors have emerged. However, the main challenge for their application is to guarantee accuracy of measurements. OBJECTIVE To assess the performance of a newly developed PM sensor, and to develop methods for post-hoc data calibration to optimize its data quality. METHOD We conducted a series of laboratory experiments and field evaluations to quantify the reproducibility within Plantower PM sensors 7003 (PMS 7003) and the consistency between sensors and two established PM2.5 measurement methods [tapered element oscillating microbalances (TEOM) and gravimetric method (GM)]. Post-hoc data calibration methods for sensors were based on a multiple linear regression model (MLRM) and a random forest model (RFM). Ratios of raw and calibrated readings over the data of reference methods were calculated to examine the improvement after calibration. RESULTS Strong correlations (≥0.82) and relatively small relative standard deviations (16-21%) between sensors were found during the laboratory and the field sampling. Compared with the reference methods, moderate to strong coefficients of determination (0.56-0.83) were observed; however, significant deviations were presented. After calibration, the ratios of PMS measurements over that of two reference methods both became convergent. CONCLUSIONS Our study validated low-cost optical PM sensors under a wide range of PM2.5 concentrations (8-167 μg/m3). Our findings indicated potential applicability of PM sensors in PM2.5 exposure assessment, and confirmed a need of calibration. Linear calibration methods may be sufficient for ambient monitoring using TEOM as a reference, while nonlinear calibration methods may be more appropriate for indoor monitoring using GM as a reference.
Collapse
Affiliation(s)
- Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xinlei Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Chen Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yihui Ge
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhuohui Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China.
| |
Collapse
|
26
|
Du X, Zhang Y, Liu C, Fang J, Zhao F, Chen C, Du P, Wang Q, Wang J, Shi W, van Donkelaar A, Martin RV, Bachwenkizi J, Chen R, Li T, Kan H, Shi X. Fine particulate matter constituents and sub-clinical outcomes of cardiovascular diseases: A multi-center study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143555. [PMID: 33189387 DOI: 10.1016/j.scitotenv.2020.143555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/20/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Limited evidence is available on the associations of long-term exposure to various fine particulate matter (PM2.5) constituents with sub-clinical outcomes of cardiovascular disease (CVD) in China. OBJECTIVES We aimed to explore the associations of PM2.5 and its constituents with blood pressure (BP), fasting glucose, and cardiac electrophysiological (ECG) properties based on a national survey of 5852 Chinese adults, who participated in the Sub-Clinical Outcome of Polluted Air study, from July 2017 to March 2019. METHODS Annual residential exposure to PM2.5 and its constituents of each subject was predicted by a satellite-based mode. We assessed the associations between five main constituents [organic matter (OM), black carbon (BC), sulfate (SO42-), nitrate (NO3-), ammonium (NH4+)] of PM2.5 and systolic BP (SBP), diastolic BP (DBP), fasting glucose, and ECG measurements (PR, QRS, QT, and QTc interval) using multivariable linear regression models. RESULTS Long-term PM2.5 exposure was significantly associated with increased levels of fasting glucose, DBP, and ECG measurements. An IQR increase in OM (8.2 μg/m3) showed considerably stronger associations with an elevated fasting glucose of 0.39 mmol/L (95%CI confidence interval: 0.28, 0.49) compared with other PM2.5 constituents. Meanwhile, an IQR increase in NO3-, NH4+ and OM had stronger associations with DBP and ECG parameters compared with BC and SO42-. CONCLUSIONS This nationwide multi-center study in China indicated that some constituents (i.e., OM, NO3-, and NH4+) might be mainly responsible for the association of PM2.5 with sub-clinical outcomes of CVD including BP, fasting glucose, and ECG measurements.
Collapse
Affiliation(s)
- Xihao Du
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Peng Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qiong Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jiaonan Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, B3H 4R2 Halifax, Nova Scotia, Canada
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, B3H 4R2 Halifax, Nova Scotia, Canada
| | - Jovine Bachwenkizi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
27
|
Lin YK, Cheng CP, Kim H, Wang YC. Risk of ambulance services associated with ambient temperature, fine particulate and its constituents. Sci Rep 2021; 11:1651. [PMID: 33462328 PMCID: PMC7813819 DOI: 10.1038/s41598-021-81197-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
Short-term adverse health effects of constituents of fine particles with aerodynamic diameters less than or equal to 2.5 μm (PM2.5) have been revealed. This study aimed to evaluate the real-time health outcome of ambulance services in association with ambient temperature and mass concentrations of total PM2.5 level and constituents in Kaohsiung City, an industrialized city with the worst air quality in Taiwan. Cumulative 6-day (lag0-5) relative risk (RR) and 95% confidence interval (CI) of daily ambulance services records of respiratory distress, coma and unconsciousness, chest pain, headaches/dizziness/vertigo/fainting/syncope, lying at public, and out-of-hospital cardiac arrest (OHCA) in association with ambient temperature and mass concentrations of total PM2.5 level and constituents (nitrate, sulfate, organic carbon (OC), and elemental carbon (EC)) from 2006 to 2010 were evaluated using a distributed lag non-linear model with quasi-Poisson function. Ambulance services of chest pain and OHCA were significantly associated with extreme high (30.8 °C) and low (18.2 °C) temperatures, with cumulative 6-day RRs ranging from 1.37 to 1.67 at the reference temperature of 24–25 °C. Daily total PM2.5 level had significant effects on ambulance services of lying at public and respiratory distress. After adjusting the cumulative 6-day effects of temperature and total PM2.5 level, RRs of ambulance services of lying at public associated with constituents at 90th percentile versus 25th percentile were 1.35 (95% CI: 1.08, 1.68) for sulfate and 1.20 (95% CI: 1.02, 1.41) for EC, while RR was 1.31 (95% CI: 1.09–1.58) for ambulance services of headache/dizziness/vertigo/fainting/syncope in association with OC at 90th percentile versus 25th percentile. Cause-specific ambulance services had various significant association with daily temperature, total PM2.5 level, and concentrations of constituents. Elemental carbon may have stronger associations with increased ambulance services than other constituents.
Collapse
Affiliation(s)
- Yu-Kai Lin
- Department of Health and Welfare, University of Taipei College of City Management, 101 Zhongcheng Road Sec. 2, Taipei, 111, Taiwan
| | - Chia-Pei Cheng
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, 320, Taiwan
| | - Ho Kim
- Department of Epidemiology and Biostatistics, School of Public Health, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yu-Chun Wang
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, 320, Taiwan. .,Research Center for Environmental Changes, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
28
|
Xu N, Lv X, Yu C, Guo Y, Zhang K, Wang Q. The association between short-term exposure to extremely high level of ambient fine particulate matter and blood pressure: a panel study in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28113-28122. [PMID: 32415440 DOI: 10.1007/s11356-020-09126-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 04/29/2020] [Indexed: 05/22/2023]
Abstract
High blood pressure (BP) is known as the main determinant of high cerebrovascular disease levels in China. Many studies discovered the associations between short-term exposure to PM2.5 and BP, while most of those focused on low or medium PM2.5 concentration. The aim of this study was to reveal the association between extremely high level ambient PM2.5 exposure and BP. We conducted a repeated-measures panel study in Beijing, China, during December 1, 2016 to December 28, 2016. BP was monitored daily for all 133 participants. Daily concentration of PM2.5 was obtained from local monitoring sites. A linear mixed-effect model combined with the distributed lag non-linear model was used to evaluate the associations between PM2.5 and daily variations in BP. This study showed short-term exposure to PM2.5 that was significantly associated with increased DBP (on lags of 0-8 days, Beta = 0.12, 95% confidence interval 0.04, 0.20). The single day effect of PM2.5 on DBP had a 2-day lag, and the cumulative effect lags 5 days. The effects of PM2.5 on SBP and DBP on hypertensive adults were significant. The cumulative effect of PM2.5 on SBP and DBP had 2 rapidly increasing periods in hypertensive adults: lags of 0-2 days and lags of 0-7 days to lags of 0-11 days. Our study revealed that short-term exposure in the extreme high level of ambient PM2.5 may increase BP among adults. Hypertensive adults may more sensitive than normotensive adults. The periodic high concentration of ambient PM2.5 might magnify the effect of PM2.5 on BP increase.
Collapse
Affiliation(s)
- Ning Xu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xifang Lv
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuanchuan Yu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yafei Guo
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kexing Zhang
- Xinwu District Center for Disease Control and Prevention, Wuxi, Jiangsu, China
| | - Qiang Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
29
|
Zhang L, An J, Tian X, Liu M, Tao L, Liu X, Wang X, Zheng D, Guo X, Luo Y. Acute effects of ambient particulate matter on blood pressure in office workers. ENVIRONMENTAL RESEARCH 2020; 186:109497. [PMID: 32304927 DOI: 10.1016/j.envres.2020.109497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Exposure to ambient particulate matter with a diameter of <2.5 μm (PM2.5) has been linked to increases in blood pressure. The aim of this study was to assess the effects of short-term exposure to PM2.5 on blood pressure in office workers in Beijing, China. A total of 4801 individuals aged 18-60 years underwent an annual medical examination between 2013 and 2017. Levels of air pollutants were obtained from 35 fixed monitoring stations and correlated with the employment location of each participant to predict personal exposure via kriging interpolation. Linear mixed-effects models were used to estimate the changes in blood pressure associated with PM2.5 exposure at various lag times. After adjusting for personal characteristics and other potential confounders, each interquartile range increase in PM2.5 was associated with a 0.413-mmHg (95% confidence interval [CI]: 0.252-0.573), 0.171-mmHg (95% CI: 0.053-0.288), 0.278-mmHg (95% CI: 0.152-0.404), and 0.241-mmHg (95% CI: 0.120-0.362) increase in systolic blood pressure, diastolic blood pressure, pulse pressure, and mean arterial pressure, respectively (p < 0.05). Men, individuals previously diagnosed with hypertension, and subjects working in the northern districts of Beijing had larger changes in blood pressure, and the effect sizes were 0.477-mmHg (95% CI: 0.286-0.669), 0.851-mmHg (95% CI: 0.306-1.397, and 0.672-mmHg (95% CI: 0.405-0.940). The findings suggested that exposure to PM2.5 had adverse effects on blood pressure, especially among males and hypertensive patients.
Collapse
Affiliation(s)
- Licheng Zhang
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Ji An
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xue Tian
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Mengyang Liu
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Lixin Tao
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiangtong Liu
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiaonan Wang
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Deqiang Zheng
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiuhua Guo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Yanxia Luo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
30
|
Lim YH, Kim W, Choi Y, Kim HC, Na G, Kim HR, Hong YC. Effects of Particulate Respirator Use on Cardiopulmonary Function in Elderly Women: a Quasi-Experimental Study. J Korean Med Sci 2020; 35:e64. [PMID: 32174063 PMCID: PMC7073315 DOI: 10.3346/jkms.2020.35.e64] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/16/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Individual particulate respirator use may offer protection against exposure to particulate matter < 2.5 μm in diameter (PM2.5). Among elderly Korean women, we explored individual particulate respirator use and cardiopulmonary function. METHODS Recruited in Seoul, Korea, 21 elderly, non-smoking women wore particulate respirators for six consecutive days (exlcuding time spent eating, sleeping, and bathing). We measured resting blood pressure before, during, and after respirator use and recorded systolic and diastolic blood pressure, mean arterial blood pressure, pulse pressure, and lung function. We also measured 12-hour ambulatory blood pressure at the end of the 6-day long experiment and control periods. Additionally, we examined physiological stress (heart rate variability and urinary 8-hydroxy-2'-deoxyguanosine) while wearing the particulate respirators. Person- and exposure-level covariates were also considered in the model. RESULTS After the 6-day period of respirator use, resting blood pressure was reduced by 5.3 mmHg for systolic blood pressure (P = 0.013), 2.9 mmHg for mean arterial blood pressure (P = 0.079), and 3.6 mmHg for pulse pressure (P = 0.024). However, particulate respirator use was associated with changes in physiological stress markers. A parasympathetic activity marker (high frequency) significantly decreased by 24.0% (P = 0.029), whereas a sympathetic activity marker (ratio of low-to-high frequency) increased by 50.3% (P = 0.045). An oxidative stress marker, 8-hydroxy-2'-deoxyguanosine, increased by 3.4 ng/mg creatinine (P = 0.021) during the experimental period compared with that during the control period. Lung function indices indicated that wearing particulate respirators was protective; however, statistical significance was not confirmed. CONCLUSION Individual particulate respirator use may prevent PM2.5-induced blood-pressure elevation among elderly Korean women. However, the effects of particulate respirator use, including physiological stress marker elevation, should also be considered. TRIAL REGISTRATION Clinical Research Information Service Identifier: KCT0003526.
Collapse
Affiliation(s)
- Youn Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Woosung Kim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yumi Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hwan Cheol Kim
- Department of Occupational & Environmental Medicine, Inha University Hospital, Incheon, Korea
| | - Geunjoo Na
- Department of Occupational & Environmental Medicine, Inha University Hospital, Incheon, Korea
| | - Hyoung Ryoul Kim
- Department of Occupational & Environmental Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yun Chul Hong
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
31
|
Effect of ambient air pollution exposure on renal dysfunction among hospitalized patients in Shanghai, China. Public Health 2020; 181:196-201. [PMID: 32092559 DOI: 10.1016/j.puhe.2020.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/20/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES We investigated whether long-term ambient air pollutants (AAP) exposure was associated with estimated glomerular filtration rate (eGFR) among hospitalized patients living in urban areas of Shanghai, China. STUDY DESIGN This was a cross-sectional observational study. METHODS A total of 3622 newly hospitalized inpatients were investigated from October 2014 to May 2015. The prior year's average exposure to particulate matter (PM) of each participant was estimated using the Kriging interpolation method of ArcGIS. The estimated eGFR was calculated according to the chronic kidney disease epidemiology collaboration (CKD-EPI) equation. Both generalized linear and logistic regression models were applied to assess the associations between AAP and renal function. RESULTS One-year PM10 exposure was associated with lower eGFR; each standard deviation (SD) increase in PM10 was significantly associated with the increased prevalence of CKD [adjusted odds ratio (OR) 1.11; 95% confidence interval (CI): 1.02, 1.21], and lower eGFR by -0.40 (95%CI: -0.80, -0.01) ml/min/1.73 m2. Moreover, the effect of PM10 was significantly greater in people over 65 years old. CONCLUSION Our results supported that exposure to ambient PM10 increased the risk of CKD and negatively affected renal function among Chinese adults.
Collapse
|
32
|
Ren M, Zhang H, Benmarhnia T, Jalaludin B, Dong H, Wu K, Wang Q, Huang C. Short-term effects of real-time personal PM2.5 exposure on ambulatory blood pressure: A panel study in young adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134079. [PMID: 31484088 DOI: 10.1016/j.scitotenv.2019.134079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/03/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Short-term exposure to PM2.5 has been shown to be associated with changes in blood pressure. However, most of the evidence is based on PM2.5 measurements from fixed stations and resting blood pressure measured at a regular time. OBJECTIVES To evaluate the short-term daily and hourly effects of real-time personal PM2.5 exposure on ambulatory blood pressure, and to compare the effects with those of PM2.5 exposure from fixed stations. METHODS Between April 2017 and December 2017, 37 young adults were recruited in a panel study from a central urban area and a suburban area, to measure personal hourly PM2.5 and ambulatory systolic blood pressure (SBP) as well as diastolic blood pressure (DBP) for three consecutive days. Hourly PM2.5 concentrations were also obtained from the nearest monitoring station operated by Guangdong Environmental Monitoring Center. Generalized additive mixed model was employed to evaluate the effects of PM2.5 on ambulatory blood pressure. RESULTS During the study period, the mean concentration of personal PM2.5 exposure was 60.30 ± 52.14 μg/m3, while the value of PM2.5 from fixed stations was 36.77 ± 21.52 μg/m3. Both personal PM2.5 exposure and exposure from fixed stations averaged over the previous 1 to 3 days decreased blood pressure. During daytime, a 10 μg/m3 increase in 1-day moving average of personal PM2.5 was associated with a 0.54 mmHg (95% CI: -1.03, -0.05) and 0.22 mmHg (95% CI: -0.59, 0.15) decrease in SBP and DBP, respectively. When using PM2.5 exposures from fixed stations, the decrease in SBP and DBP were 0.95 mmHg (95% CI: -1.82, -0.07) and 0.74 mmHg (95% CI: -1.46, -0.03). Stratified analysis showed stronger effects in the central urban area and among males. CONCLUSIONS Both personal PM2.5 exposure and exposure from fixed stations averaged over the previous 1 to 3 days decreased blood pressure. Stronger effects were found in a central urban area and among males.
Collapse
Affiliation(s)
- Meng Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Huanhuan Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Tarik Benmarhnia
- Department of Family Medicine and Public Health & Scripps Institution of Oceanography, University of California San Diego, USA.
| | - Bin Jalaludin
- Population Health Intelligence, Healthy People and Places Unit, South Western Sydney Local Health District, Australia.
| | - Haotian Dong
- School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Kaipu Wu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Cunrui Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
33
|
Hvidtfeldt UA, Geels C, Sørensen M, Ketzel M, Khan J, Tjønneland A, Christensen JH, Brandt J, Raaschou-Nielsen O. Long-term residential exposure to PM 2.5 constituents and mortality in a Danish cohort. ENVIRONMENT INTERNATIONAL 2019; 133:105268. [PMID: 31675564 DOI: 10.1016/j.envint.2019.105268] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 05/26/2023]
Abstract
Studies on health effects of long-term exposure to specific PM2.5 constituents are few. Previous studies have reported an association between black carbon (BC) exposure and cardiovascular diseases (CVD) and a few studies have found an association between sulfate exposure and mortality. These studies, however, relied mainly on exposure data from centrally located air-monitoring stations, which is a crude approximation of personal exposure. We focused on specific chemical constituents of PM2.5, i.e. elemental and primary organic carbonaceous particles (BC/OC), sea salt, secondary inorganic aerosols (SIA, i.e. NO3-, NH4+, and SO42-), and secondary organic aerosols (SOA), in relation to all-cause, CVD and respiratory disease mortality. We followed a Danish cohort of 49,564 individuals from enrollment in 1993-1997 through 2015. We combined residential address history from 1979 onwards with mean annual air pollution concentrations obtained by the AirGIS air pollution modelling system, lifestyle information from baseline questionnaires and socio-demography obtained by register linkage. During 895,897 person-years of follow-up, 10,193 deaths from all causes occurred - of which 2319 were CVD-related and 870 were related to respiratory disease. The 15-year time-weighted average concentrations of PM2.5, BC/OC, sea salt, SIA and SOA were 13.8, 2.8, 3.4, 4.9, and 0.3 µg/m3, respectively. For all-cause mortality, a higher risk was observed with higher exposure to PM2.5, BC/OC and SOA with adjusted hazard ratios of 1.03 (95% confidence intervals: 1.01, 1.05), 1.06 (1.03, 1.09), and 1.08 (1.03, 1.13) per interquartile range, respectively. The associations for BC/OC and SOA remained after adjustment for PM2.5 in two-pollutant models. For CVD mortality, we observed elevated risks with higher exposure to PM2.5, BC/OC and SIA. The results showed no clear relationship between sea salt and mortality. In this study, we observed a relationship between long-term exposure to PM2.5, BC/OC, and SOA and all-cause mortality and between PM2.5, BC/OC, and SIA and CVD mortality.
Collapse
Affiliation(s)
- Ulla Arthur Hvidtfeldt
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark.
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O.Box 358, 4000 Roskilde, Denmark.
| | - Mette Sørensen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark; Department of Natural Science and Environment, Roskilde University, Universitetsvej 1, P.O. Box 260, 4000 Roskilde, Denmark.
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O.Box 358, 4000 Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O.Box 358, 4000 Roskilde, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, 4000 Roskilde, Denmark.
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark; Department of Public Health, University of Copenhagen, Oester Farimagsgade 5, 1014 Copenhagen K, Denmark.
| | - Jesper Heile Christensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O.Box 358, 4000 Roskilde, Denmark.
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O.Box 358, 4000 Roskilde, Denmark.
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O.Box 358, 4000 Roskilde, Denmark.
| |
Collapse
|
34
|
Kirrane EF, Luben TJ, Benson A, Owens EO, Sacks JD, Dutton SJ, Madden M, Nichols JL. A systematic review of cardiovascular responses associated with ambient black carbon and fine particulate matter. ENVIRONMENT INTERNATIONAL 2019; 127:305-316. [PMID: 30953813 PMCID: PMC8517909 DOI: 10.1016/j.envint.2019.02.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exposure to fine particulate matter (PM2.5), an ambient air pollutant with mass-based standards promulgated under the Clean Air Act, and black carbon (BC), a common component of PM2.5, are both associated with cardiovascular health effects. OBJECTIVES To elucidate whether BC is associated with distinct, or stronger, cardiovascular responses compared to PM2.5, we conducted a systematic review. We evaluated the associations of short- and long-term BC, or the related component elemental carbon (EC), with cardiovascular endpoints including heart rate variability, heart rhythm, blood pressure and vascular function, ST segment depression, repolarization abnormalities, atherosclerosis and heart function, in the context of what is already known about PM2.5. DATA SOURCES We conducted a stepwise systematic literature search of the PubMed, Web of Science and TOXLINE databases and applied Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines for reporting our results. STUDY ELIGIBILITY CRITERIA Studies reporting effect estimates for the association of quantitative measurements of ambient BC (or EC) and PM2.5, with relevant cardiovascular endpoints (i.e. meeting inclusion criteria) were included in the review. Included studies were evaluated for risk of bias in study design and results. STUDY APPRAISAL AND SYNTHESIS METHODS Risk of bias evaluations assessed aspects of internal validity of study findings based on study design, conduct, and reporting to identify potential issues related to confounding or other biases. Study results are presented to facilitate comparison of the consistency of associations with PM2.5 and BC within and across studies. RESULTS Our results demonstrate similar associations for BC (or EC) and PM2.5 with the cardiovascular endpoints examined. Across studies, associations for BC and PM2.5 varied in their magnitude and precision, and confidence intervals were generally overlapping within studies. Where differences in the magnitude of the association between BC or EC and PM2.5 within a study could be discerned, no consistent pattern across the studies examined was apparent. LIMITATIONS We were unable to assess the independence of the effect of BC, relative the effect of PM2.5, on the cardiovascular system, nor was information available to understand the impact of differential exposure misclassification. CONCLUSIONS Overall, the evidence indicates that both BC (or EC) and PM2.5 are associated with cardiovascular effects but the available evidence is not sufficient to distinguish the effect of BC (or EC) from that of PM2.5 mass.
Collapse
Affiliation(s)
- E F Kirrane
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - T J Luben
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - A Benson
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - E O Owens
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - J D Sacks
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - S J Dutton
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - M Madden
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Economics Department, Duke University, Durham, NC, USA
| | - J L Nichols
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
35
|
Ambient fine particulate matter induce toxicity in lung epithelial-endothelial co-culture models. Toxicol Lett 2019; 301:133-145. [DOI: 10.1016/j.toxlet.2018.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 01/09/2023]
|
36
|
The Association between Indoor Air Quality and Adult Blood Pressure Levels in a High-Income Setting. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15092026. [PMID: 30227637 PMCID: PMC6164223 DOI: 10.3390/ijerph15092026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022]
Abstract
Background: Indoor air pollution is still considered one of the leading causes of morbidity and mortality worldwide. We aimed to investigate the potential association between indoor particulate matter (PM) and fasting clinic blood pressure in adult Australians. Methods: Sixty-three participants residing within the Perth metropolitan area were studied. Participants were aged between 18 and 65 years and free of major medical conditions. We conducted 24-h monitoring of residential PM concentrations, including the size fractions PM1, PM2.5, PM4, and PM10. All participants attended a clinical assessment at Curtin University following a 10–12 h overnight fast. Results: In this study we found that PM1 and PM2.5 were significantly associated with heart rate: a one interquartile range (IQR) increase in PM1 or PM2.5 was associated with a 4–6 beats per minute (bpm) increase in heart rate. Both PM10 and total PM exposure had a significant impact on systolic blood pressure (SBP): a one IQR increase in PM10 and total PM were associated with a 10 mmHg (95% CI: 0.77–20.05) and 12 mmHg (2.28–22.43 mmHg) increase in SBP, respectively. Conclusion: The study findings provide additional support to the thesis that indoor air pollution is an important modifiable factor in the risk of hypertension.
Collapse
|
37
|
Xue X, Chen J, Sun B, Zhou B, Li X. Temporal trends in respiratory mortality and short-term effects of air pollutants in Shenyang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11468-11479. [PMID: 29427268 PMCID: PMC5940718 DOI: 10.1007/s11356-018-1270-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/11/2018] [Indexed: 04/15/2023]
Abstract
Short-term exposures to air pollution are associated with acute effects on respiratory health. This study aimed to describe 10-year temporal trends in respiratory mortality in the urban areas of Shenyang, China, according to gender and age and estimate the effects of air pollution on respiratory diseases (ICD-10J00-J99) and lung cancer (ICD-10 C33-C34) using a case-crossover design. During the study period 2013-2015, the exposure-response relationship between ambient air pollutants and mortality data was fitted by a quasi-Poisson model. Age-standardized mortality rates for a combined number of respiratory diseases and for lung cancer declined in Shenyang; however, death counts increased with aging. Deaths from respiratory diseases increased by 4.7% (95% CI, 0.00-9.9), and lung cancer mortality increased by 6.5% (95% CI, 1.2-12.0), both associated with a 10 μg/m3 increase in exposure to particulate matter < 2.5 μg in diameter (PM2.5). Moreover, males in Shenyang's urban areas were more susceptible to the acute effects of PM2.5 and SO2 exposure; people aged ≥ 65 years had a high susceptibility to ozone, and those aged < 65 years were more susceptible to other air pollutants. These results provided an updated estimate of the short-term effects of air pollution in Shenyang. Since population aging is also associated with increasing mortality from respiratory diseases and lung cancer, reinforcing air quality control measures and health-promoting behaviors is urgent and necessary in Shenyang.
Collapse
Affiliation(s)
- Xiaoxia Xue
- Science Experiment Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Jianping Chen
- Shenyang Center for Disease Control and Prevention, No.37 Qishan Road, Huanggu District, Shenyang, 110031, Liaoning Province, People's Republic of China
| | - Baijun Sun
- Shenyang Center for Disease Control and Prevention, No.37 Qishan Road, Huanggu District, Shenyang, 110031, Liaoning Province, People's Republic of China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
38
|
Magalhaes S, Baumgartner J, Weichenthal S. Impacts of exposure to black carbon, elemental carbon, and ultrafine particles from indoor and outdoor sources on blood pressure in adults: A review of epidemiological evidence. ENVIRONMENTAL RESEARCH 2018; 161:345-353. [PMID: 29195183 DOI: 10.1016/j.envres.2017.11.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Ambient particulate air pollution is known to have detrimental effects on cardiovascular health but less is known about the specific effects of black carbon or elemental carbon (BC/EC) and ultrafine particles (UFP). METHODS We present a narrative review of the epidemiological evidence related to the impact of exposure to BC/EC and UFP on blood pressure in adults. We searched PubMed and EMBASE in September 2017, using a predefined search strategy. Abstracts were screened using predefined inclusion criteria. Data collection was completed using a standard data extraction form. We focused on main effect estimates for associations between short (≤7 days) and long-term exposures to BC/EC and UFP and systolic (SBP) and diastolic blood pressure (DBP). Effect estimates were rescaled to enable direct comparisons between studies. RESULTS Thirty publications were included in the review: 19 studies examined outdoor exposure to BC/EC, 11 examined outdoor UFP, three studies examined indoor BC and one study examined indoor UFP. In general, existing evidence supports a positive association between BC/EC and blood pressure. Evidence for outdoor UFP exposures were less clear as effect estimates were small in magnitude and confidence intervals often included the null. CONCLUSIONS Existing evidence supports a positive association between BC/EC and blood pressure in adults, whereas UFPs do not appear to have a meaningful impact on blood pressure.
Collapse
Affiliation(s)
- Sandra Magalhaes
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| | - Jill Baumgartner
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada; Institute for Health and Social Policy, McGill University, Montreal, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada.
| |
Collapse
|