1
|
Li S, Qin S, Zeng H, Chou W, Oudin A, Kanninen KM, Jalava P, Dong G, Zeng X. Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review. ECO-ENVIRONMENT & HEALTH 2024; 3:476-493. [PMID: 39605965 PMCID: PMC11599988 DOI: 10.1016/j.eehl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors with unambiguous neurotoxic effects. However, due to variability in experimental models, population characteristics, and molecular endpoints, the elucidation of mechanisms underlying PFAS-induced neurotoxicity remains incomplete. In this review, we utilized the adverse outcome pathway (AOP) framework, a comprehensive tool for evaluating toxicity across multiple biological levels (molecular, cellular, tissue and organ, individual, and population), to elucidate the mechanisms of neurotoxicity induced by PFAS. Based on 271 studies, the reactive oxygen species (ROS) generation emerged as the molecular initiating event 1 (MIE1). Subsequent key events (KEs) at the cellular level include oxidative stress, neuroinflammation, apoptosis, altered Ca2+ signal transduction, glutamate and dopamine signaling dyshomeostasis, and reduction of cholinergic and serotonin. These KEs culminate in synaptic dysfunction at organ and tissue levels. Further insights were offered into MIE2 and upstream KEs associated with altered thyroid hormone levels, contributing to synaptic dysfunction and hypomyelination at the organ and tissue levels. The inhibition of Na+/I- symporter (NIS) was identified as the MIE2, initiating a cascade of KEs at the cellular level, including altered thyroid hormone synthesis, thyroid hormone transporters, thyroid hormone metabolism, and binding with thyroid hormone receptors. All KEs ultimately result in adverse outcomes (AOs), including cognition and memory impairment, autism spectrum disorders, attention deficit hyperactivity disorders, and neuromotor development impairment. To our knowledge, this review represents the first comprehensive and systematic AOP analysis delineating the intricate mechanisms responsible for PFAS-induced neurotoxic effects, providing valuable insights for risk assessments and mitigation strategies against PFAS-related health hazards.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangjian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weichun Chou
- Department of Environmental Sciences, College of Natural and Agricultural Sciences, University of California, Riverside, CA, United States
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M. Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Lin PID, Cardenas A, Rokoff LB, Rifas-Shiman SL, Zhang M, Botelho J, Calafat AM, Gold DR, Zota AR, James-Todd T, Hauser R, Webster TF, Oken E, Fleisch AF. Associations of PFAS concentrations during pregnancy and midlife with bone health in midlife: Cross-sectional and prospective findings from Project Viva. ENVIRONMENT INTERNATIONAL 2024; 194:109177. [PMID: 39667063 DOI: 10.1016/j.envint.2024.109177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/12/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND PFAS may impair bone health, but effects of PFAS exposure assessed during pregnancy and the perimenopause-life stages marked by rapidly changing bone metabolism-on later life bone health are unknown. METHODS We studied 531 women in the Boston-area Project Viva cohort. We used multivariable linear, generalized additive, and mixture models to examine associations of plasma PFAS concentrations during early pregnancy [median (IQR) maternal age 32.9 (6.2) years] and midlife [age 51.2 (6.3)] with lumbar spine, total hip, and femoral neck areal bone mineral density (aBMD) and bone turnover biomarkersassessed in midlife. We examined effect modification by diet and physical activity measured at the time of PFAS exposure assessment and by menopausal status in midlife. RESULTS Participants had higher PFAS concentrations during pregnancy [1999-2000; e.g., PFOA median (IQR) 5.4 (3.8) ng/mL] than in midlife [2017-2021; e.g. , PFOA 1.5 (1.2) ng/mL]. Women with higher PFOA, PFOS and PFNA during pregnancy had higher midlife aBMD, especially of the spine [e.g., 0.28 (95% CI: 0.07, 0.48) higher spine aBMD T-score, per doubling of PFOA], with stronger associations observed among those with higher diet quality. In contrast, higher concentrations of all PFAS measured in midlife were associated with lower concurrent aBMD at all sites [e.g., -0.21 (-0.35, -0.07) lower spine aBMD T-score, per doubling of PFOA]; associations were stronger among those who were postmenopausal. The associations of several PFAS with bone resorption (loss) were also stronger among postmenopausal versus premenopausal women. DISCUSSION Plasma PFAS measured during pregnancy versus in midlife had different associations with midlife aBMD. We found an adverse association of PFAS measured in midlife with midlife aBMD, particularly among postmenopausal women. Future studies with longer follow-up are needed to elucidate the effect of PFAS on bone health during the peri- and postmenopausal years.
Collapse
Affiliation(s)
- Pi-I Debby Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Lisa B Rokoff
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Westbrook, ME, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Mingyu Zhang
- Division of General Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Julianne Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ami R Zota
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Abby F Fleisch
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Westbrook, ME, USA; Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA.
| |
Collapse
|
3
|
Lohmann R, Abass K, Bonefeld-Jørgensen EC, Bossi R, Dietz R, Ferguson S, Fernie KJ, Grandjean P, Herzke D, Houde M, Lemire M, Letcher RJ, Muir D, De Silva AO, Ostertag SK, Rand AA, Søndergaard J, Sonne C, Sunderland EM, Vorkamp K, Wilson S, Weihe P. Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176274. [PMID: 39304148 PMCID: PMC11567803 DOI: 10.1016/j.scitotenv.2024.176274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014-2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.
Collapse
Affiliation(s)
- Rainer Lohmann
- University of Rhode Island, Graduate School of Oceanography, South Ferry Road, Narragansett, RI 02882, USA.
| | - Khaled Abass
- University of Sharjah, College of Health Sciences, Department of Environmental Health Sciences, The United Arab Emirates; University of Oulu, Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, Finland
| | - Eva Cecilie Bonefeld-Jørgensen
- Aarhus University, Center for Arctic Health and Molecular Epidemiology, Department of Public Health, DK-8000 Aarhus C, Denmark; University of Greenland, Greenland Center for Health Research, GL-3905 Nuuk, Greenland
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Steve Ferguson
- Fisheries and Oceans Canada, Arctic Region, Winnipeg, MB R3T 2N6, Canada
| | - Kim J Fernie
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | - Philippe Grandjean
- University of Rhode Island, College of Pharmacy, Kingston, RI 02881, USA; University of Southern Denmark, Department of Public Health, DK-5230 Odense, Denmark
| | - Dorte Herzke
- The Norwegian Institute of Public Health, Division of Climate and Environmental Health, P.O.Box 222, Skøyen 0213, Oslo, Norway; Norwegian Institute for Air Research, Hjalmar Johansen gt 14 9006 Tromsø, Norway
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Mélanie Lemire
- Université Laval, Centre de recherche du CHU de Québec, Département de médecine sociale et préventive & Institut de biologie intégrative et des systèmes, 1030 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Carleton University, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada
| | - Derek Muir
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Amila O De Silva
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Sonja K Ostertag
- University of Waterloo, School of Public Health, 200 University Ave W, Waterloo, Ontario, Canada
| | - Amy A Rand
- Carleton University, Department of Chemistry, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Jens Søndergaard
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Elsie M Sunderland
- Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United States
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606 Stakkevollan, 9296 Tromsø, Norway
| | - Pal Weihe
- The National Hospital of the Faroe Islands, Department of Research, Sigmundargøta 5, FO-100 Torshavn, The Faroe Islands; University of the Faroe Islands, Center of Health Science, Torshavn, The Faroe Islands.
| |
Collapse
|
4
|
Khoury C, Weihe P. Key recommendations and research priorities of the 2021 AMAP human health assessment. Int J Circumpolar Health 2024; 83:2408057. [PMID: 39360677 PMCID: PMC11451291 DOI: 10.1080/22423982.2024.2408057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Over the last three decades, the Arctic Monitoring and Assessment Programme has published five human health assessments. These assessments have summarised the current state of the science regarding environmental contaminants and human health in the Arctic. The 2021 Human Health Assessment Report had a particular focus on dietary transitions, in addition to human biomonitoring levels and trends, health effects, risk assessment methodologies, risk communication and multi-disciplinary approaches to contaminants research. The recommendations and research priorities identified in the latest assessment are summarised here to assist decision- and policy-makers in understanding and addressing the impacts of contaminants on human populations in the Arctic.
Collapse
Affiliation(s)
- Cheryl Khoury
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
| |
Collapse
|
5
|
Bonefeld-Jørgensen EC, Long M. Health effects associated with measured contaminants in the Arctic: short communication. Int J Circumpolar Health 2024; 83:2425467. [PMID: 39552042 PMCID: PMC11574950 DOI: 10.1080/22423982.2024.2425467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
The Arctic Monitoring Assessment Program Human Health Assessment report 2021 presents a summary of the presence of environmental contaminants in human populations across the circumpolar Arctic and related health effects. Based on this report the objective of this paper is giving a short summary of the health effects related to the current level of persistent organic pollutants (POP) and metals. The overall key findings are as follows: i. metals and POP (polychlorinated biphenyls, per- and polyfluoroalkyl substances (PFAS)) in the Arctic have known adverse health impacts on humans especially on developing foetuses and children. Lifestyle, diet and nutrition and genetics influence the risk; ii. POP and metals negatively impact the brain and immune system, increasing the risk of childhood obesity, type 2 diabetes later in life and negatively affect foetal growth and development: iii. marine food omega-3 fatty acids can diminish adverse effects of high mercury exposure on cardiovascular and neurological outcomes; iv. the interaction of genetic, lifestyle, nutrition status and contaminants can influence the risk of cancer, metabolic disease, nervous system disorders, disruption of reproduction and foetal and child growth. Future investigations must focus on genetically and effect modifiers and mixtures of POP exposures to explore the effect of chemical interaction on health outcomes.
Collapse
Affiliation(s)
- Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Greenland Center for Health Research, University of Greenland, Nuussuaq, Greenland
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Bali SK, Martin R, Almeida NMS, Saunders C, Wilson AK. Per- and Polyfluoroalkyl (PFAS) Disruption of Thyroid Hormone Synthesis. ACS OMEGA 2024; 9:39554-39563. [PMID: 39346893 PMCID: PMC11425649 DOI: 10.1021/acsomega.4c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of environmental pollutants that have been linked to a variety of health problems in humans, including the disruption of thyroid functions. Herein, for the first time, the impact of PFAS on thyroid hormone synthesis is shown. Mid- to long-chain PFAS impact thyroid hormone synthesis by changing the local hydrogen bond network as well as the required orientation of hormonogenic residues, stopping the production of thyroxine (T4). Furthermore, the toxic effects of sulfonic PFAS are more prominent than those of carboxylic PFAS, highlighting that the exposure to these specific compounds can pose greater problems for thyroid homeostasis.
Collapse
Affiliation(s)
- Semiha Kevser Bali
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Rebecca Martin
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Nuno M S Almeida
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Catherine Saunders
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Angela K Wilson
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
7
|
Jordan-Ward R, von Hippel FA, Wilson CA, Rodriguez Maldonado Z, Dillon D, Contreras E, Gardell A, Minicozzi MR, Titus T, Ungwiluk B, Miller P, Carpenter D, Postlethwait JH, Byrne S, Buck CL. Differential gene expression and developmental pathologies associated with persistent organic pollutants in sentinel fish in Troutman Lake, Sivuqaq, Alaska. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122765. [PMID: 37913975 DOI: 10.1016/j.envpol.2023.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Persistent organic pollutants (POPs) are lipophilic compounds that bioaccumulate in animals and biomagnify within food webs. Many POPs are endocrine disrupting compounds that impact vertebrate development. POPs accumulate in the Arctic via global distillation and thereby impact high trophic level vertebrates as well as people who live a subsistence lifestyle. The Arctic also contains thousands of point sources of pollution, such as formerly used defense (FUD) sites. Sivuqaq (St. Lawrence Island), Alaska was used by the U.S. military during the Cold War and FUD sites on the island remain point sources of POP contamination. We examined the effects of POP exposure on ninespine stickleback (Pungitius pungitius) collected from Troutman Lake in the village of Gambell as a model for human exposure and disease. During the Cold War, Troutman Lake was used as a dump site by the U.S. military. We found that PCB concentrations in stickleback exceeded the U.S. Environmental Protection Agency's guideline for unlimited consumption despite these fish being low trophic level organisms. We examined effects at three levels of biological organization: gene expression, endocrinology, and histomorphology. We found that ninespine stickleback from Troutman Lake exhibited suppressed gonadal development compared to threespine stickleback (Gasterosteus aculeatus) studied elsewhere. Troutman Lake stickleback also displayed two distinct hepatic phenotypes, one with lipid accumulation and one with glycogen-type vacuolation. We compared the transcriptomic profiles of these liver phenotypes using RNA sequencing and found significant upregulation of genes involved in ribosomal and metabolic pathways in the lipid accumulation group. Additionally, stickleback displaying liver lipid accumulation had significantly fewer thyroid follicles than the vacuolated phenotype. Our study and previous work highlight health concerns for people and wildlife due to pollution hotspots in the Arctic, and the need for health-protective remediation.
Collapse
Affiliation(s)
- Renee Jordan-Ward
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Frank A von Hippel
- Department of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., P.O. Box 245210, Tucson, AZ 85724, USA.
| | - Catherine A Wilson
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Zyled Rodriguez Maldonado
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Elise Contreras
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Alison Gardell
- School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce Street, Tacoma, WA 98402, USA
| | - Michael R Minicozzi
- Department of Biological Sciences, Minnesota State University Mankato, 242 Trafton Science Center South, Mankato, MN, 56001, USA
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Bobby Ungwiluk
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - Pamela Miller
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - David Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Place, Rensselaer, NY 12144, USA
| | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Samuel Byrne
- Middlebury College, Department of Biology and Global Health Program, 14 Old Chapel Rd, Middlebury, VT 05753, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| |
Collapse
|
8
|
Rodríguez-Carrillo A, Salamanca-Fernández E, den Hond E, Verheyen VJ, Fábelová L, Murinova LP, Pedraza-Díaz S, Castaño A, García-Lario JV, Remy S, Govarts E, Schoeters G, Olea N, Freire C, Fernández MF. Association of exposure to perfluoroalkyl substances (PFAS) and phthalates with thyroid hormones in adolescents from HBM4EU aligned studies. ENVIRONMENTAL RESEARCH 2023; 237:116897. [PMID: 37598845 DOI: 10.1016/j.envres.2023.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) and phthalates are synthetic chemicals widely used in various types of consumer products. There is epidemiological and experimental evidence that PFAS and phthalates may alter thyroid hormone levels; however, studies in children and adolescents are limited. AIM To investigate the association of exposure to PFAS and phthalate with serum levels of thyroid hormones in European adolescents. METHODS A cross-sectional study was conducted in 406 female and 327 male adolescents (14-17 years) from Belgium, Slovakia, and Spain participating in the Aligned Studies of the HBM4EU Project (FLEHS IV, PCB cohort, and BEA, respectively). Concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), free thyroxine (FT4), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) were measured in sera from study participants, and urinary metabolites of six phthalates (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and the non-phthalate plasticizer DINCH® were quantified in spot urine samples. Associations were assessed with linear regression and g-computational models for mixtures. Effect modification by sex was examined. RESULTS In females, serum PFOA and the PFAS mixture concentrations were associated with lower FT4 and higher FT3 levels; MEP and the sums of DEHP, DiNP, and DINCH® metabolites (∑DEHP, ∑DiNP, and ∑DINCH) were associated with higher FT4; ∑DEHP with lower FT3; and the phthalate/DINCH® metabolite mixture with higher FT4 and lower FT3. In males, PFOA was associated with lower FT4 and the PFAS mixture with higher TSH levels and lower FT4/TSH ratio; MEP and ∑DiNP were associated with higher FT4; and MBzP, ∑DEHP, and the phthalate/DINCH® metabolite mixture with lower TSH and higher FT4/TSH. PFOA, mono-(2-ethyl-5-hydroxyhexyl) phthalate (OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (oxo-MEHP), and monocarboxyoctyl phthalate (MCOP) made the greatest contribution to the mixture effect. CONCLUSIONS Results suggest that exposure to PFAS and phthalates is associated with sex-specific differences in thyroid hormone levels in adolescents.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Elena Salamanca-Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Veerle J Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, 18071, Granada, Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
9
|
Aker A, Ayotte P, Caron-Beaudoin É, Ricard S, Gaudreau É, Lemire M. Cardiometabolic health and per and polyfluoroalkyl substances in an Inuit population. ENVIRONMENT INTERNATIONAL 2023; 181:108283. [PMID: 37883911 DOI: 10.1016/j.envint.2023.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION The cardiometabolic health status of Inuit in Nunavik has worsened in the last thirty years. The high concentrations of perfluoroalkyl acids (PFAAs) may be contributing to this since PFAAs have been linked with hypercholesterolemia, diabetes, and high blood pressure. The aim of this study was to examine the association between a PFAAs mixture and lipid profiles, Type II diabetes, prediabetes, and high blood pressure in this Inuit population. METHODS We included 1212 participants of the Qanuilirpitaa? 2017 survey aged 16-80 years. Two mixture models (quantile g-computation and Bayesian Kernel Machine Regression (BKMR)) were used to investigate the associations between six PFAAs (PFHxS, PFOS, PFOA and three long-chain PFAAs (PFNA, PFDA and PFUnDA)) with five lipid profiles and three cardiometabolic outcomes. Non-linearity and interaction between PFAAs were further assessed. RESULTS An IQR increase in all PFAAs congeners resulted in an increase in total cholesterol (β 0.15, 95% confidence interval (CI) 0.06, 0.24), low-density lipoprotein cholesterol (LDL) (β 0.08, 95% CI 0.01, 0.16), high-density lipoprotein cholesterol (HDL) (β 0.04, 95% CI 0.002, 0.08), apolipoprotein B-100 (β 0.03, 95% CI 0.004, 0.05), and prediabetes (OR 1.80, 95% CI 1.11, 2.91). There was no association between PFAAs and triglycerides, diabetes, or high blood pressure. Long-chain PFAAs congeners were the main contributors driving the associations. Associations were largely linear, and there was no evidence of interaction between the PFAAs congeners. CONCLUSIONS Our study provides further evidence of increasing circulating lipids with increased exposure to PFAAs. The increased risk of prediabetes points to the influence of PFAAs on potential clinical outcomes. International regulation of PFAAs is essential to curb PFAAs exposure and related health effects in Arctic communities.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada.
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Élyse Caron-Beaudoin
- Department of Health and Society, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
10
|
Wu L, Gu J, Duan X, Ge F, Ye H, Kong L, Liu W, Gao R, Jiao J, Chen H, Ji G. Insight into the mechanisms of neuroendocrine toxicity induced by 6:2FTCA via thyroid hormone disruption. CHEMOSPHERE 2023; 341:140031. [PMID: 37660785 DOI: 10.1016/j.chemosphere.2023.140031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
6:2 fluorotonic carboxylic acid (6:2 FTCA), a novel substitute for perfluorooctanoic acid (PFOA), is being used gradually in industrial production such as coatings or processing aids, and its detection rate in the aqueous environment is increasing year by year, posing a potential safety risk to aquatic systems and public health. However, limited information is available on the effects and mechanism of 6:2 FTCA. Therefore, this study was conducted to understand better the neuroendocrine effects of early exposure to 6:2 FTCA and the underlying mechanisms on zebrafish. In this study, zebrafish embryos were treated to varied doses of 6:2 FTCA (0, 0.08 μg/mL, 0.8 μg/mL and 8 μg/mL) at 4 h post-fertilization (hpf) for a duration of six days, which exhibited a pronounced inhibition of early growth and induced a disorganized swim pattern characterized by reduced total swim distance and average swim speed. Simultaneously, the thyroid development of zebrafish larvae was partially hindered, accompanied by decreased T3 levels, altered genes associated with the expression of thyroid hormone synthesis, transformation and transportation and neurotransmitters associated with tryptophan and tyrosine metabolic pathways. Molecular docking results showed that 6:2 FTCA has a robust binding energy with the thyroid hormone receptor (TRβ). Moreover, exogenous T3 supplementation can partially restore the adverse outcomes. Our findings indicated that 6:2 FTCA acts as a thyroid endocrine disruptor and can induce neuroendocrine toxic effects. Furthermore, our results show that targeting TRβ may be a potentially therapeutic strategy for 6:2 FTCA-induced neuroendocrine disrupting effects.
Collapse
Affiliation(s)
- Linlin Wu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Xinjie Duan
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Feng Ge
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Heyong Ye
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Lingcan Kong
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Wenwei Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Rong Gao
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jiandong Jiao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Huanhuan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| |
Collapse
|
11
|
Freire C, Vela-Soria F, Castiello F, Salamanca-Fernández E, Quesada-Jiménez R, López-Alados MC, Fernández M, Olea N. Exposure to perfluoroalkyl substances (PFAS) and association with thyroid hormones in adolescent males. Int J Hyg Environ Health 2023; 252:114219. [PMID: 37451108 DOI: 10.1016/j.ijheh.2023.114219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are found in a wide range of consumer products. Exposure to PFAS in children and adolescents may be associated with alterations in thyroid hormones, which have critical roles in brain function. OBJECTIVE This study investigated the association between plasma concentrations of PFAS and serum levels of total triiodothyronine (T3), free thyroxine (T4), and thyroid-stimulating hormone (TSH) in adolescent males. METHODS In 2017-2019, 151 boys from the Environment and Childhood (INMA)-Granada birth cohort, Spain, participated in a clinical follow up visit at the age of 15-17 years. Plasma concentrations of ten PFAS (PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFOS, and PFHxS) and serum thyroid hormones were measured in 129 of these boys. Linear regression analysis was performed to determine associations of individual PFAS with total T3, free T4, TSH, and free T4/TSH ratio, and quantile g-computation models were performed to assess the mixture effect. Additional models considered iodine status as effect modifier. RESULTS PFOS was the most abundant PFAS in plasma (median = 2.22 μg/L), followed by PFOA (median = 1.00 μg/L), PFNA (median = 0.41 μg/L), and PFHxS (median = 0.40 μg/L). When adjusted by confounders (including age, maternal schooling, and fish intake), PFOA and PFUnDA were associated with an increase in free T4 (β [95% CI] = 0.72 [0.06; 1.38] and 0.36 [0.04; 0.68] pmol/L, respectively, per two-fold increase in plasma concentrations), with no change in TSH. PFOS, the sum of PFOA, PFNA, PFOS, and PFHxS, and the sum of long-chain PFAS were marginally associated with increases in free T4. Associations with higher free T4 and/or total T3 were seen for several PFAS in boys with lower iodine intake (<108 μ/day) alone. Moreover, the PFAS mixture was association with an increase in free T4 levels in boys with lower iodine intake (% change [95% CI] = 6.47 [-0.69; 14.11] per each quartile increase in the mixture concentration). CONCLUSIONS Exposure to PFAS, considered individually or as a mixture, was associated with an increase in free T4 levels in boys with lower iodine intake. However, given the small sample size, the extent of these alterations remains uncertain.
Collapse
Affiliation(s)
- Carmen Freire
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain.
| | | | - Elena Salamanca-Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain.
| | - Raquel Quesada-Jiménez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain.
| | | | - Marieta Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain.
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
12
|
Maddalon A, Pierzchalski A, Kretschmer T, Bauer M, Zenclussen AC, Marinovich M, Corsini E, Herberth G. Mixtures of per- and poly-fluoroalkyl substances (PFAS) reduce the in vitro activation of human T cells and basophils. CHEMOSPHERE 2023; 336:139204. [PMID: 37315852 DOI: 10.1016/j.chemosphere.2023.139204] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
In the last decades, per- and poly-fluoroalkyl substances (PFAS), widely used industrial chemicals, have been in the center of attention because of their omnipotent presence in water and soils worldwide. Although efforts have been made to substitute long-chain PFAS towards safer alternatives, their persistence in humans still leads to exposure to these compounds. PFAS immunotoxicity is poorly understood as no comprehensive analyses on certain immune cell subtypes exist. Furthermore, mainly single entities and not PFAS mixtures have been assessed. In the present study we aimed to investigate the effect of PFAS (short-chain, long-chain and a mixture of both) on the in vitro activation of primary human immune cells. Our results show the ability of PFAS to reduce T cells activation. In particular, exposure to PFAS affected T helper cells, cytotoxic T cells, Natural Killer T cells, and Mucosal associated invariant T (MAIT) cells, as assessed by multi-parameter flow cytometry. Furthermore, the exposure to PFAS reduced the expression of several genes involved in MAIT cells activation, including chemokine receptors, and typical proteins of MAIT cells, such as GZMB, IFNG and TNFSF15 and transcription factors. These changes were mainly induced by the mixture of both short- and long-chain PFAS. In addition, PFAS were able to reduce basophil activation induced by anti-FcεR1α, as assessed by the decreased expression of CD63. Our data clearly show that the exposure of immune cells to a mixture of PFAS at concentrations mimicking real-life human exposure resulted in reduced cell activation and functional changes of primary innate and adaptive human immune cells.
Collapse
Affiliation(s)
- Ambra Maddalon
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Tobias Kretschmer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany; Perinatal Immunology Research Group, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany.
| |
Collapse
|
13
|
Yang Z, Liu R, Liu H, Wei J, Lin X, Zhang M, Chen Y, Zhang J, Sun M, Feng Z, Liu J, Liu X, Huo X, Men K, Yang Q, Chen X, Tang NJ. Sex-specific effect of perfluoroalkyl substances exposure on liver and thyroid function biomarkers: A mixture approach. Int J Hyg Environ Health 2023; 251:114189. [PMID: 37210847 DOI: 10.1016/j.ijheh.2023.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Although studies have investigated the effects of perfluoroalkyl substances (PFASs) on liver and thyroid function, little is known about its combined and sex-specific effect. A total of 688 participants were interviewed and serum PFASs concentration was measured using liquid chromatography/mass spectrometry. Five biomarkers of liver and thyroid function (ALT, GGT, TSH, FT3 and FT4) were chosen as outcomes. A restriction cubic spline function was applied to capture the dose-response relationship between PFASs and liver enzymes and thyroid hormones. Multivariable regression and Bayesian kernel machine regression (BKMR) models were performed to assess the single and overall associations of PFASs with targeted biomarkers. Single-pollutant analyses indicated that increased PFASs concentrations were associated with elevated ALT and GGT levels. BKMR models suggested positive dose-response relationships between PFASs mixtures and ALT and GGT levels. Significant associations were only detected between several PFASs and thyroid hormones, and joint effect of PFASs mixtures on FT3 levels was found at higher concentrations. Meanwhile, sex differences were found in the associations of PFASs with ALT and GGT levels, with significant results only in males. Our findings provide epidemiological evidence for combined and sex-specific effects of PFASs on ALT and GGT levels.
Collapse
Affiliation(s)
- Ze Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Ruifang Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Hongbo Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Jiemin Wei
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Xiaohui Lin
- Sanitary Inspection Institute, Tianjin Centers for Disease Control and Prevention, Tianjin, 300171, China
| | - Mingyue Zhang
- Sanitary Inspection Institute, Tianjin Centers for Disease Control and Prevention, Tianjin, 300171, China
| | - Yu Chen
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300202, China
| | - Jingyun Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Meiqing Sun
- Wuqing District Center for Disease Control and Prevention, Tianjin, 301700, China
| | - Zhe Feng
- Wuqing District Center for Disease Control and Prevention, Tianjin, 301700, China
| | - Jian Liu
- Wuqing District Center for Disease Control and Prevention, Tianjin, 301700, China
| | - Xiangyang Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaoxu Huo
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Kun Men
- Department of Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, 300202, China
| | - Qiaoyun Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
14
|
Zhang L, Liang J, Gao A. Contact to perfluoroalkyl substances and thyroid health effects: A meta-analysis directing on pregnancy. CHEMOSPHERE 2023; 315:137748. [PMID: 36610509 DOI: 10.1016/j.chemosphere.2023.137748] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In vivo, in vitro, and epidemiological evidence suggests that perfluoroalkyl substances (PFAS) may alter thyroid function in human health, with negative effects on maternal and fetal development outcomes. However, data on the effects of PFAS on thyroid hormones remain controversial. Here, we conducted a meta-analysis of 13 eligible studies searched from Embase, PubMed, and Web of Science by July 10, 2022, to explore the relationship between maternal exposure to PFAS and thyroid health effects, including thyroid stimulating hormone (TSH), triiodothyronine (TT3), thyroxin (TT4), free T3 (FT3), and free T4 (FT4). The estimated values (β) and the corresponding confidence intervals (95%CI) were extracted for analysis. The tests for heterogeneity, sensitivity and publication bias between studies were performed using Stata 15.0. The combined results showed a positive association between changes in TSH and exposure to perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA), with no significant correlation observed between changes in other thyroid hormones and exposure to PFAS. This difference was attributed to sample size, region, sample type, body mass index (BMI), and gestational week. Our data recommend verifying the relationship between PFAS exposure and thyroid health effects in a large sample population cohort in future studies. In addition, health care should be taken into account in early and mid-pregnancy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jiayi Liang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
15
|
Byrne S, Seguinot-Medina S, Waghiyi V, Apatiki E, Immingan T, Miller P, von Hippel FA, Buck CL, Carpenter DO. PFAS and PBDEs in traditional subsistence foods from Sivuqaq, Alaska. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77145-77156. [PMID: 35672645 PMCID: PMC9588546 DOI: 10.1007/s11356-022-20757-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The Arctic is a hemispheric sink for both legacy and current use persistent organic pollutants (POPs). Once in the Arctic, POPs biomagnify in food webs, potentially reaching concentrations in high trophic level animals that pose a health concern for people who subsist on those animals. Indigenous Peoples of the Arctic may be highly exposed to POPs through their traditional diets. The objective of this study was to assess concentrations of polybrominated diphenyl ethers (PBDEs) and per- and polyfluoroalkyl substances (PFAS) in tissues of traditionally harvested foods from Sivuqaq (St. Lawrence Island), Alaska. Community health researchers identified volunteer households and local hunters to donate tissues from traditionally harvested animals. Target species included bowhead whale (Balaena mysticetus), Pacific walrus (Odobenus rosmarus), ringed seal (Pusa hispida), bearded seal (Erignathus barbatus), ribbon seal (Histriophoca fasciata), spotted seal (Phoca largha), and reindeer (Rangifer tarandus). PBDEs were frequently detected in all species and tissues. PBDE concentrations tended to be highest in lipid-rich tissues of seals. PFAS were infrequently detected and did not show obvious patterns among species or tissues. This and other studies demonstrate that POPs such as PBDEs are present in tissues of traditional food animals from Sivuqaq, as they are throughout the Arctic, and consumption of these animals likely contributes to exposure among Arctic Indigenous Peoples.
Collapse
Affiliation(s)
- Sam Byrne
- Department of Biology, Global Health Program, Middlebury College, Bicentennial Hall, Bicentennial Way, VT, 05753, Middlebury, USA.
| | | | - Vi Waghiyi
- Alaska Community Action on Toxics, Anchorage, AK, USA
| | | | | | - Pamela Miller
- Alaska Community Action on Toxics, Anchorage, AK, USA
| | - Frank A von Hippel
- Department of Community, Environment & Policy, University of Arizona, Tucson, AZ, USA
| | - Charles Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Albany, NY, USA
| |
Collapse
|
16
|
Li QQ, Liu JJ, Su F, Zhang YT, Wu LY, Chu C, Zhou Y, Shen X, Xiong S, Geiger SD, Qian ZM, McMillin SE, Dong GH, Zeng XW. Chlorinated Polyfluorinated Ether Sulfonates and Thyroid Hormone Levels in Adults: Isomers of C8 Health Project in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6152-6161. [PMID: 35380809 DOI: 10.1021/acs.est.1c03757] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chlorinated polyfluorinated ether sulfonates (Cl-PFESAs) are one kind of replacement chemistry for perfluorooctanesulfonate (PFOS). Recent studies have shown that Cl-PFESAs could interfere with thyroid function in animal models. However, epidemiological evidence on the link between Cl-PFESAs and thyroid function remains scarce. In this study, we focused on two representative legacy perfluoroalkyl substances (PFAS), including PFOS and perfluorooctanoic acid (PFOA), and two PFOS alternatives (6:2 and 8:2 Cl-PFESAs) in the general adult population from a cross-sectional study, the "Isomers of C8 Health Project in China". Three serum thyroid hormones (THs), thyroid stimulating hormone (TSH), free triiodothyronine (FT3), and free thyroxine (FT4), were measured. We fitted generalized linear regression, restricted cubic spline regression, and Bayesian kernel machine regression models to assess associations of individual Cl-PFESAs, legacy PFAS, and PFAS mixtures with THs, respectively. We found individual PFAS and their mixtures were nonlinearly associated with THs. The estimated changes of the TSH level (μIU/mL) at the 95th percentile of 6:2 Cl-PFESA and PFOS against the 5th percentile were -0.74 (95% CI: -0.94, -0.54) and -1.18 (95% CI: -1.37, -0.98), respectively. The present study provided epidemiological evidence for the association of 6:2 Cl-PFESA with thyroid hormone levels in the general adult population.
Collapse
Affiliation(s)
- Qing-Qing Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiao-Jiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Su
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Ting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu-Yin Wu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuanzhong Zhou
- Department of Epidemiology, School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Xubo Shen
- Department of Epidemiology, School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Shimin Xiong
- Department of Epidemiology, School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Sarah Dee Geiger
- School of Nursing and Health Studies, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Guang-Hui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
17
|
Gallo E, Barbiellini Amidei C, Barbieri G, Fabricio ASC, Gion M, Pitter G, Daprà F, Russo F, Gregori D, Fletcher T, Canova C. Perfluoroalkyl substances and thyroid stimulating hormone levels in a highly exposed population in the Veneto Region. ENVIRONMENTAL RESEARCH 2022; 203:111794. [PMID: 34358507 DOI: 10.1016/j.envres.2021.111794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Per- and poly-fluoroalkyl substances (PFAS) are persistent and widespread environmental pollutants. People living in Veneto Region (Italy) have been exposed from the late 1970s to 2013 to elevated concentrations of PFAS through drinking water. The effect of PFAS on thyroid function is still controversial and studies focusing on thyroid stimulating hormone (TSH) have shown inconsistent results. The aim of this study was to evaluate the association between serum PFAS and TSH levels and its dose-response relationship in a large population of highly exposed individuals. METHODS A cross-sectional study was conducted on 21,424 individuals aged 14-39 living in the contaminated area. In the main analysis, participants with prevalent thyroid disease and pregnant women were excluded. Serum levels of perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS) and perfluorononanoic acid (PFNA) were measured. Generalized Additive Models were used to evaluate the association between TSH levels and serum PFAS, using thin plate spline smooth terms to model the potential non-linear relationship. Models were stratified by sex and age group and adjusted for potential confounders. A secondary analysis was conducted to evaluate the association between PFAS with prevalent self-reported thyroid disorders. RESULTS We found no association between TSH and any type of PFAS among adolescents or women. A decrease in TSH concentration was observed in association with an IQR increase in PFHxS and a mild decrease in TSH at low levels of PFOA, PFOS and PFHxS among male adults. Self-reported thyroid disease was more common among women with higher levels of PFNA concentrations, whereas all other PFAS were not associated with thyroid diseases regardless of sex or age. CONCLUSIONS Overall there is no evidence of an association between TSH and PFAS. However, some results are suggestive of a possible inverse association of TSH with PFOA, PFOS and PFHxS among adult males.
Collapse
Affiliation(s)
- Elisa Gallo
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Claudio Barbiellini Amidei
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Giulia Barbieri
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Aline S C Fabricio
- Regional Center for Biomarkers, Department of Clinical Pathology, Azienda ULSS 3 Serenissima, Venice, Italy; Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Massimo Gion
- Regional Center for Biomarkers, Department of Clinical Pathology, Azienda ULSS 3 Serenissima, Venice, Italy
| | - Gisella Pitter
- Screening and Health Impact Assessment Unit, Azienda Zero-Veneto Region, Padova, Italy
| | - Francesca Daprà
- Laboratory Department-Regional Agency for Environmental Prevention and Protection-Veneto Region, Venice, Italy
| | - Francesca Russo
- Directorate of Prevention, Food Safety and Veterinary Public Health-Veneto Region, Venice, Italy
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| |
Collapse
|
18
|
Hagstrom AL, Anastas P, Boissevain A, Borrel A, Deziel NC, Fenton SE, Fields C, Fortner JD, Franceschi-Hofmann N, Frigon R, Jin L, Kim JH, Kleinstreuer NC, Koelmel J, Lei Y, Liew Z, Ma X, Mathieu L, Nason SL, Organtini K, Oulhote Y, Pociu S, Godri Pollitt KJ, Saiers J, Thompson DC, Toal B, Weiner EJ, Whirledge S, Zhang Y, Vasiliou V. Yale School of Public Health Symposium: An overview of the challenges and opportunities associated with per- and polyfluoroalkyl substances (PFAS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146192. [PMID: 33714836 DOI: 10.1016/j.scitotenv.2021.146192] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
On December 13, 2019, the Yale School of Public Health hosted a symposium titled "Per- and Polyfluoroalkyl Substances (PFAS): Challenges and Opportunities" in New Haven, Connecticut. The meeting focused on the current state of the science on these chemicals, highlighted the challenges unique to PFAS, and explored promising opportunities for addressing them. It brought together participants from Yale University, the National Institute of Environmental Health Sciences, the University of Massachusetts Amherst, the University of Connecticut, the Connecticut Agricultural Experiment Station, the Connecticut Departments of Public Health and Energy and Environmental Protection, and the public and private sectors. Presentations during the symposium centered around several primary themes. The first reviewed the current state of the science on the health effects associated with PFAS exposure and noted key areas that warranted future research. As research in this field relies on specialized laboratory analyses, the second theme considered commercially available methods for PFAS analysis as well as several emerging analytical approaches that support health studies and facilitate the investigation of a broader range of PFAS. Since mitigation of PFAS exposure requires prevention and cleanup of contamination, the third theme highlighted new nanotechnology-enabled PFAS remediation technologies and explored the potential of green chemistry to develop safer alternatives to PFAS. The fourth theme covered collaborative efforts to assess the vulnerability of in-state private wells and small public water supplies to PFAS contamination by adjacent landfills, and the fifth focused on strategies that promote successful community engagement. This symposium supported a unique interdisciplinary coalition established during the development of Connecticut's PFAS Action Plan, and discussions occurring throughout the symposium revealed opportunities for collaborations among Connecticut scientists, state and local officials, and community advocates. In doing so, it bolstered the State of Connecticut's efforts to implement the ambitious initiatives that its PFAS Action Plan recommends.
Collapse
Affiliation(s)
- Anna L Hagstrom
- Connecticut Department of Energy and Environmental Protection, Hartford, CT, USA; Connecticut Academy of Science and Engineering, Rocky Hill, CT, USA
| | - Paul Anastas
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Yale School of the Environment, New Haven, CT, USA
| | - Andrea Boissevain
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Stratford Health Department, Stratford, CT, USA
| | - Alexandre Borrel
- NIH/NIEHS/DIR Biostatistics & Computational Biology Branch, Research Triangle Park, NC, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Suzanne E Fenton
- NIH/NIEHS Division of the National Toxicology Program, NTP Laboratory, Research Triangle Park, NC, USA
| | - Cheryl Fields
- Connecticut Department of Public Health, Hartford, CT, USA
| | - John D Fortner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | | | - Raymond Frigon
- Connecticut Department of Energy and Environmental Protection, Hartford, CT, USA
| | - Lan Jin
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Nicole C Kleinstreuer
- NIH/NIEHS/DIR Biostatistics & Computational Biology Branch, Research Triangle Park, NC, USA; NIH/NIEHS Division of the National Toxicology Program, NTP Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA
| | - Jeremy Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Yu Lei
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of Connecticut, Storrs, CT, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Xiuqi Ma
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Lori Mathieu
- Connecticut Department of Public Health, Hartford, CT, USA
| | - Sara L Nason
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | | | - Youssef Oulhote
- School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Shannon Pociu
- Connecticut Department of Energy and Environmental Protection, Hartford, CT, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - James Saiers
- Yale School of the Environment, New Haven, CT, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Brian Toal
- Connecticut Department of Public Health, Hartford, CT, USA
| | - Eric J Weiner
- Clean Water Task Force at Windsor Climate Action, Windsor, CT, USA
| | - Shannon Whirledge
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
19
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
20
|
Babić Leko M, Gunjača I, Pleić N, Zemunik T. Environmental Factors Affecting Thyroid-Stimulating Hormone and Thyroid Hormone Levels. Int J Mol Sci 2021; 22:6521. [PMID: 34204586 PMCID: PMC8234807 DOI: 10.3390/ijms22126521] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023] Open
Abstract
Thyroid hormones are necessary for the normal functioning of physiological systems. Therefore, knowledge of any factor (whether genetic, environmental or intrinsic) that alters the levels of thyroid-stimulating hormone (TSH) and thyroid hormones is crucial. Genetic factors contribute up to 65% of interindividual variations in TSH and thyroid hormone levels, but many environmental factors can also affect thyroid function. This review discusses studies that have analyzed the impact of environmental factors on TSH and thyroid hormone levels in healthy adults. We included lifestyle factors (smoking, alcohol consumption, diet and exercise) and pollutants (chemicals and heavy metals). Many inconsistencies in the results have been observed between studies, making it difficult to draw a general conclusion about how a particular environmental factor influences TSH and thyroid hormone levels. However, lifestyle factors that showed the clearest association with TSH and thyroid hormones were smoking, body mass index (BMI) and iodine (micronutrient taken from the diet). Smoking mainly led to a decrease in TSH levels and an increase in triiodothyronine (T3) and thyroxine (T4) levels, while BMI levels were positively correlated with TSH and free T3 levels. Excess iodine led to an increase in TSH levels and a decrease in thyroid hormone levels. Among the pollutants analyzed, most studies observed a decrease in thyroid hormone levels after exposure to perchlorate. Future studies should continue to analyze the impact of environmental factors on thyroid function as they could contribute to understanding the complex background of gene-environment interactions underlying the pathology of thyroid diseases.
Collapse
Affiliation(s)
| | | | | | - Tatijana Zemunik
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (M.B.L.); (I.G.); (N.P.)
| |
Collapse
|
21
|
Biomarkers of poly- and perfluoroalkyl substances (PFAS) in Sub-Arctic and Arctic communities in Canada. Int J Hyg Environ Health 2021; 235:113754. [PMID: 33984600 DOI: 10.1016/j.ijheh.2021.113754] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 04/15/2021] [Indexed: 01/09/2023]
Abstract
Polyfluoroalkyl substances and perfluoroalkyl substances (PFAS) are a family of anthropogenic chemicals that are used in food packaging, waterproof clothing, and firefighting foams for their water and oil resistant properties. Though levels of some PFAS appear to be decreasing in Canada's south, environmental levels have been increasing in the Arctic due to long-range transport. However, the implications of this on human exposures in sub-Arctic and Arctic populations in Canada have yet to be established. To address this data gap, human biomonitoring research was completed in Old Crow, Yukon, and the Dehcho region, Northwest Territories. Blood samples were collected from adults residing in seven northern First Nations and were analyzed by liquid chromatography mass spectrometry. A total of nine PFAS were quantified: perfluorooctanoic acid (PFOA), perfluorooctane sulphonic acid (PFOS), perfluorohexane sulphonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUdA), perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), and perfluorobutane sulphonic acid (PFBS). In the Dehcho (n = 124), five PFAS had a detection rate greater than 50% including PFOS, PFOA, PFHxS, PFNA, and PFDA. In addition to these PFAS, PFUdA was also detected in at least half of the samples collected in Old Crow (n = 54). Generally, male participants had higher concentrations of PFAS compared to female participants, and PFAS concentrations tended to increase with age. For most PFAS, Old Crow and Dehcho levels were similar or lower to those measured in the general Canadian population (as measured through the Canadian Health Measures Survey or CHMS) and other First Nations populations in Canada (as measured through the First Nations Biomonitoring Initiative or FNBI). The key exception to this was for PFNA which, relative to the CHMS (0.51 μg/L), was approximately 1.8 times higher in Old Crow (0.94 μg/L) and 2.8 times higher in Dehcho (1.42 μg/L) than observed in the general Canadian population. This project provides baseline PFAS levels for participating communities, improving understanding of human exposures to PFAS in Canada. Future research should investigate site-specific PFNA exposure sources and monitor temporal trends in these regions.
Collapse
|
22
|
Mokra K. Endocrine Disruptor Potential of Short- and Long-Chain Perfluoroalkyl Substances (PFASs)-A Synthesis of Current Knowledge with Proposal of Molecular Mechanism. Int J Mol Sci 2021; 22:2148. [PMID: 33670069 PMCID: PMC7926449 DOI: 10.3390/ijms22042148] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Endocrine disruptors are a group of chemical compounds that, even in low concentrations, cause a hormonal imbalance in the body, contributing to the development of various harmful health disorders. Many industry compounds, due to their important commercial value and numerous applications, are produced on a global scale, while the mechanism of their endocrine action has not been fully understood. In recent years, per- and polyfluoroalkyl substances (PFASs) have gained the interest of major international health organizations, and thus more and more studies have been aimed to explain the toxicity of these compounds. PFASs were firstly synthesized in the 1950s and broadly used in the industry in the production of firefighting agents, cosmetics and herbicides. The numerous industrial applications of PFASs, combined with the exceptionally long half-life of these substances in the human body and extreme environmental persistence, result in a common and chronic exposure of the general population to their action. Available data have suggested that human exposure to PFASs can occur during different stages of development and may cause short- or/and long-term health effects. This paper synthetizes the current literature reports on the presence, bioaccumulation and, particularly, endocrine toxicity of selected long- and short-chain PFASs, with a special emphasis on the mechanisms underlying their endocrine actions.
Collapse
Affiliation(s)
- Katarzyna Mokra
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St., 90-236 Lodz, Poland
| |
Collapse
|
23
|
Caron-Beaudoin É, Ayotte P, Blanchette C, Muckle G, Avard E, Ricard S, Lemire M. Perfluoroalkyl acids in pregnant women from Nunavik (Quebec, Canada): Trends in exposure and associations with country foods consumption. ENVIRONMENT INTERNATIONAL 2020; 145:106169. [PMID: 33041046 DOI: 10.1016/j.envint.2020.106169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Perfluoroalkyl acids (PFAAs) are persistent and ubiquitous environmental contaminants that potentially disrupt endocrine system functions. While some PFAAs (perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA)) are regulated, currently used fluorotelomer alcohols (FTOHs) can be transported to the Arctic and are degraded in a number of PFAAs which biomagnify in Arctic wildlife (e.g. perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUdA)). OBJECTIVES From 2004 to 2017, 279 pregnant Inuit women were recruited as part of biomonitoring projects in Nunavik. Our goal was to evaluate: (i) time-trends in plasma/serum PFAAs levels in pregnant Nunavimmiut women between 2004 and 2017; (ii) compare plasma/serum PFAAs levels in Nunavimmiut women in 2016-2017 to those measured in women of childbearing age in the Canadian Health Measure Survey (CHMS); and (iii) evaluate the associations of PFAAs levels with the consumption of country foods and pregnancy and maternal characteristics during pregnancy in the 97 participants recruited in 2016-2017. METHODS Individual blood sample were collected for serum or plasma PFAAs (PFOS, PFOA, pentafluorobenzoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorobutanesulfonic acid (PFBS), perfluorohexane-1-sulfonic acid (PFHxS), PFNA, PFDA, PFUdA) analyses. Socio-demographic data, pregnancy and maternal characteristics and country foods consumption were documented using a questionnaire. Omega-3 and -6 polyunsaturated fatty acids (PUFA) were measured in red blood cell membranes and their ratio used as a biomarker of marine country foods consumption. Time-trends in PFAAs levels were evaluated using ANCOVA models adjusted for relevant co-variables. Serum/plasma levels of PFAAs in the 97 pregnant women aged 16 to 40 years old and recruited in 2016-2017 were compared to those measured in women aged 18 to 40 years old from the CHMS cycle 5 (2016-2017) using the geometric means (GM) and 95% confidence intervals (95% CI). Multivariate regression analyses were performed to examine associations between concentrations of PFAAs and country foods consumption data. RESULTS Statistically-significant downward time trends were noted for concentrations of PFOS, PFOA and PFHxS in pregnant Nunavik women between 2004 and 2017. Conversely, between 2011 and 2016-2017, PFNA, PFDA and PFUdA maternal serum levels increased by 19, 13 and 21% respectively. Among participants in 2016-2017, mean concentrations for PFNA (GM: 2.4 μg/L), PFDA (0.53 μg/L) and PFUdA (0.61 μg/L) were higher than those measured in women aged 18-40 years old in the Cycle 5 (2016-2017) of the CHMS. PFOA (0.53 μg/L) and PFHxS (0.26 μg/L) were lower than in CHMS, whereas PFBA, PFHxA and PFBS were not detected in 2016-2017. Ratios of serum/plasma levels of PFNA/PFOA, PFNA/PFOS, PFNA/PFHxS and PFUdA/PFDA were significantly higher in the 97 pregnant women from Nunavik recruited in 2016-2017 compared to CHMS, highlighting their distinct exposure profile. In multivariate models, PFHxS, PFOS, PFNA, PFDA and PFUdA levels in 2016-2017 were strongly associated with the omega-3/omega-6 PUFA ratio, indicating a positive association between marine country foods consumption and higher exposure to PFAAs. CONCLUSIONS The exposure of pregnant women to long-chain PFAAs (PFNA, PFDA and PFUdA) increased from 2004 to 2017 in Nunavik. Associations noted between PFAAs levels and the omega-3/omega-6 ratio highlights the importance of implementing additional strict regulations on PFAAs and their precursors to protect the high nutritional quality and cultural importance of country foods in Nunavik.
Collapse
Affiliation(s)
- Élyse Caron-Beaudoin
- Department of Health and Society and Department of Environmental and Physical Sciences, University of Toronto Scarborough, Toronto, ON, Canada; Centre for Clinical Epidemiology and Evaluation, VCH Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada; Département de médecine sociale et préventive, Université Laval, Québec, QC, Canada; Centre de toxicologie du Québec, Institut national de santé publique du Québec, Québec, QC, Canada
| | - Caty Blanchette
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Gina Muckle
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada; École de psychologie, Université Laval, Québec, QC, Canada
| | - Ellen Avard
- Nunavik Research Centre, Makivik Corporation, Kuujjuaq, QC, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada; Département de médecine sociale et préventive, Université Laval, Québec, QC, Canada.
| |
Collapse
|
24
|
Bjorke-Monsen AL, Varsi K, Averina M, Brox J, Huber S. Perfluoroalkyl substances (PFASs) and mercury in never-pregnant women of fertile age: association with fish consumption and unfavorable lipid profile. BMJ Nutr Prev Health 2020; 3:277-284. [PMID: 33521539 PMCID: PMC7841832 DOI: 10.1136/bmjnph-2020-000131] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives To examine concentrations of perfluoroalkyl substances (PFASs) and lifestyle factors that may contribute to higher levels of pollutants in never-pregnant women of fertile age. Design Observational cross-sectional study. Setting Participants were recruited among employees and students at Haukeland University Hospital and the University of Bergen, Norway. Participants Healthy, never-pregnant Norwegian women (n=158) of fertile age (18-39 years). Outcomes Concentrations of 20 different PFASs, mercury (Hg), lead, cadmium, total, high-density lipoprotein and low-density lipoprotein (LDL) cholesterol, in addition to self-reported data on dietary intake. Results Seven PFASs were detected in more than 95% of the women. Women aged 30-39 years had higher concentrations of sum PFAS compared with younger women. Serum PFASs were significantly intercorrelated (rho: 0.34-0.98, p<0.001) and six of them were significantly correlated to whole blood Hg (rho: 0.21-0.74, p<0.01). Fish consumption was the strongest predictor for most serum PFASs and for whole blood Hg. Fish consumption and serum perfluorooctanesulfonic acid (PFOS) concentrations were both positively associated with serum total and LDL cholesterol, established risk factors for cardiovascular disease. Conclusions The majority of Norwegian never-pregnant women of fertile age had a mixture of seven different PFASs and Hg detected in their blood. PFAS concentrations were higher in older women and associated with fish intake. As the mean age of women at first birth is increasing, several factors require further consideration including diet, as this may influence the burden of PFAS to the next generation. Trial registration number ClinicalTrials.gov ID: NCT03272022, Unique Protocol ID: 2011/2447, Regional Committee for Medical Research Ethics West (2011/2447), 12 January 2012.
Collapse
Affiliation(s)
- Anne-Lise Bjorke-Monsen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Kristin Varsi
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Maria Averina
- Department of Laboratory Medicine, University Hospital of North Norway, Tromso, Norway.,Department of Community Medicine, UiT The Arctic University of Norway, Tromso, Norway
| | - Jan Brox
- Department of Laboratory Medicine, University Hospital of North Norway, Tromso, Norway.,Department of Community Medicine, UiT The Arctic University of Norway, Tromso, Norway
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Tromso, Norway
| |
Collapse
|
25
|
Lyu X, Liu X, Sun Y, Gao B, Ji R, Wu J, Xue Y. Importance of surface roughness on perfluorooctanoic acid (PFOA) transport in unsaturated porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115343. [PMID: 32814265 DOI: 10.1016/j.envpol.2020.115343] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Understanding the subsurface transport of perfluorooctanoic acid (PFOA) is of considerable interest for evaluating its potential risks to humans and ecosystems. In this study, packed-column experiments were conducted to examine the influence of surface roughness on PFOA transport in unsaturated glass beads, quartz sand and limestone porous media. Results showed decreasing moisture content significantly increased the air-water interfacial adsorption of PFOA and led to greater retardation in all three types of porous media. Particularly, rougher surface (limestone > quartz sand > glass beads) and smaller grain size (i.e. a larger solid specific surface area, SSSA) significantly enhanced PFOA retardation under unsaturated conditions. These results were further supported by bubble column experiments and SSSA analysis of porous media, which demonstrate that except for the factors affecting PFOA transport in solid-water interface (e.g. surface charge and chemical heterogeneity), the greater retardation of PFOA during transport is attributed to the larger air-water interfacial areas associated with rougher surface and smaller grain size and hence greater interfacial adsorption of PFOA. Our results indicated the importance of surface roughness on the retention and transport of PFOA in the unsaturated zone.
Collapse
Affiliation(s)
- Xueyan Lyu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China; School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xing Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Yuanyuan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jichun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Yuqun Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
26
|
Zheng G, Miller P, von Hippel FA, Buck CL, Carpenter DO, Salamova A. Legacy and emerging semi-volatile organic compounds in sentinel fish from an arctic formerly used defense site in Alaska. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113872. [PMID: 32069693 PMCID: PMC7082201 DOI: 10.1016/j.envpol.2019.113872] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 05/20/2023]
Abstract
The Arctic is subject to long-range atmospheric deposition of globally-distilled semi-volatile organic compounds (SVOCs) that bioaccumulate and biomagnify in lipid-rich food webs. In addition, locally contaminated sites may also contribute SVOCs to the arctic environment. Specifically, Alaska has hundreds of formerly used defense (FUD) sites, many of which are co-located with Alaska Native villages in remote parts of the state. The purpose of this study was to investigate the extent of SVOC contamination on Alaska's St. Lawrence Island through the analysis of sentinel fish, the ninespine stickleback (Pungitius pungitius), collected from Troutman Lake located within the watershed of an FUD site and adjacent to the Yupik community of Gambell. We measured the concentrations of legacy and emerging SVOCs in 303 fish samples (81 composites), including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs) and their diester metabolites, and per- and poly-fluoroalkyl substances (PFAS). PBDEs and PCBs were the most abundant SVOC groups found in stickleback with ΣPBDE and ΣPCB median concentrations of 25.8 and 10.9 ng/g ww, respectively, followed by PFAS (median ΣPFAS 7.22 ng/g ww). ΣOPE and ΣOPE metabolite concentrations were lower with median concentrations of 4.97 and 1.18 ng/g ww, respectively. Chemical patterns and distributions based on correlations and comparison with SVOC concentrations in stickleback from other parts of the island suggest strong local sources of PCBs, PBDEs, and PFAS on St. Lawrence Island.
Collapse
Affiliation(s)
- Guomao Zheng
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, USA
| | - Pamela Miller
- Alaska Community Action on Toxics, Anchorage, AK, 99518, USA
| | - Frank A von Hippel
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - David O Carpenter
- University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Amina Salamova
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
27
|
Perfluoroalkyl chemicals in neurological health and disease: Human concerns and animal models. Neurotoxicology 2020; 77:155-168. [DOI: 10.1016/j.neuro.2020.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 02/01/2023]
|
28
|
Coperchini F, Croce L, Ricci G, Magri F, Rotondi M, Imbriani M, Chiovato L. Thyroid Disrupting Effects of Old and New Generation PFAS. Front Endocrinol (Lausanne) 2020; 11:612320. [PMID: 33542707 PMCID: PMC7851056 DOI: 10.3389/fendo.2020.612320] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent a group of synthetic compounds widely used in industry plants due to their low grade of degradation, surfactant properties, thermic and flame resistance. These characteristics are useful for the industrial production, however they are also potentially dangerous for human health and for the environment. PFAS are persistent pollutants accumulating in waters and soil and recoverable in foods due to their release by food packaging. Humans are daily exposed to PFAS because these compounds are ubiquitous and, when assimilated, they are difficult to be eliminated, persisting for years both in humans and animals. Due to their persistence and potential danger to health, some old generation PFAS have been replaced by newly synthesized PFAS with the aim to use alternative compounds presumably safer for humans and the environment. Yet, the environmental pollution with PFAS remains a matter of concern worldwide and led to large-scale epidemiological studies both on plants' workers and on exposed people in the general population. In this context, strong concern emerged concerning the potential adverse effects of PFAS on the thyroid gland. Thyroid hormones play a critical role in the regulation of metabolism, and thyroid function is related to cardiovascular disease, fertility, and fetal neurodevelopment. In vitro, ex vivo data, and epidemiological studies suggested that PFASs may disrupt the thyroid hormone system in humans, with possible negative repercussions on the outcome of pregnancy and fetal-child development. However, data on the thyroid disrupting effect of PFAS remain controversial, as well as their impact on human health in different ages of life. Aim of the present paper is to review recent data on the effects of old and new generation PFAS on thyroid homeostasis. To this purpose we collected information from in vitro studies, animal models, and in vivo data on exposed workers, general population, and pregnant women.
Collapse
Affiliation(s)
- Francesca Coperchini
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Laura Croce
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Gianluca Ricci
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Flavia Magri
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mario Rotondi
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Marcello Imbriani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Luca Chiovato
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- *Correspondence: Luca Chiovato,
| |
Collapse
|
29
|
Jain RB, Ducatman A. Perfluoroalkyl acids and thyroid hormones across stages of kidney function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133994. [PMID: 31454605 DOI: 10.1016/j.scitotenv.2019.133994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/18/2019] [Accepted: 08/18/2019] [Indexed: 02/06/2023]
Abstract
Data for US adults aged ≥20 years for 2007-2012 (N = 7020) were used to study concentrations of thyroid stimulating hormone (TSH), free (FT3) and total triiodothyronine (TT3), free (FT4) total thyroxine (TT4), and thyroglobulin (TGN) across stages of glomerular function (GF). Data for 2007-2008 and 2011-2012 (N = 2549) were used to study associations between thyroid hormone biomarkers and five serum perfluoroalkyl acids (PFAAs). We report how thyroid hormone biomarkers vary in human serum across stages of GF. Stages considered were: GF-1 (normal, eGFR >90 mL/min/1.73 m2), GF-2 (60 ≤ eGFR≤90 mL/min/1.73 m2), GF-3A (45 ≤eGFR<60 mL/min/1.73 m2), and GF-3B/4 (15 ≤ eGFR<45 mL/min/1.73 m2). Regression models stratified by GF stages were fitted to evaluate associations between the concentrations of selected PFAAs and thyroid hormones and to evaluate the variability in concentrations of thyroid hormones across the stages of GF. Adjusted geometric means (AGM) for TSH sharply increased from GF-1 (1.34 μIU/mL) to GF-2 (1.58 μIU/mL) and then remained relatively stable. AGMs of FT3 and TT3 decreased consistently from GF-1 to GF-3B/4; from 3.24 to 2.79 pg/mL for FT3 and from 115.7 to 96.4 ng/dL for TT3. AGMs for FT4 increased from GF-2 onward. TGN increased as glomerular filtration worsened from GF-1 through GF-3B/4. In contrast to strong relationships of thyroid hormone markers to stages of renal function, only scattered, inconsistent findings characterized relationship of PFAAs to thyroid markers across stages of kidney disease. For example, TSH was positively associated with PFOA at GF-2 (β = 0.08522, p < 0.01) but negatively associated at GF-3A (β = - 0.22926, p = 0.04). Thus, associations between kidney disease and thyroid hormone are clear, but the relationships between PFAAs and thyroid hormones vary inconsistently from stage to stage and reveal no trend. For thyroid hormone investigations, we conclude stratification by glomerular function stage is likely not needed.
Collapse
Affiliation(s)
| | - Alan Ducatman
- West Virginia University School of Public Health, Morgantown, WV, USA
| |
Collapse
|
30
|
Aimuzi R, Luo K, Chen Q, Wang H, Feng L, Ouyang F, Zhang J. Perfluoroalkyl and polyfluoroalkyl substances and fetal thyroid hormone levels in umbilical cord blood among newborns by prelabor caesarean delivery. ENVIRONMENT INTERNATIONAL 2019; 130:104929. [PMID: 31228788 PMCID: PMC7021220 DOI: 10.1016/j.envint.2019.104929] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/20/2019] [Accepted: 06/12/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been reported to disrupt the thyroid function. But epidemiological evidence on the association between PFAS and thyroid hormone (TH) levels in cord blood is scarce and controversial. We aimed to examine the association between cord blood PFAS concentrations and TH levels in prelabor caesarean deliveries. METHODS We measured ten PFAS and three THs in cord blood in 568 prelabor caesarean deliveries. The associations between PFAS and TH levels were examined using multiple linear regression model and sparse partial least squares (SPLS) regression model. RESULTS In SPLS analyses, thyroid stimulating hormone (TSH) level decreased with increasing concentrations of perfluorooctane sulfonate (PFOS, β = -0.012, 95% confidence interval [CI]: -0.019, -0.005), perfluorononanoic acid (PFNA, β = -0.012, 95% CI: -0.019, -0.005), perfluorodecanoic acid (PFDA, β = -0.012, 95% CI: -0.02, -0.005), perfluoroundecanoic acid (PFUA, β = -0.013, 95% CI: -0.021, -0.006) and perfluorododecanoic acid (PFDoA, β = -0.013, 95% CI: -0.023, -0.006). Moreover, we found a positive association between PFDoA and free thyroxine (FT4) levels (β = 0.190, 95% CI: 0.063, 0.304) after adjusting for potential confounders. Free tri-iodothyronine (FT3) levels were positively associated with concentrations of PFOS (β = 0.059, 95% CI: 0.023, 0.100), but negatively associated with PFDoA (β = -0.153, 95% CI: -0.212, -0.106). We also observed gender disparity in the associations of PFAS exposure and FT3, FT4, TSH levels. CONCLUSION Our results suggest that prenatal exposure to certain PFAS may disrupt fetal thyroid function. The effect may be gender-specific.
Collapse
Affiliation(s)
- Ruxianguli Aimuzi
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Kai Luo
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Liping Feng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Fengxiu Ouyang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Jun Zhang
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
31
|
Han X, Meng L, Li Y, Li A, Turyk ME, Yang R, Wang P, Xiao K, Li W, Zhao J, Zhang Q, Jiang G. Associations between Exposure to Persistent Organic Pollutants and Thyroid Function in a Case-Control Study of East China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9866-9875. [PMID: 31355638 DOI: 10.1021/acs.est.9b02810] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Animal studies have indicated that persistent organic pollutants (POPs) affect thyroid hormone homeostasis, while epidemiological studies involving human have not shown consistent results. In this study, we investigated the associations between POP exposure and thyroid function among adult population of East China. One hundred eighty-six participants diagnosed with thyroid disease and 186 participants without thyroid disease from Shandong, China were enrolled in the case-control study during 2016 to 2017. We found that POP exposure was significantly and positively associated with the risk of thyroid disease. The association of thyroid disease with a sum of 17 POPs followed a nonmonotonic dose response, with an adjusted odds ratio of 2.09 (95% confidence intervals: 1.13-3.87, p = 0.019) for the second quartile. Among 186 participants in the control group, concentrations of POPs showed negative associations with triiodothyronine (T3), free T3 (FT3), thyroxine (T4), and free T4 (FT4) in males and positive associations with T4 and FT4 in females. Taken together, these findings suggest that POP exposure can disrupt thyroid hormone homeostasis and increase the risk of thyroid disease.
Collapse
Affiliation(s)
- Xu Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Lingling Meng
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University , Jinan 250014 , China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - An Li
- School of Public Health , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Mary E Turyk
- School of Public Health , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Pu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Ke Xiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Wenjuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Junpeng Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
32
|
Niu J, Liang H, Tian Y, Yuan W, Xiao H, Hu H, Sun X, Song X, Wen S, Yang L, Ren Y, Miao M. Prenatal plasma concentrations of Perfluoroalkyl and polyfluoroalkyl substances and neuropsychological development in children at four years of age. Environ Health 2019; 18:53. [PMID: 31196101 PMCID: PMC6567504 DOI: 10.1186/s12940-019-0493-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/31/2019] [Indexed: 05/02/2023]
Abstract
OBJECTIVE Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are persistent pollutants and have endocrine disruptive and neurotoxic effects. The association between maternal PFAS concentrations and neuropsychological development in children is inconclusive. The present study aimed to examine the effect of maternal PFAS concentrations on neuropsychological development in 4-years-old children. METHODS We used data from Shanghai-Minhang Birth Cohort, which recruited pregnant women at 12-16 gestational weeks. Among 981 women having PFAS measurement, 533 mother-child pairs were included in the study. A total of eight PFASs were measured, including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUdA), perfluorododecanoic acid (PFDoA), and perfluorotridecanoic acid (PFTrDA). When infants turned 4 years old, mothers were asked to complete the Ages and Stages Questionnaires® (ASQ) to assess neuropsychological development of their children. Poisson regression model with robust variance estimates was used to examine the association between maternal PFAS concentrations and each developmental subscale of the ASQ. RESULTS Prenatal plasma concentrations of most PFASs tended to be associated with increased risk of development problem in personal-social skills, including PFHxS, PFOS, PFOA, PFNA, PFDA, and PDUdA, and the associations for PFNA and PFDA were significant (per natural log unit increase: RRPFNA = 1.92, 95% CI: 1.21, 3.05; RR PFDA = 1.66, 95% CI: 1.17, 2.37). In stratified analyses by child' sex, the consistent pattern of higher risk of developmental problems in personal-social skills associated with most PFASs was mainly observed among girls (RRPFOS = 2.56, 95% CI: 1.20, 5.45; RRPFOA = 9.00, 95% CI: 3.82, 21.21; RRPFNA = 3.11, 95% CI: 1.36, 7.13; RRPFDA = 2.20, 95% CI: 1.21, 4.00; RRPFUdA = 2.44, 95% CI: 1.14, 5.20; RRPFDoA = 1.62, 95% CI: 1.04, 2.54). Boys with higher maternal PFOA concentrations had a decreased risk of developmental problems in gross motor skills (RR = 0.47, 95% CI: 0.25, 0.89). CONCLUSION Prenatal plasma PFAS concentrations were associated with neuropsychological development in girls at 4 years of age, mainly in the subset of personal-social skills.
Collapse
Affiliation(s)
- Jinbo Niu
- The First People's Hospital of Jianshan, Jiaxing, Zhejiang Province, China
| | - Hong Liang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Youping Tian
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Wei Yuan
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Hong Xiao
- Department of Pharmaceutical Outcomes & Policy, College of Pharmacy, University of Florida, 1225 Center Drive, HPNP 3338, Gainesville, FL, 32610, USA
| | - Hui Hu
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| | - Xiaowei Sun
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Xiuxia Song
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Sheng Wen
- National Reference Laboratory of Dioxin, Institute of Health Inspection and Detection, Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Li Yang
- Department of Public Educaion, Weifang Medical University, 7166 Baotong west Road, Weifang, 261053, Shandong Province, China
| | - Yanfeng Ren
- Department of Health Statistics, School of Public Health and Management, Weifang Medical University, 7166 Baotong west Road, Weifang, 261053, Shandong Province, China.
| | - Maohua Miao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| |
Collapse
|
33
|
Wang W, Zhou W, Wu S, Liang F, Li Y, Zhang J, Cui L, Feng Y, Wang Y. Perfluoroalkyl substances exposure and risk of polycystic ovarian syndrome related infertility in Chinese women. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:824-831. [PMID: 30731307 DOI: 10.1016/j.envpol.2019.01.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Perfluoroalkyl substances (PFASs) are a family of synthetic, fluorinated organic compounds. They have been widely used in industrial applications and consumer products and widespread in the environment, wildlife and human. Experimental and epidemiologic evidence suggested that PFASs are capable of interfering with endocrine processes and have potential reproductive and developmental toxicities. Polycystic ovarian syndrome (PCOS), one of the main reasons of female infertility, is a common endocrine disorder in reproductive age women. We performed a case-control study to evaluate associations between PCOS-related infertility and PFASs concentrations in plasma. A total of 180 infertile PCOS-cases and 187 healthy controls were recruited from the Center for Reproductive Medicine of Shandong University. Blood specimens were collected at enrollment and analyzed for ten PFASs using liquid chromatography-tandem mass spectrometry. Multivariable logistic regression procedure was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for each PFAS. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were the dominant PFASs in the plasma of participants, with the median concentration of 5.07 ng/mL and 4.05 ng/mL, respectively. The median levels of individual PFAS were not significantly different between PCOS-cases and controls. While adjusted for the potential confounders (age, BMI, household income, education level, employment status, age at menarche, menstrual volume), the plasma concentration of perfluorododecanoic acid (PFDoA), a 12 carbons lengths of perfluorocarboxylic acids, was associated with a significantly increased risk of PCOS-related infertility (medium vs low tertile: OR = 2.36, 95% CI: 1.12, 4.99, P = 0.02; high vs low tertile: OR = 3.04, 95% CI: 1.19, 7.67, P = 0.02), with the P trend 0.01. No significant relationship was observed between PCOS-related infertility and other PFAS analytes in the adjusted model, despite perfluoroundecanoic acid showed a negative association (P trend 0.03). The potential reproductive health effects of PFASs and the underlying mechanisms merit further investigation in the future.
Collapse
Affiliation(s)
- Wei Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Wei Zhou
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Fan Liang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Linlin Cui
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250001, PR China
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yan Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.
| |
Collapse
|