1
|
Huang H, Lv Y, Chen Q, Huang X, Qin J, Liu Y, Liao Q, Xing X, Chen L, Liu Q, Li S, Long Z, Wang Q, Chen W, Wei Q, Hou M, Hu Q, Xiao Y. Empirical analysis of lead neurotoxicity mode of action and its application in health risk assessment. ENVIRONMENTAL RESEARCH 2024; 251:118708. [PMID: 38493858 DOI: 10.1016/j.envres.2024.118708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The mode of action (MOA) framework is proposed to inform a biological link between chemical exposures and adverse health effects. Despite a significant increase in knowledge and awareness, the application of MOA in human health risk assessment (RA) remains limited. This study aims to discuss the adoption of MOA for health RA within a regulatory context, taking our previously proposed but not yet validated MOA for lead neurotoxicity as an example. We first conducted a quantitative weight of evidence (qWOE) assessment, which revealed that the MOA has a moderate confidence. Then, targeted bioassays were performed within an in vitro blood-brain barrier (BBB) model to quantitatively validate the scientific validity of key events (KEs) in terms of essentiality and concordance of empirical support (dose/temporal concordance), which increases confidence in utilizing the MOA for RA. Building upon the quantitative validation data, we further conducted benchmark dose (BMD) analysis to map dose-response relationships for the critical toxicity pathways, and the lower limit of BMD at a 5% response (BMDL5) was identified as the point of departure (POD) value for adverse health effects. Notably, perturbation of the Aryl Hydrocarbon Receptor (AHR) signaling pathway exhibited the lowest POD value, measured at 0.0062 μM. Considering bioavailability, we further calculated a provisional health-based guidance value (HBGV) for children's lead intake, determining it to be 2.56 μg/day. Finally, the health risk associated with the HBGV was assessed using the hazard quotient (HQ) approach, which indicated that the HBGV established in this study is a relative safe reference value for lead intake. In summary, our study described the procedure for utilizing MOA in health RA and set an example for MOA-based human health risk regulation.
Collapse
Affiliation(s)
- Hehai Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Department of Occupational Health, Public Health Service Center, Bao'an District, Shenzhen, 518126, China
| | - Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingfei Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaowei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Jingyao Qin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qilong Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuangqi Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zihao Long
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mengjun Hou
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Li YC, Liu SY, Li HR, Meng FB, Qiu J, Qian YZ, Xu YY. Use of Transcriptomics to Reveal the Joint Immunotoxicity Mechanism Initiated by Difenoconazole and Chlorothalonil in the Human Jurkat T-Cell Line. Foods 2023; 13:34. [PMID: 38201063 PMCID: PMC10778019 DOI: 10.3390/foods13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
It is very important to evaluate the immunotoxicity and molecular mechanisms of pesticides. In this study, difenoconazole and chlorothalonil were evaluated for immunotoxicity by using the human Jurkat T-cell line, and the EC50 were 24.66 and 1.17 mg/L, respectively. The joint exposure of difenoconazole and chlorothalonil showed a synergistic effect at low concentrations (lower than 10.58 mg/L) but an antagonistic effect at high concentrations (higher than 10.58 mg/L). With joint exposure at a concentration of EC10, the proportion of late apoptotic cells was 2.26- and 2.91-fold higher than that with exposure to difenoconazole or chlorothalonil alone, respectively. A transcriptomics analysis indicated that the DEGs for single exposure are associated with immunodeficiency disease. Single exposure to chlorothalonil was mainly involved in cation transportation, extracellular matrix organization, and leukocyte cell adhesion. Single exposure to difenoconazole was mainly involved in nervous system development, muscle contraction, and immune system processes. However, when the joint exposure dose was EC10, the DEGs were mainly involved in the formation of cell structures, but the DEGs were mainly involved in cellular processes and metabolism when the joint exposure dose was EC25. The results indicated that the immunotoxicological mechanisms underlying joint exposure to difenoconazole and chlorothalonil are different under low and high doses.
Collapse
Affiliation(s)
- Yun-Cheng Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.L.); (J.Q.); (Y.-Y.X.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.-Y.L.); (H.-R.L.); (F.-B.M.)
| | - Shu-Yan Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.-Y.L.); (H.-R.L.); (F.-B.M.)
| | - Hou-Ru Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.-Y.L.); (H.-R.L.); (F.-B.M.)
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.-Y.L.); (H.-R.L.); (F.-B.M.)
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.L.); (J.Q.); (Y.-Y.X.)
| | - Yong-Zhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.L.); (J.Q.); (Y.-Y.X.)
| | - Yan-Yang Xu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.L.); (J.Q.); (Y.-Y.X.)
| |
Collapse
|
3
|
Johnson KJ, Costa E, Marshall V, Sriram S, Venkatraman A, Stebbins K, LaRocca J. A microRNA or messenger RNA point of departure estimates an apical endpoint point of departure in a rat developmental toxicity model. Birth Defects Res 2022; 114:559-576. [PMID: 35596682 PMCID: PMC9324934 DOI: 10.1002/bdr2.2046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Traditional developmental toxicity testing practice examines fetal apical endpoints to identify a point of departure (POD) for risk assessment. A potential new testing paradigm involves deriving a POD from a comprehensive analysis of molecular-level change. Here, the rat ketoconazole endocrine-mediated developmental toxicity model was used to test the hypothesis that maternal epigenomic (miRNA) and transcriptomic (mRNA) PODs are similar to fetal apical endpoint PODs. Sprague-Dawley rats were exposed from gestation day (GD) 6-21 to 0, 0.063, 0.2, 0.63, 2, 6.3, 20, or 40 mg/kg/day ketoconazole. Dam systemic, liver, and placenta PODs, along with GD 21 fetal resorption, body weight, and skeletal apical PODs were derived using BMDS software. GD 21 dam liver and placenta miRNA and mRNA PODs were obtained using three methods: a novel individual molecule POD accumulation method, a first mode method, and a gene set method. Dam apical POD values ranged from 2.0 to 38.6 mg/kg/day; the lowest value was for placenta histopathology. Fetal apical POD values were 10.9-20.3 mg/kg/day; the lowest value was for fetal resorption. Dam liver miRNA and mRNA POD values were 0.34-0.69 mg/kg/day, and placenta miRNA and mRNA POD values were 2.53-6.83 mg/kg/day. Epigenomic and transcriptomic POD values were similar across liver and placenta. Deriving a molecular POD from dam liver or placenta was protective of a fetal apical POD. These data support the conclusion that a molecular POD can be used to estimate, or be protective of, a developmental toxicity apical POD.
Collapse
Affiliation(s)
| | | | - Valerie Marshall
- Labcorp Early Development Laboratories, Inc., Greenfield, Indiana, USA
| | | | | | | | | |
Collapse
|
4
|
Leão TK, Ribeiro DL, Machado ART, Costa TR, Sampaio SV, Antunes LMG. Synephrine and caffeine combination promotes cytotoxicity, DNA damage and transcriptional modulation of apoptosis-related genes in human HepG2 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 868-869:503375. [PMID: 34454690 DOI: 10.1016/j.mrgentox.2021.503375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
The abusive consumption of thermogenic supplements occurs worldwide and deserves special attention due to their use to stimulate weight loss and prevent obesity. Thermogenic formulations usually contain Synephrine (SN) and Caffeine (CAF), stimulating compounds extracted from natural sources, but no genetic toxicology studies have predicted this hazardous combination potential. This study examined the toxicogenomic responses induced by SN and CAF, either alone or in combination, in the human hepatic cell line HepG2 in vitro. SN (0.03-30 μM) and CAF (0.6-600 μM) alone did neither decrease cell viability nor induce DNA damage, as assessed using the MTT and comet assays, respectively. SN (3 μM) and CAF (30-600 μM) were combined at concentrations similar to those found in commercial dietary supplements. SN/CAF at 3:90 and 3:600 μM ratios significantly decreased cell viability and increased DNA damage levels in HepG2 cells. CAF (600 μM) and the SN/CAF association at 3:60, 3:90, and 3:600 μM ratios promoted cell death by apoptosis, as demonstrated by flow cytometry. Similar results were observed in gene expression (RT-qPCR): SN/CAF up-regulated the expression of apoptosis- (BCL-2 and CASP9) and DNA repair-related (XPC) genes. SN/CAF at 3:90 μM also downregulated the expression of cell cycle control (CDKN1A) genes. In conclusion, the SN/CAF combination reduces cell viability by inducing apoptosis, damages DNA, and modulates the transcriptional expression of apoptosis-, cell cycle-, and DNA repair-related genes in human hepatic (HepG2) cells in vitro. These effects can be worrisome to consumers of thermogenic supplements.
Collapse
Affiliation(s)
- Tainá Keiller Leão
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Diego Luís Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, CEP: 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Ana Rita Thomazela Machado
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Tássia Rafaela Costa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Ribeiro DL, Machado ART, Machado C, Ferro Aissa A, Dos Santos PW, Barcelos GRM, Antunes LMG. p-synephrine induces transcriptional changes via the cAMP/PKA pathway but not cytotoxicity or mutagenicity in human gastrointestinal cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:196-212. [PMID: 33292089 DOI: 10.1080/15287394.2020.1855490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
p-Synephrine (SN) is an alkaloid added to thermogenic formulations for weight loss that is predominantly absorbed in the human gastrointestinal tract (GI). As the adverse effects of SN on GI cells remain unclear, the aim of present study was to examine whether SN affected cell viability, cell cycle kinetics, genomic stability, redox status, and expression of cAMP/PKA pathway genes related to metabolism/energy homeostasis in stomach mucosa (MNP01) and colon adenocarcinoma (Caco-2) human cells. p-Synephrine at 25-5000 μM was not cytotoxic to both cell lines. At 2-200 μM, SN increased the formation of reactive oxygen species (ROS) but also enhanced levels of antioxidant defense molecules glutathione (GSH) and catalase (CAT) activity, which may account for the absence of cytotoxicity/mutagenicity in both cell lines. SN induced expression of the cAMP/PKA pathway genes ADCY3 and MAPK1 in MNP01 cells and MAPK1, GNAS, PRKACA, and PRKAR2A in Caco-2 cells, as well as modulated the transcription of genes related to cell proliferation (JUN; AKT1) and inflammation (RELA; TNF) in both cell lines. Therefore, the improved antioxidant state mitigated pro-oxidative effects attributed to SN. Evidence indicates that SN does not appear to exhibit adverse potential but modulated the cAMP/PKA pathway in human GI cell lines.
Collapse
Affiliation(s)
- Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo ,Ribeirão Preto, Brazil
| | - Ana Rita Thomazela Machado
- Department Of Clinical Analyses, Toxicology, And Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo , : Ribeirão Preto, Brazil
| | - Carla Machado
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo ,Ribeirão Preto, Brazil
| | - Alexandre Ferro Aissa
- Department Of Clinical Analyses, Toxicology, And Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo , : Ribeirão Preto, Brazil
| | - Patrick Wellington Dos Santos
- Department Of Clinical Analyses, Toxicology, And Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo , : Ribeirão Preto, Brazil
| | | | - Lusânia Maria Greggi Antunes
- Department Of Clinical Analyses, Toxicology, And Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo , : Ribeirão Preto, Brazil
| |
Collapse
|
6
|
Pink M, Verma N, Schmitz-Spanke S. Benchmark dose analyses of toxic endpoints in lung cells provide sensitivity and toxicity ranking across metal oxide nanoparticles and give insights into the mode of action. Toxicol Lett 2020; 331:218-226. [PMID: 32562635 DOI: 10.1016/j.toxlet.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The benchmark dose (BMD) is a dose that produces a predetermined change in the response rate of an adverse effect. This approach is increasingly utilized to analyze quantitative dose-response relationships. To proof this concept, statistical analysis was compared with the BMD approach in order to rank the sensitivity as well as the toxicity and to describe the mode of action. METHODS Bronchial (BEAS-2B) and alveolar epithelial cells (A549) were exposed to a wide concentration range (0.4-100 μg/mL) of five metal oxide nanoparticles (CeO2, CuO, TiO2, ZnO, ZrO2). Eight toxicity endpoints were determined representing integrity of lysosomal and cell membrane, oxidative stress level, glutathione based detoxification (glutathione S-transferase), oxidative metabolism (cytochrome P450), alteration of the mitochondrial membrane potential, alteration of phase II antioxidative enzyme (NAD(P)H:quinone oxidoreductase), and de novo DNA synthesis. RESULTS Based on the BMD calculated for the most sensitive test, the toxicity decreased in the following order: ZnO > CuO > TiO2>ZrO2>CeO2 in BEAS-2B. Both statistical evaluation methods revealed a higher sensitivity of BEAS-2B cells. The BMD-derived mode of action for CuO confirmed the existing hypotheses and provided insights into less known mechanisms. CONCLUSION The findings proofed that BMD analysis is an effective tool to evaluate different aspects of risk assessment.
Collapse
Affiliation(s)
- Mario Pink
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054 Erlangen, Germany; Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Nisha Verma
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054 Erlangen, Germany.
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054 Erlangen, Germany.
| |
Collapse
|
7
|
Johnson KJ, Auerbach SS, Costa E. A Rat Liver Transcriptomic Point of Departure Predicts a Prospective Liver or Non-liver Apical Point of Departure. Toxicol Sci 2020; 176:86-102. [PMID: 32384157 PMCID: PMC7357187 DOI: 10.1093/toxsci/kfaa062] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identifying a toxicity point of departure (POD) is a required step in human health risk characterization of crop protection molecules, and this POD has historically been derived from apical endpoints across a battery of animal-based toxicology studies. Using rat transcriptome and apical data for 79 molecules obtained from Open TG-GATES (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System) (632 datasets), the hypothesis was tested that a short-term exposure, transcriptome-based liver biological effect POD (BEPOD) could estimate a longer-term exposure "systemic" apical endpoint POD. Apical endpoints considered were body weight, clinical observation, kidney weight and histopathology and liver weight and histopathology. A BMDExpress algorithm using Gene Ontology Biological Process gene sets was optimized to derive a liver BEPOD most predictive of a systemic apical POD. Liver BEPODs were stable from 3 h to 29 days of exposure; the median fold difference of the 29-day BEPOD to BEPODs from earlier time points was approximately 1 (range: 0.7-1.1). Strong positive correlation (Pearson R = 0.86) and predictive accuracy (root mean square difference = 0.41) were observed between a concurrent (29 days) liver BEPOD and the systemic apical POD. Similar Pearson R and root mean square difference values were observed for comparisons between a 29-day systemic apical POD and liver BEPODs derived from 3 h to 15 days of exposure. These data across 79 molecules suggest that a longer-term exposure study apical POD from liver and non-liver compartments can be estimated using a liver BEPOD derived from an acute or subacute exposure study.
Collapse
Affiliation(s)
- Kamin J Johnson
- Predictive Safety Center, Corteva Agriscience, Indianapolis, Indiana
| | - Scott S Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Eduardo Costa
- Data Science and Informatics, Corteva Agriscience, Mogi Mirim, Sao Paulo, Brazil
| |
Collapse
|
8
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|