1
|
Rolando Adair FC, Jaime RVO, Esperanza Yasmín CR, Gonzalo Gerardo GV, Miguel Ángel TL, Edgar OC. Organochlorine pesticide residues and urinary arsenic and fluoride levels in mothers and their newborns who are residents of rural areas in Durango State, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:1028-1043. [PMID: 39023233 DOI: 10.1080/09603123.2024.2379991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Maternal and prenatal exposure to organochlorine pesticides (OCP), arsenic (As), and fluoride (F-) is a critical public health concern. The present study assessed serum OCP residues and urinary As and F- levels in mother and newborn pairs who are residents of rural areas of Durango State, Mexico, from August 2018 to February 2019. Levels of OCP, As, and F- were measured in serum and urine samples by Gas chromatography - Tandem mass spectrometry (GC - MS/MS), Hydride generation - Atomic fluorescent spectrometry (HG-AFS, and ion-selective electron analysis (ISE), respectively, in 60 binomial mothers - newborns. Dieldrin, endrin aldehyde, and endosulfan-II were significantly higher in newborns than in mothers (p ˂0.05). Meanwhile, no significant differences were observed for As and F- concentrations between mother - newborn pairs. Differences were observed in ∑Dienes and ∑DDTs comparing newborns with normal and low birth weights and a positive relationship in ƩDienes, ƩChlordanes, and ƩDDTs between mother and newborn pairs (p ˂ 0.05). These findings highlight the importance of extensive research regarding the influence of pollution.
Collapse
Affiliation(s)
| | - Rendon-Von-Osten Jaime
- Instituto de Ecología, Pescadería y Oceanografía del Golfo de México, Laboratorio de Ecotoxicología, Universidad Autónoma de Campeche, San Francisco de Campeche, México
| | | | | | | | - Olivas-Calderón Edgar
- Universidad Juárez del Estado de Durango, Facultad de Ciencias Químicas, Gómez Palacio, México
| |
Collapse
|
2
|
Melake BA, Alamirew TS, Endalew SM. DDT and Its Metabolites in Ethiopian Aquatic Ecosystems: Environmental and Health Implications. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241307471. [PMID: 39691351 PMCID: PMC11650647 DOI: 10.1177/11786302241307471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Background Despite its significant application, DDT and its metabolites pose a potential threat to the environment. Therefore, data on environmental and health concerns must thus be investigated. Objective The objective of this study was to assess the environmental and human health risks posed by DDT and its metabolites in Ethiopian surface waters. Methods The total amount of DDT and its metabolites consumed as a sum (∑DDT) is calculated by considering their equivalent toxicity. To calculate the human risk from drinking contaminated water, the maximum concentrations in all of Ethiopia's surface waterways were pooled. The average concentration values were added to calculate the human risk from consuming fish contaminated with ∑DDT. Similarly, ∑DDT residues in water can be used to predict the potential environmental risk. Results A higher level of ∑DDT in surface water was detected in Gilgel Gibe I hydroelectric dam reservoir and its tributaries with an average concentration of 640 ng/l. There is no health risk associated with drinking these surface waters because the concentrations of ∑DDT were below the WHO's recommended level. In fish samples, B. intermedius accumulated a higher level of ∑DDT (21.47 ng/g ww). With the exception of local infants, ∑DDT does not pose a non-carcinogenic risk to any age group. However, consuming fish contaminated with ∑DDT poses an unacceptable risk of cancer to all age categories. The risk posed by ∑DDT on aquatic species is highly likely. The bioaccumulation factor (BAF) value indicates that fish tissue does not absorb ∑DDT directly from the water. Conclusion The prevalence of ∑DDT would link to both historical pollution and their current application in vector control. Ecosystems are frequently exposed to chemical mixes later in life; thus, rather than focusing on the ideal case of exposure to a single toxin, future studies can examine the mixture toxicity of numerous organic contaminants.
Collapse
Affiliation(s)
- Bealemlay Abebe Melake
- School of Environmental Health Science, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Tamagnu Sintie Alamirew
- School of Environmental Health Science, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Salie Mulat Endalew
- School of Environmental Health Science, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| |
Collapse
|
3
|
Soleman SR, Jeem YA, Faruqi MFBA, Kasyiva M, Widyasari V, Kuswati K, Djunet NA, Rizkawati M, Handayani ES. Effect of pesticide exposure on stunting incidence: a systematic review and meta-analysis. Clin Exp Pediatr 2024; 67:510-518. [PMID: 39314197 PMCID: PMC11471919 DOI: 10.3345/cep.2023.01522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 09/25/2024] Open
Abstract
As an endocrine disruptor chemical, pesticide exposure may affect the regulation of growth hormones such as insulin-like growth factor-1 (IGF-1). A few current studies to date have noted that long-term pesticide exposure disrupted IGF-1, a potential risk of stunting in children. This study aims to evaluate studies to date of the effect of pesticide exposure on stunting incidence. This systematic review and meta-analysis adhered to the PRISMA (Pre-ferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. The PubMed and EBSCO databases were searched for relevant articles without publication restrictions. This review aimed to include reviews, randomized controlled trials (RCT), and cohort, case-control, and cross-sectional studies, which provide actual exposure types of pesticides with stunting measurement by height-age z score. A screening, extraction, and synthesis were conducted, leading to a consensus for reaching mutual agreement. The analysis was performed using Microsoft Excel 2017 for the screening and extraction, Revman version 5.4 software for the meta-analysis, and OpenMEE software for the meta-regression. Of the 13 studies subjected to the qualitative analysis, 6 were eligible for inclusion in the meta-analysis: 2 reviews, 2 RCTs, 2 cohorts, 2 case-control, and 5 cross-sectional studies. Exposure to organophosphate and pyrethroid pesticides was not associated with stunting (P=0.78; odds ratio [OR], 1.11; 95% confidence interval [CI], 0.65-1.88). Heterogeneity existed for 79% of the meta-analysis (P≤0.000; z=-5.37; 95% CI, -0.034 to -0.016), and the meta-regression identified age as the causative covariate. Pesticide exposure, regardless of type, is not associated with stunting in children.
Collapse
Affiliation(s)
- Sani Rachman Soleman
- Department of Public Health, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | | | | | - Mahdea Kasyiva
- Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Vita Widyasari
- Department of Public Health, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Kuswati Kuswati
- Department of Anatomy, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Nur Aini Djunet
- Department of Biochemistry, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Muflihah Rizkawati
- Department of Pharmacology, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Ety Sari Handayani
- Department of Anatomy, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| |
Collapse
|
4
|
Lu J, Guo Y, Shan X, Song Y, Li R, Tian L, Li X. Solid electrochemiluminescence sensor by immobilization luminol in Zn-Co-ZIF CNFs for sensitive detection of procymidone in vegetables. Mikrochim Acta 2024; 191:508. [PMID: 39102114 DOI: 10.1007/s00604-024-06582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
A solid-state electrochemiluminescence (ECL) sensor was fabricated by immobilizing luminol, a classical luminescent reagent, on a Zn-Co-ZIF carbon fiber-modified electrode for the rapid and sensitive detection of procymidone (PCM) in vegetable samples. The sensor was created by sequentially modifying the glassy carbon electrode with Zn-Co-ZIF carbon fiber (Zn-Co-ZIF CNFs), Pt@Au NPs, and luminol. Zn-Co-ZIF CNFs, prepared through electrospinning and high-temperature pyrolysis, possessed a large specific surface area and porosity, making it suitable as carrier and electron transfer accelerator in the system. Pt@Au NPs demonstrated excellent catalytic activity, effectively enhancing the generation of active substances. The ECL signal was significantly amplified by the combination of Zn-Co-ZIF CNFs and Pt@Au NPs, which can subsequently be diminished by procymidone. The ECL intensity decreased proportionally with the addition of procymidone, displaying a linear relationship within the concentration range 1.0 × 10-13 to 1.0 × 10-6 mol L-1 (R2 = 0.993). The sensor exhibited a detection limit of 3.3 × 10-14 mol L-1 (S/N = 3) and demonstrated outstanding reproducibility and stability, making it well-suited for the detection of procymidone in vegetable samples.
Collapse
Affiliation(s)
- Juan Lu
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China.
- Technological Innovation Laboratory for Research and Development of Economic Plants and Edible and Medicinal Fungi in Cold Region of Jilin Province, Changchun, 130032, P.R. China.
| | - Yanjia Guo
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Xiangyu Shan
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Yujia Song
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Ruidan Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Xuwen Li
- College of Chemistry, Jilin University, Changchun, 130022, P.R. China.
| |
Collapse
|
5
|
Hassaan MA, Ragab S, Elkatory MR, El Nemr A. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) distribution, origins, and risk evaluation in the Egyptian Mediterranean coast sediments. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11093. [PMID: 39129319 DOI: 10.1002/wer.11093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/08/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
A study was conducted on 31 surface sediments located in different sectors of the Egyptian Mediterranean coast. The sediments were analyzed for their pollution levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The sediments were collected from various depths in harbors, coastal lakes, bays, and lagoons, covering the southeastern Mediterranean of the Nile Delta region. The study aimed at determining the distribution, origin, and potential ecological impact of OCP and PCB pollutants. The researchers used the SRM method of GC-MS/MS to measure the concentration of 18 PCBs and 16 OCPs residues. The study found that the total concentration of OCPs in the samples ranged from 3.091 to 20.512 ng/g, with a mean of 8.749 ± 3.677 ng/g. The total concentration of PCB residues ranged from 2.926 to 20.77 ng/g, with a mean of 5.68 ± 3.282 ng/g. The concentration of DDTs exceeded the effect range low (ERL) (1.00) and threshold effect level (TEL) (1.19) in several stations, but it was still below the effect range median (ERM) (7.00) and the probable effect level (PEL) (4.77). This indicates a low ecological risk. The principal component analysis (PCA) was also conducted to determine the sources of all pollutants in the sediment. The PCA showed significant correlations between the concentrations of Gama-HCH and Beta-HCH (0.741), suggesting similar sources. PRACTITIONER POINTS: OCPs and PCBs residues were analyzed in the sediment of the southeastern Mediterranean. The concentration, existence, and causes of OCPs and PCBs were investigated. OCPs and PCBs ecological risk and ecotoxicological calculation were investigated in detail. Cluster analysis, PCA, and correlation coefficient were also investigated.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Marwa R Elkatory
- Advanced Technology and New Materials Research Institute, SRTA-City, New Borg El-Arab City, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
6
|
Uyar R, Turgut Y, Çelik HT, Ünal MA, Kuzukıran Ö, Özyüncü Ö, Ceylan A, Çinar ÖÖ, Boztepe ÜG, Özdağ H, Filazi A, Yurdakök-Di Kmen B. Effects of DDT and DDE on placental cholinergic receptors. Reprod Toxicol 2024; 126:108588. [PMID: 38615785 DOI: 10.1016/j.reprotox.2024.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
The placental cholinergic system; known as an important factor in intracellular metabolic activities, regulation of placental vascular tone, placental development, and neurotransmission; can be affected by persistent organic pesticides, particularly organochlorine pesticides(OCPs), which can influence various epigenetic regulations and molecular pathways. Although OCPs are legally prohibited, trace amounts of the persistent dichlorodiphenyltrichloroethane(DDT) are still found in the environment, making prenatal exposure inevitable. In this study, the effects of 2,4'-DDT and 4,4'-DDT; and its breakdown product 4,4'-DDE in the environment on placental cholinergic system were evaluated with regards to cholinergic genes. 40 human placentas were screened, where 42,50% (17 samples) were found to be positive for the tested compounds. Average concentrations were 10.44 μg/kg; 15.07 μg/kg and 189,42 μg/kg for 4,4'-DDE; 2,4'-DDT and 4,4'-DDT respectively. RNA-Seq results revealed 2396 differentially expressed genes in positive samples; while an increase in CHRM1,CHRNA1,CHRNG and CHRNA2 genes at 1.28, 1.49, 1.59 and 0.4 fold change were found(p<0028). The increase for CHRM1 was also confirmed in tissue samples with immunohistochemistry. In vitro assays using HTR8/SVneo cells; revealed an increase in mRNA expression of CHRM1, CHRM3 and CHRN1 in DDT and DDE treated groups; which was also confirmed through western blot assays. An increase in the expression of CHRM1,CHRNA1, CHRNG(p<0001) and CHRNA2(p<0,05) were found from the OCPs exposed and non exposed groups.The present study reveals that intrauterine exposure to DDT affects the placental cholinergic system mainly through increased expression of muscarinic receptors. This increase in receptor expression is expected to enhance the sensitivity of the placental cholinergic system to acetylcholine.
Collapse
Affiliation(s)
- Recep Uyar
- Ankara University, Graduate School of Health Sciences, Ankara 06070, Turkiye.
| | - Yağmur Turgut
- Ankara University, Graduate School of Health Sciences, Ankara 06070, Turkiye
| | - H Tolga Çelik
- Hacettepe University, Faculty of Medicine, Department of Child Health and Diseases, Section of Neonatology, Altindag, Ankara 06230, Turkey
| | - M Altay Ünal
- Ankara University, Institute of Stem Cell, Ankara 06520, Turkey
| | - Özgür Kuzukıran
- Çankırı Karatekin University, Eldivan Vocational School of Health Sciences, Veterinary Department, Çankırı, Turkey
| | - Özgür Özyüncü
- Hacettepe University, Faculty of Medicine, Department of Obstetrics and Gynaecology, Altindag, Ankara 06230, Turkey
| | - Ahmet Ceylan
- Ankara University Faculty of Veterinary Medicine Department of Histology and Embryology, Ankara 06070, Turkey
| | - Özge Özgenç Çinar
- Ankara University Faculty of Veterinary Medicine Department of Histology and Embryology, Ankara 06070, Turkey
| | - Ümmü Gülsüm Boztepe
- Ankara University, Graduate School of Health Sciences, Ankara 06070, Turkiye
| | - Hilal Özdağ
- Ankara University Biotechnology Institute, Ankara 06135, Turkey
| | - Ayhan Filazi
- Ankara University Faculty of Veterinary Medicine Department of Pharmacology and Toxicology, Ankara 06070, Turkey
| | - Begüm Yurdakök-Di Kmen
- Ankara University Faculty of Veterinary Medicine Department of Pharmacology and Toxicology, Ankara 06070, Turkey
| |
Collapse
|
7
|
Jonathan JWA, Kabotso DEK, Essumang DK, Bentum JK, Gborgblorvor IR, Kpodo FM, Ofosu-Koranteng F, Lotse CW, Hlorlewu ND. Investigating the levels of organochlorine pesticides in human milk at three lactational stages: an intensive Ghanaian study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:239. [PMID: 38321261 DOI: 10.1007/s10661-024-12404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
During breastfeeding, the human breasts secrete three different kinds of milk. Research indicates that newborns exposed to organochlorine pesticides (OCPs) during developmental stages, even at low concentrations, may suffer irreparable harm. The study aimed to ascertain whether OCPs levels in human milk vary across lactational stages. University of Health and Allied Sciences Research Ethics Committee (UHAS- REC) examined and approved the study protocol. 47 volunteers were chosen using purposive sampling. Each participant donated 15 ml of each type of breast milk. Colostrum was taken shortly after delivery up to day 4, transitional milk between day 5 and two weeks postpartum, while mature milk was taken two weeks afterwards. A modified version of QuEChERS was used to process 10.0 g aliquot of each breast milk sample, and the resulting extracts analysed for OCPs employing a Gas Chromatograph, Varian CP 3800, fitted with electron capture detector (ECD). The detection threshold was not reached for any of the six OCPs tested. This implied that none of the breast milk components analysed in this study contained any detectable levels of OCPs that might have posed any serious health risks to the infants through breastfeeding. Aldrin, chlordane, DDT, dieldrin, endrin, and heptachlor were not found in detectable quantities in mothers' milk during the three stages of lactation. Our findings are encouraging. The study's findings likely show that the Stockholm Convention's campaign to remove POPs from the environment seems to be yielding positive impact.
Collapse
Affiliation(s)
- Justice Wiston Amstrong Jonathan
- Department of Chemistry, University of Cape, UCC, Cape Coast, Ghana.
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana.
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana.
- Department of Public Health Nursing, School of Nursing and Midwifery, University of Health and Allied Sciences, Ho, Ghana.
| | - Daniel Elorm Kwame Kabotso
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
- Department of Public Health Nursing, School of Nursing and Midwifery, University of Health and Allied Sciences, Ho, Ghana
| | | | | | | | - Fidelis M Kpodo
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
- Department of Public Health Nursing, School of Nursing and Midwifery, University of Health and Allied Sciences, Ho, Ghana
| | | | - Comfort Worna Lotse
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
- Department of Public Health Nursing, School of Nursing and Midwifery, University of Health and Allied Sciences, Ho, Ghana
| | - Norkplim Dei Hlorlewu
- Department of Nursing Services, Ho Teaching Hospital, Ho, Ghana
- Labour Ward, Ho Teaching Hospital, Ho, Ghana
| |
Collapse
|
8
|
Hassaan MA, Elkatory MR, Ragab S, El Nemr A. Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in water-sediment system of southern Mediterranean: Concentration, source and ecological risk assessment. MARINE POLLUTION BULLETIN 2023; 196:115692. [PMID: 37871457 DOI: 10.1016/j.marpolbul.2023.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were studied in the Nile Delta area of Egypt's southern Mediterranean for their environmental impacts, probable sources, and ecological risk assessment. Using the Gas Chromatography Triple Quadrupole technique, the residues of 16 OCPs and 18 PCBs were determined. The total OCPs content in the seawater and sediment samples ranged from 0.108 to 10.97 μg/L and 0.301 to 5.268 ng/g, respectively, while the PCBs residues had values between 0.808 and 1069.75 μg/L in seawater and between not detected and 575.50 ng/g in sediment samples. The findings of the risk evaluation showed that, except for endosulfan-I, OCPs caused little harm in seawater. However, PCB180, PCB153, PCB156, PCB126 and PCB138 posed a comparatively significant risk. The concentration of DDTs was higher than the effect range low and threshold effect level but remained below the effect range median and probable effect level, posing a minimal ecological concern.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Marwa R Elkatory
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| |
Collapse
|
9
|
Contini T, Béranger R, Multigner L, Klánová J, Price EJ, David A. A Critical Review on the Opportunity to Use Placenta and Innovative Biomonitoring Methods to Characterize the Prenatal Chemical Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15301-15313. [PMID: 37796725 DOI: 10.1021/acs.est.3c04845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Adverse effects associated with chemical exposures during pregnancy include several developmental and reproductive disorders. However, considering the tens of thousands of chemicals present on the market, the effects of chemical mixtures on the developing fetus is still likely underestimated. In this critical review, we discuss the potential to apply innovative biomonitoring methods using high-resolution mass spectrometry (HRMS) on placenta to improve the monitoring of chemical exposure during pregnancy. The physiology of the placenta and its relevance as a matrix for monitoring chemical exposures and their effects on fetal health is first outlined. We then identify several key parameters that require further investigations before placenta can be used for large-scale monitoring in a robust manner. Most critical is the need for standardization of placental sampling. Placenta is a highly heterogeneous organ, and knowledge of the intraplacenta variability of chemical composition is required to ensure unbiased and robust interindividual comparisons. Other important variables include the time of collection, the sex of the fetus, and mode of delivery. Finally, we discuss the first applications of HRMS methods on the placenta to decipher the chemical exposome and describe how the use of placenta can complement biofluids collected on the mother or the fetus.
Collapse
Affiliation(s)
- Thomas Contini
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Rémi Béranger
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Luc Multigner
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Arthur David
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
10
|
Tadevosyan NS, Guloyan HA, Wallis AB, Tadevosyan AE. Maternal exposure to organochlorine pesticides and anthropometrics of newborns - a hospital-based cross-sectional study in rural and urban settings in Armenia. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:895-902. [PMID: 37651265 DOI: 10.1080/10934529.2023.2253108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
The study objective was to determine a possible association between maternal exposure to organochlorine pesticides (OCPs) and anthropometric measures at birth in group of postpartum women in urban and rural areas of Armenia. The anthropometric measures of infants were obtained from birth records and gamma-hexachlorocyclohexane (γ-HCH), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene, and dichlorodiphenyldichloroethane were measured in breast milk. Gas-liquid chromatography with electron capture detection was used to identify OCPs. Total OCPs and DDTs were calculated, and the anthropometrics were analyzed for sex and areas, and group differences were compared (Student's t-test). Both individual OCPs and total OCPs and DDTs were significantly higher in rural samples than in urban ones (P < 0.01-0.000), with lower and upper quartiles differing by 2.6-fold and 3.1-fold, respectively (P < 0.000). There was no association between the anthropometrics and OCPs levels in rural or urban areas. However, this does not rule out the possibility of OCPs impact on health later in life. To our knowledge, this was the first study addressing these issues in Armenia. The results obtained will provide data on the current situation regarding birth outcomes in terms of prenatal exposure to OCPs in Armenia and will contribute to the available results from previous studies.
Collapse
Affiliation(s)
- Natalya S Tadevosyan
- Laboratory of Environmental Hygiene and Toxicology, Scientific-Research Center of Yerevan State Medical University named after M. Heratsi, Yerevan, Republic of Armenia
| | - Hasmik A Guloyan
- Laboratory of Environmental Hygiene and Toxicology, Scientific-Research Center of Yerevan State Medical University named after M. Heratsi, Yerevan, Republic of Armenia
| | - Anne B Wallis
- Department of Epidemiology & Population Health, School of Public Health & Information Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Artashes E Tadevosyan
- Department of Public Health and Healthcare Organization, Yerevan State Medical University named after M. Heratsi, Yerevan, Republic of Armenia
| |
Collapse
|
11
|
Guo J, Chen W, Wu M, Qu C, Sun H, Guo J. Distribution, Sources, and Risk Assessment of Organochlorine Pesticides in Water from Beiluo River, Loess Plateau, China. TOXICS 2023; 11:496. [PMID: 37368595 DOI: 10.3390/toxics11060496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
The Loess Plateau has been a focus of public discussion and environmental concerns over the past three decades. In this study, in order to investigate the effect of OCP pollution in water of the Beiluo River, concentrations of 25 OCPs at 17 locations in the water were examined. The results showed that the concentration of ∑OCPs in the water ranged from 1.76 to 32.57 ng L-1, with an average concentration of 7.23 ng L-1. Compared with other basins in China and abroad, the OCP content in the Beiluo River was at a medium level. Hexachlorocyclohexane (HCH) pollution in the Beiluo River was mainly from the mixed input of lindane and technical HCHs. Dichlorodiphenyltrichloroethane (DDT) pollution was mainly from the mixed input of technical DDTs and dicofol. Most of the OCP pollution came from historical residues. The risk assessment results showed that hexachlorobenzene (HCB) and endosulfan had high ecological risks in the middle and lower reaches of the Beiluo River. Most residual OCPs were not sufficient to pose carcinogenic and non-carcinogenic health risks to humans. The results of this study can provide a reference for OCP prevention and control and watershed environmental management.
Collapse
Affiliation(s)
- Jipu Guo
- State Grid Shaanxi Electric Power Research Institute, Xi'an 710100, China
| | - Wenwu Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710100, China
| | - Menglei Wu
- Key Laboratory of Cultural Heritage Research and Conservation, School of Culture Heritage, Northwest University, Xi'an 710127, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710100, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710100, China
| |
Collapse
|
12
|
Rodriguez PM, Ondarza PM, Miglioranza KSB, Ramirez CL, Vera B, Muntaner C, Guiñazú NL. Pesticides exposure in pregnant Argentinian women: Potential relations with the residence areas and the anthropometric neonate parameters. CHEMOSPHERE 2023; 332:138790. [PMID: 37142107 DOI: 10.1016/j.chemosphere.2023.138790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Intrauterine environment is the first chemical exposure scenario in life, through transplacental transfer. In this study, the aim was to determine concentrations of organochlorine pesticides (OCPs) and selected current use pesticides in the placentas of pregnant women from Argentina. Socio-demographic information, the mother's lifestyle and neonatal characteristics were also analysed and related to pesticides residue concentrations. Thus, 85 placentas were collected at birth, from an area of intensive fruit production for the international market, in Patagonia Argentina. Concentrations of 23 pesticides including, trifluralin (herbicide), the fungicides chlorothalonil and HCB, and the insecticides chlorpyrifos, HCHs, endosulfans, DDTs, chlordanes, heptachlors, drins and metoxichlor, were determined by GC-ECD and GC-MS. Results were first analysed all together and then grouped by their residential settings, in urban and rural groups. Total mean pesticide concentration was 582.6 ± 1034.4 ng/g lw, where DDTs (325.9 ± 950.3 ng/g lw) and chlorpyrifos (188.4 ± 365.4 ng/g lw) showed a high contribution. Pesticide levels found exceeded those reported in low, middle and high income countries from Europe, Asia and Africa. In general, pesticides concentrations were not associated with neonatal anthropometric parameters. When the results were analysed by residence place, significantly higher concentrations of total pesticides and chlorpyrifos (Mann Whitney test p = 0.0003 and p = 0.032, respectively) were observed in placentas collected from mothers living in rural settings compared to urban areas. Rural pregnant women presented the highest pesticide burden (5.9 μg), where DDTs and chlorpyrifos were the major constituents. These results suggested that all pregnant women are highly exposed to complex pesticide mixtures, including banned OCPs and the widely used chlorpyrifos. Based on the pesticide concentrations found, our results warn of possible health impacts from prenatal exposure through transplacental transfer. This is one of the first reports of both chlorpyrifos and chlorothalonil concentrations in placental tissue, and contributes to the knowledge of current pesticide exposure in Argentina.
Collapse
Affiliation(s)
- Piuque M Rodriguez
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología Del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina
| | - Paola M Ondarza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata-CONICET, Dean Funes 3350, Mar Del Plata, 7600, Argentina.
| | - Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata-CONICET, Dean Funes 3350, Mar Del Plata, 7600, Argentina
| | - Critina L Ramirez
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata-CONICET, Dean Funes 3350, Mar Del Plata, 7600, Argentina
| | - Berta Vera
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología Del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina; Facultad de Medicina, Universidad Nacional Del Comahue, Los Arrayanes y Av. Toschi, Cipolletti, 8324, Río Negro, Argentina
| | - Celeste Muntaner
- Facultad de Medicina, Universidad Nacional Del Comahue, Los Arrayanes y Av. Toschi, Cipolletti, 8324, Río Negro, Argentina
| | - Natalia L Guiñazú
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología Del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina; Departamento de Ciencias Del Ambiente, Facultad de Ciencias Del Ambiente y la Salud, Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina
| |
Collapse
|
13
|
Cresto N, Forner-Piquer I, Baig A, Chatterjee M, Perroy J, Goracci J, Marchi N. Pesticides at brain borders: Impact on the blood-brain barrier, neuroinflammation, and neurological risk trajectories. CHEMOSPHERE 2023; 324:138251. [PMID: 36878369 DOI: 10.1016/j.chemosphere.2023.138251] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are omnipresent, and they pose significant environmental and health risks. Translational studies indicate that acute exposure to high pesticide levels is detrimental, and prolonged contact with low concentrations of pesticides, as single and cocktail, could represent a risk factor for multi-organ pathophysiology, including the brain. Within this research template, we focus on pesticides' impact on the blood-brain barrier (BBB) and neuroinflammation, physical and immunological borders for the homeostatic control of the central nervous system (CNS) neuronal networks. We examine the evidence supporting a link between pre- and postnatal pesticide exposure, neuroinflammatory responses, and time-depend vulnerability footprints in the brain. Because of the pathological influence of BBB damage and inflammation on neuronal transmission from early development, varying exposures to pesticides could represent a danger, perhaps accelerating adverse neurological trajectories during aging. Refining our understanding of how pesticides influence brain barriers and borders could enable the implementation of pesticide-specific regulatory measures directly relevant to environmental neuroethics, the exposome, and one-health frameworks.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom.
| | - Asma Baig
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Mousumi Chatterjee
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
14
|
Miranda RA, Silva BS, de Moura EG, Lisboa PC. Pesticides as endocrine disruptors: programming for obesity and diabetes. Endocrine 2023; 79:437-447. [PMID: 36301509 DOI: 10.1007/s12020-022-03229-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Exposure to pesticides has been associated with obesity and diabetes in humans and experimental models mainly due to endocrine disruptor effects. First contact with environmental pesticides occurs during critical phases of life, such as gestation and lactation, which can lead to damage in central and peripheral tissues and subsequently programming disorders early and later in life. METHODS We reviewed epidemiological and experimental studies that associated pesticide exposure during gestation and lactation with programming obesity and diabetes in progeny. RESULTS Maternal exposure to organochlorine, organophosphate and neonicotinoids, which represent important pesticide groups, is related to reproductive and behavioral dysfunctions in offspring; however, few studies have focused on glucose metabolism and obesity as outcomes. CONCLUSION We provide an update regarding the use and metabolic impact of early pesticide exposure. Considering their bioaccumulation in soil, water, and food and through the food chain, pesticides should be considered a great risk factor for several diseases. Thus, it is urgent to reformulate regulatory actions to reduce the impact of pesticides on the health of future generations.
Collapse
Affiliation(s)
- Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Souza Silva
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Chenge S, Ngure H, Kanoi BN, Sferruzzi-Perri AN, Kobia FM. Infectious and environmental placental insults: from underlying biological pathways to diagnostics and treatments. Pathog Dis 2023; 81:ftad024. [PMID: 37727973 DOI: 10.1093/femspd/ftad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023] Open
Abstract
Because the placenta is bathed in maternal blood, it is exposed to infectious agents and chemicals that may be present in the mother's circulation. Such exposures, which do not necessarily equate with transmission to the fetus, may primarily cause placental injury, thereby impairing placental function. Recent research has improved our understanding of the mechanisms by which some infectious agents are transmitted to the fetus, as well as the mechanisms underlying their impact on fetal outcomes. However, less is known about the impact of placental infection on placental structure and function, or the mechanisms underlying infection-driven placental pathogenesis. Moreover, recent studies indicate that noninfectious environmental agents accumulate in the placenta, but their impacts on placental function and fetal outcomes are unknown. Critically, diagnosing placental insults during pregnancy is very difficult and currently, this is possible only through postpartum placental examination. Here, with emphasis on humans, we discuss what is known about the impact of infectious and chemical agents on placental physiology and function, particularly in the absence of maternal-fetal transmission, and highlight knowledge gaps with potential implications for diagnosis and intervention against placental pathologies.
Collapse
Affiliation(s)
- Samuel Chenge
- Department of Medical Microbiology and Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Juja, off Thika road, P. O. Box 62000-00200 Nairobi, Kenya
| | - Harrison Ngure
- Directorate of Research and Innovation, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
| | - Bernard N Kanoi
- Directorate of Research and Innovation, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
- Centre for Malaria Elimination, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Francis M Kobia
- Directorate of Research and Innovation, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
- Centre for Malaria Elimination, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
| |
Collapse
|
16
|
Bliznashka L, Roy A, Jaacks LM. Pesticide exposure and child growth in low- and middle-income countries: A systematic review. ENVIRONMENTAL RESEARCH 2022; 215:114230. [PMID: 36087771 PMCID: PMC7614514 DOI: 10.1016/j.envres.2022.114230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND In low- and middle-income countries (LMICs), pesticides are widely used in agricultural and residential settings. Little is known about how pesticides affect child growth. OBJECTIVES To systematically review and synthesise the evidence on the associations between pesticide exposure and adverse birth outcomes and/or impaired postnatal growth in children up to 5 years of age in LMICs. METHODS We searched 10 databases from inception through November 2021. We included cohort and cross-sectional studies investigating associations between self-reported or measured prenatal or postnatal pesticide exposure and child growth (postnatal child linear/ponderal growth, and/or birth outcomes). Two researchers screened studies, extracted data, and assessed certainty using GRADE. The protocol was preregistered with PROSPERO (CRD42021292919). RESULTS Of 939 records retrieved, 31 studies met inclusion criteria (11 cohort, 20 cross-sectional). All studies assessed prenatal exposure. Twenty-four studies reported on birth weight. Four found positive associations with organochlorines (0.01-0.25 standardised mean difference (SMD)) and two found negative associations (-0.009 SMD to -55 g). Negative associations with organophosphates (-170 g, n = 1) and pyrethroids (-97 to -233 g, n = 2) were also documented. Two (out of 15) studies reporting on birth length found positive associations with organochlorines (0.21-0.25 SMD) and one found negative associations (-0.25 to -0.32 SMD). Organophosphate exposure was negatively associated with birth length (-0.37 cm, n = 1). Organophosphate exposure was also associated with higher risk/prevalence of low birth weight (2 out of nine studies) and preterm birth (2 out of six studies). Certainty of the evidence was "very low" for all outcomes. CONCLUSION The limited literature from LMICs shows inconclusive associations between prenatal pesticide exposure, child growth, and birth outcomes. Studies with accurate quantitative data on exposure to commonly used pesticides in LMICs using consistent methodologies in comparable populations are needed to better understand how pesticides influence child growth.
Collapse
Affiliation(s)
- Lilia Bliznashka
- Global Academy of Agriculture and Food Systems, University of Edinburgh, Alexander Robertson Building, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Aditi Roy
- Centre for Environmental Health, Public Health Foundation of India, Plot No. 47, Sector 44, Institutional Area Gurugram, 122002, India
| | - Lindsay M Jaacks
- Global Academy of Agriculture and Food Systems, University of Edinburgh, Alexander Robertson Building, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
17
|
Wang X, Zhang Z, Zhang R, Huang W, Dou W, You J, Jiao H, Sun A, Chen J, Shi X, Zheng D. Occurrence, source, and ecological risk assessment of organochlorine pesticides and polychlorinated biphenyls in the water-sediment system of Hangzhou Bay and East China Sea. MARINE POLLUTION BULLETIN 2022; 179:113735. [PMID: 35567961 DOI: 10.1016/j.marpolbul.2022.113735] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The pollution characteristics, potential sources, and potential ecological risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in the Hangzhou Bay (HZB) and East China Sea (ECS). Total OCPs concentration ranged from 2.62 to 102.07 ng/L and 4.41 to 75.79 μg/kg in the seawater and sediment samples, with PCBs concentration in the range of 0.40-51.75 ng/L and 0.80-45.54 μg/kg, respectively. The OCPs were positively correlated with nutrients, whereas PCBs presented a negative correlation. The newly imported dichlorodiphenyltrichloroethane (DDT) in HZB is mainly the mixing of technical DDT and dicofol sources. The PCB source composition is more likely related to the mixture of Kanechlor 300, 400, Aroclor 1016, 1242, and Aroclor 1248. Risk assessment results indicate that OCPs posed low risk in seawater. The potential risk of DDTs in the sediments is a cause of concern.
Collapse
Affiliation(s)
- Xiaoni Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Wenke Dou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jinjie You
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Haifeng Jiao
- College of Biological and Environment Science, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Dan Zheng
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315042, PR China
| |
Collapse
|
18
|
Sweeney CL, Smith NK, Sweeney E, Cohen AM, Kim JS. Analysis of human serum and urine for tentative identification of potentially carcinogenic pesticide-associated N-nitroso compounds using high-resolution mass spectrometry. ENVIRONMENTAL RESEARCH 2022; 205:112493. [PMID: 34896088 DOI: 10.1016/j.envres.2021.112493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Human serum and urine samples were analyzed for a suite of nitrosatable pesticides and potentially carcinogenic pesticide-associated N-nitroso (PANN) compounds. Formation of PANN compounds may occur in vivo after consumption of food or water containing trace amounts of nitrosatable pesticide residues and nitrate. Using a modified version of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method, nine nitrosatable pesticides and byproducts were extracted from serum and urine from 64 individuals from two different sample populations in Atlantic Canada: (i) Prince Edward Island, a region where nitrate and trace amounts of nitrosatable pesticides have been detected in groundwater; and (ii) Halifax, Nova Scotia, a non-agricultural urban area. Samples were then analyzed using ultra-high pressure liquid chromatography (UHPLC) coupled with high-resolution accurate mass (HRAM) single-stage orbitrap mass spectrometry (MS), which allows for semi-targeted analysis and tentative identification of a virtually limitless number of exposure biomarkers. Two nitrosatable target analytes, ethylenethiourea (ETU) and 3,5,6-trichloro-2-pyridinol (TCPy) were found in serum, while atrazine (ATR) and ETU were detected in urine. Five and six PANN compounds were tentatively identified in serum and urine, respectively. The two PANN compounds that were most frequently tentatively identified in serum were N-nitroso dimethoate (N-DIM) and N-nitroso omethoate (N-OME) with detection frequencies of 78% and 95%, respectively. This is the first biomonitoring study of its kind to investigate PANN compounds in human serum and urine.
Collapse
Affiliation(s)
- Crystal L Sweeney
- Interdisciplinary PhD Program, Faculty of Graduate Studies, Dalhousie University, Halifax, NS, Canada; Health and Environments Research Centre (HERC) Laboratory, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Nathan K Smith
- Health and Environments Research Centre (HERC) Laboratory, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ellen Sweeney
- Atlantic PATH, Dalhousie University, Halifax, NS, Canada
| | - Alejandro M Cohen
- Proteomics and Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jong Sung Kim
- Health and Environments Research Centre (HERC) Laboratory, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
19
|
Salcedo-Bellido I, Amaya E, Pérez-Díaz C, Soler A, Vela-Soria F, Requena P, Barrios-Rodríguez R, Echeverría R, Pérez-Carrascosa FM, Quesada-Jiménez R, Martín-Olmedo P, Arrebola JP. Differential Bioaccumulation Patterns of α, β-Hexachlorobenzene and Dicofol in Adipose Tissue from the GraMo Cohort (Southern Spain). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3344. [PMID: 35329028 PMCID: PMC8954870 DOI: 10.3390/ijerph19063344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023]
Abstract
To identify bioaccumulation patterns of α-, β- hexachlorocyclohexane (HCH) and dicofol in relation to sociodemographic, dietary, and lifestyle factors, adipose tissue samples of 387 subjects from GraMo cohort in Southern Spain were analyzed. Potential predictors of these organochlorine pesticides (OCP) levels were collected by face-to-face interviews and assessed by multivariable linear and logistic regression. OCPs were detected in 84.2% (β-HCH), 21.7% (α-HCH), and 19.6% (dicofol) of the population. β-HCH levels were positively related to age, body mass index (BMI), mother's occupation in agriculture during pregnancy, living in Poniente and Alpujarras, white fish, milk and water consumption, and negatively related to being male, living near to an agricultural area, working ≥10 years in agriculture, and beer consumption. Detectable α-HCH levels were positively related to age, BMI, milk consumption, mother's occupation in agriculture during pregnancy, and negatively with residence in Poniente and Alpujarras, Granada city, and Granada Metropolitan Area. Residence near to an agricultural area, smoking habit, white fish and water consumption, and living in Poniente and Alpujarras, Granada city and Granada Metropolitan Area were negatively associated with detectable dicofol levels. Our study revealed different bioaccumulation patterns of α, β-HCH and dicofol, probably due to their dissimilar period of use, and emphasize the need for assessing the exposure to frequently overlooked pollutants.
Collapse
Affiliation(s)
- Inmaculada Salcedo-Bellido
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, 18071 Granada, Spain; (I.S.-B.); (C.P.-D.); (A.S.); (P.R.); (R.B.-R.); (R.E.); (F.M.P.-C.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria (ibs. GRANADA), 18014 Granada, Spain; (E.A.); (F.V.-S.); (R.Q.-J.); (P.M.-O.)
| | - Esperanza Amaya
- Instituto de Investigación Biosanitaria (ibs. GRANADA), 18014 Granada, Spain; (E.A.); (F.V.-S.); (R.Q.-J.); (P.M.-O.)
| | - Celia Pérez-Díaz
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, 18071 Granada, Spain; (I.S.-B.); (C.P.-D.); (A.S.); (P.R.); (R.B.-R.); (R.E.); (F.M.P.-C.)
- Instituto de Investigación Biosanitaria (ibs. GRANADA), 18014 Granada, Spain; (E.A.); (F.V.-S.); (R.Q.-J.); (P.M.-O.)
| | - Anabel Soler
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, 18071 Granada, Spain; (I.S.-B.); (C.P.-D.); (A.S.); (P.R.); (R.B.-R.); (R.E.); (F.M.P.-C.)
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria (ibs. GRANADA), 18014 Granada, Spain; (E.A.); (F.V.-S.); (R.Q.-J.); (P.M.-O.)
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain
| | - Pilar Requena
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, 18071 Granada, Spain; (I.S.-B.); (C.P.-D.); (A.S.); (P.R.); (R.B.-R.); (R.E.); (F.M.P.-C.)
- Instituto de Investigación Biosanitaria (ibs. GRANADA), 18014 Granada, Spain; (E.A.); (F.V.-S.); (R.Q.-J.); (P.M.-O.)
| | - Rocío Barrios-Rodríguez
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, 18071 Granada, Spain; (I.S.-B.); (C.P.-D.); (A.S.); (P.R.); (R.B.-R.); (R.E.); (F.M.P.-C.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria (ibs. GRANADA), 18014 Granada, Spain; (E.A.); (F.V.-S.); (R.Q.-J.); (P.M.-O.)
| | - Ruth Echeverría
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, 18071 Granada, Spain; (I.S.-B.); (C.P.-D.); (A.S.); (P.R.); (R.B.-R.); (R.E.); (F.M.P.-C.)
| | - Francisco M. Pérez-Carrascosa
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, 18071 Granada, Spain; (I.S.-B.); (C.P.-D.); (A.S.); (P.R.); (R.B.-R.); (R.E.); (F.M.P.-C.)
- Instituto de Investigación Biosanitaria (ibs. GRANADA), 18014 Granada, Spain; (E.A.); (F.V.-S.); (R.Q.-J.); (P.M.-O.)
- Servicio de Oncología Radioterápica, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Raquel Quesada-Jiménez
- Instituto de Investigación Biosanitaria (ibs. GRANADA), 18014 Granada, Spain; (E.A.); (F.V.-S.); (R.Q.-J.); (P.M.-O.)
| | - Piedad Martín-Olmedo
- Instituto de Investigación Biosanitaria (ibs. GRANADA), 18014 Granada, Spain; (E.A.); (F.V.-S.); (R.Q.-J.); (P.M.-O.)
- Andalusian School of Public Health (EASP), 18011 Granada, Spain
| | - Juan Pedro Arrebola
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, 18071 Granada, Spain; (I.S.-B.); (C.P.-D.); (A.S.); (P.R.); (R.B.-R.); (R.E.); (F.M.P.-C.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria (ibs. GRANADA), 18014 Granada, Spain; (E.A.); (F.V.-S.); (R.Q.-J.); (P.M.-O.)
| |
Collapse
|
20
|
Dwivedi N, Mahdi AA, Deo S, Ahmad MK, Kumar D. Assessment of genotoxicity and oxidative stress in pregnant women contaminated to organochlorine pesticides and its correlation with pregnancy outcome. ENVIRONMENTAL RESEARCH 2022; 204:112010. [PMID: 34520748 DOI: 10.1016/j.envres.2021.112010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The present study was aimed to assess the correlation between transplacental transfer of xenobiotics and resulting biochemical alterations (including genotoxicity and oxidative stress) in non-occupational pregnant women of North India along with the effect on pregnancy outcomes. Maternal and cord blood samples were collected from 221 healthy mother-infant couples and divided according to their gestational age and birth weight. Genotoxic effects in mother and cord blood were examined using comet assay. The quantitative determination of Organo-chlorine pesticides in blood serum of study population was carried out using gas chromatography-mass spectrometry (GC-MS). Notably higher Organo-chlorine pesticides levels were observed in maternal blood of preterm than term subjects for almost all of the compounds detected, with the maximum concentration found for aldrin (3.26 mg/l) in maternal blood and dieldrin (2.69 mg/l) in cord blood. The results showed a significant increment in olive tail moment, tail full length, catalase, super-oxide dismutase, and malondialdehyde levels whereas lower glutathione reductase and peroxidase were found in preterm babies when compared with term group and it varied in the order: maternal blood > cord blood. A clear trend was observed for preterm babies with their lower birth weight and cesarean mode of delivery. Therefore, reduction in birth weight in newborns may be the consequence of increased oxidative damage and genotoxicity brought about by pesticides and these markers could be employed for early detection of pesticides related ailments and toxicities. To the best of our knowledge, this was a pioneering study and it may help to increase our knowledge with regard to xenobiotic exposure in biological system and the need for stringent guidelines for agricultural use of pesticides.
Collapse
Affiliation(s)
- Naina Dwivedi
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, India.
| | - Sujata Deo
- Department of Obstetrics and Gynaecology, King George's Medical University, Lucknow, 226003, India
| | - Mohammad Kaleem Ahmad
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, India
| | - Durgesh Kumar
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, India
| |
Collapse
|
21
|
Chinnadurai K, Prema P, Veeramanikandan V, Kumar KR, Nguyen VH, Marraiki N, Zaghloul NSS, Balaji P. Toxicity evaluation and oxidative stress response of fumaronitrile, a persistent organic pollutant (POP) of industrial waste water on tilapia fish (Oreochromis mossambicus). ENVIRONMENTAL RESEARCH 2022; 204:112030. [PMID: 34508771 DOI: 10.1016/j.envres.2021.112030] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The study was designed to determine the impact of acute toxicity of fumaronitrile exposure through tissue damaging, oxidative stress enzymes and histopathological studies in gills, liver and muscle cells of freshwater tilapia fish (Oreochromis mossambicus). In gill, liver, and muscle cells, biochemical indicators such as tissue damage enzymes (Acid Phosphatase (ACP), Alkaline Phosphatase (ALP), and Lactate Dehydrogenase (LDH)) and antioxidative enzymes (Superoxide Dismutase (SOD); Catalase (CAT); Glutathione-S-transferase (GST); Reduced Glutathione (GSH); Glutamate oxaloacetate transaminase (GOT) and Glutamate pyruvate transaminase (GPT) were quantified in the time interval of 30, 60 and 90 days exposure to the fumaronitrile. After 90 days, under 6 ppb exposure conditions, the acid phosphatase (ACP) levels of fish increased significantly in the gills (3.439 μmol/mg protein/min), liver (1.743 μmol/mg protein/min), and muscles (2.158 μmol/mg protein/min). After 90 days of exposure to the same concentration and days, ALP activity increased significantly in gills (4.354 μmol/mg protein/min) and liver (1.754 μmol/mg protein/min), but muscle cells had a little decrease in ALP activity (2.158 μmol/mg protein/min). The LDH concentration in gills following treatment with fumaronitrile over a period of 0-90 days was 3.573 > 3.521 > 2.245 μmol/mg protein/min over 30 > 60 > 90 days. However, at the same dose and treatment duration, a greater LDH level of 0.499 μmol/mg protein/min was found in liver and muscle cells. Histopathological abnormalities in the gills, liver, and muscle cells of treated fish were also examined, indicating that fumaronitrile treatment generated the most severe histological changes. The current study reveals that fumaronitrile exposure has an effect on Oreochromis mossambicus survival, explaining and emphasising the risk associated with this POP exposure to ecosystems and human populations.
Collapse
Affiliation(s)
- K Chinnadurai
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamilnadu, India
| | - P Prema
- Department of Zoology, VHN Senthikumara Nadar College (Autonomous), Virudhunagar, Tamilnadu, India
| | - V Veeramanikandan
- PG and Research Centre in Microbiology, MGR College, Hosur, Tamilnadu, India
| | - K Ramesh Kumar
- Department of Zoology, Vivekananda College (Autonomous), Madurai, Tamil Nadu, India
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Nouf S S Zaghloul
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK
| | - P Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamilnadu, India.
| |
Collapse
|
22
|
Wang SS, Lu AX, Cao LL, Ran XF, Wang YQ, Liu C, Yan CH. Effects of prenatal exposure to persistent organic pollutants on neonatal Outcomes:A mother-child cohort (Shanghai, China). ENVIRONMENTAL RESEARCH 2022; 203:111767. [PMID: 34391732 DOI: 10.1016/j.envres.2021.111767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Persistent organic pollutants (POPs), known as common environmental pollutants, which have adverse effects on neurobehavioral development, are widely applied in industry and agriculture. However, evidence about neurodevelopmental toxicity of POPs in humans is limited. This study aimed to explore the relationship between prenatal exposure to POPs and birth outcome of the newborn including birth length, weight, and head circumference. In this study, 1522 mother-child pairs were included in this study and cord blood samples were collected, which were detected to determine exposure level of 37 POPs in total. After delivery, the neonatal anthropometric indices detection (birth length, weight, and head circumference) was performed. According to the multivariate linear regression, the newborn with high detection rates (≥75 percentile) of hexachlorobenzene (HCB), beta-hexachlorocyclohexane (β-HCH), p,p'-dichlorodiphenyl dichloroethylene (p,p'-DDE) in the umbilical cord blood were demonstrated negative relationship with birth head circumference after adjusting for confounding factors, but not related with birth length and weight. After confirming that there was a nonlinear relationship between HCB and birth head circumference based on sex stratification through the generalized additive model (GAM), further two-piecewise linear regression model was conducted to explore the saturation threshold effect between HCB and birth head circumference, which showed cord serum HCB concentration greater than 0.5 μg/L was negatively associated with birth head circumference in girls. Our study provided evidence for the adverse influence of HCB, β-HCH and p,p'-DDE exposure during pregnancy on the birth head circumference of offspring. Although HCB induced reduction of birth head circumference was found in girls, the mechanism of gender difference remained unclear. Further studies are needed to explore the effect of POPs on the growth and development of offspring based on in vivo or in vitro experimental models.
Collapse
Affiliation(s)
- Su-Su Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Lu Cao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiu-Fang Ran
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Qian Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Liu
- School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
24
|
Timokhina EP, Yaglov VV, Nazimova SV. Dichlorodiphenyltrichloroethane and the Adrenal Gland: From Toxicity to Endocrine Disruption. TOXICS 2021; 9:toxics9100243. [PMID: 34678939 PMCID: PMC8539486 DOI: 10.3390/toxics9100243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Endocrine disruptors are exogenous compounds that pollute the environment and have effects similar to hormones when inside the body. One of the most widespread endocrine disruptors in the wild is the pesticide dichlorodiphenyltrichloroethane (DDT). Toxic doses of DDT are known to cause cell atrophy and degeneration in the adrenal zona fasciculata and zona reticularis. Daily exposure in a developing organism to supposedly non-toxic doses of DDT have been found to impair the morphogenesis of both the cortex and the medulla of the adrenal glands, as well as disturbing the secretion of hormones in cortical and chromaffin cells. Comparison of high and very low levels of DDT exposure revealed drastic differences in the morphological and functional changes in the adrenal cortex. Moreover, the three adrenocortical zones have different levels of sensitivity to the disruptive actions of DDT. The zona glomerulosa and zona reticularis demonstrate sensitivity to both high and very low levels of DDT in prenatal and postnatal periods. In contrast, the zona fasciculata is less damaged by low (supposedly non-toxic) exposure to DDT and its metabolites but is affected by toxic levels of exposure; thus, DDT exerts both toxic and disruptive effects on the adrenal glands, and sensitivity to these two types of action varies in adrenocortical zones. Disruptive low-dose exposure leads to more severe affection of the adrenal function.
Collapse
|
25
|
Li G, Zhang X, Liu T, Fan H, Liu H, Li S, Wang D, Ding L. Dynamic microwave-assisted extraction combined with liquid phase microextraction based on the solidification of a floating drop for the analysis of organochlorine pesticides in grains followed by GC. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Niroumandpassand A, Javadi A, Afshar Mogaddam MR. Solution decomposition of deep eutectic solvents in pH-induced solidification of floating organic droplet homogeneous liquid-liquid microextraction for the extraction of pyrethroid pesticides from milk. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1747-1756. [PMID: 33861242 DOI: 10.1039/d0ay02340j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, a pH-induced solidification of floating organic droplet homogeneous liquid-liquid microextraction procedure using deep eutectic solvent decomposition was developed for the extraction of five pyrethroid insecticides from milk samples prior to their analysis by using a gas chromatography-flame ionization detector. To reach this goal, the sample was transferred into a glass test tube and its proteins were precipitated with trichloroacetic acid. After centrifugation, the supernatant phase was transferred into another test tube and a few microliters of menthol: p-aminophenol deep eutectic solvent were dissolved in the solution and shaken to obtain a homogeneous solution. Then a few microliters of ammonia solution were added to the solution and the mixture was sonicated to break down the homogeneous solution. By doing so, the deep eutectic solvent was decomposed and menthol was formed throughout the solution as tiny droplets. In the following, the tube was transferred into an ice bath to solidify the extraction solvent on the solution surface. The collected phase was removed and melted at room temperature and an aliquot of it was analyzed by using a determination system. The validation outcomes confirmed that the method provides high extraction recoveries (72-84%) and high enrichment factors (257-299) with acceptable repeatability (relative standard deviations ≤6.4%). Low limits of detection (1.1-2.4 ng mL-1) and quantification (3.6-8.1 ng mL-1) were obtained using this approach. Finally, several milk samples were analyzed and deltamethrin was successfully determined in some samples.
Collapse
|
27
|
Nanoparticle Beads of Chitosan-Ethylene Glycol Diglycidyl Ether/Fe for the Removal of Aldrin. J CHEM-NY 2021. [DOI: 10.1155/2021/8421840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This article reports on the preparation of iron nanoparticles (FeNPs) supported in chitosan beads (Chi-EDGE-Fe) for removing aldrin from aqueous solutions. The FeNPs and Chi-EDGE-Fe beads were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and the Mössbauer spectroscopy (MS) techniques. TEM, XRD, and MS showed that the FeNPs had core-shell structures consisting of a core of either Fe0 or Fe2B and a shell of magnetite. Furthermore, SEM images showed that Chi-EDGE-Fe beads were spherical with irregular surfaces and certain degrees of roughness and porosity, whilst the sorbent mean pore size was 204 nm, and the occluded iron nanoparticles in the chitosan material had diameters of 70 nm and formed agglomerates. The sorbent beads consisted of carbon, oxygen, chlorine, aluminum, silicon, and iron according to the SEM-EDS analysis. Functional groups such as O-H, C-H, -CH2, N-H, C-O, C-OH, and Fe-OH were detected in the FTIR spectra. In addition, a characteristic band appeared at about 1700 cm−1 after the sorption process involving aldrin. MS also showed that the iron nanoparticles in the beads probably oxidized into NPs of α-Fe2O3 as a result of the supporting process. The isotherm of the aldrin removal followed the Langmuir–Freundlich model and presented a maximum adsorption capacity of 74.84 mg/g, demonstrating that chitosan-Fe beads are promising sorbents for the removal of toxic pollutants in aqueous solutions.
Collapse
|
28
|
Mardani A, Torbati M, Farajzadeh MA, Mohebbi A, Alizadeh AA, Afshar Mogaddam MR. Development of temperature-assisted solidification of floating organic droplet-based dispersive liquid–liquid microextraction performed during centrifugation for extraction of organochlorine pesticide residues in cocoa powder prior to GC-ECD. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01424-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Mardani A, Afshar Mogaddam MR, Farajzadeh MA, Mohebbi A, Nemati M, Torbati M. A three‐phase solvent extraction system combined with deep eutectic solvent‐based dispersive liquid–liquid microextraction for extraction of some organochlorine pesticides in cocoa samples prior to gas chromatography with electron capture detection. J Sep Sci 2020; 43:3674-3682. [DOI: 10.1002/jssc.202000507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Asghar Mardani
- Department of Food Science and Technology Faculty of Nutrition Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
- Engineering Faculty Near East University Mersin Turkey
| | - Ali Mohebbi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Mahboob Nemati
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology Faculty of Nutrition Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|