1
|
Sudarsan JS, Dogra K, Kumar R, Raval NP, Leifels M, Mukherjee S, Trivedi MH, Jain MS, Zang J, Barceló D, Mahlknecht J, Kumar M. Tricks and tracks of prevalence, occurrences, treatment technologies, and challenges of mixtures of emerging contaminants in the environment: With special emphasis on microplastic. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104389. [PMID: 38941876 DOI: 10.1016/j.jconhyd.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
This paper aims to emphasize the occurrence of various emerging contaminant (EC) mixtures in natural ecosystems and highlights the primary concern arising from the unregulated release into soil and water, along with their impacts on human health. Emerging contaminant mixtures, including pharmaceuticals, personal care products, dioxins, polychlorinated biphenyls, pesticides, antibiotics, biocides, surfactants, phthalates, enteric viruses, and microplastics (MPs), are considered toxic contaminants with grave implications. MPs play a crucial role in transporting pollutants to aquatic and terrestrial ecosystems as they interact with the various components of the soil and water environments. This review summarizes that major emerging contaminants (ECs), like trimethoprim, diclofenac, sulfamethoxazole, and 17α-Ethinylestradiol, pose serious threats to public health and contribute to antimicrobial resistance. In addressing human health concerns and remediation techniques, this review critically evaluates conventional methods for removing ECs from complex matrices. The diverse physiochemical properties of surrounding environments facilitate the partitioning of ECs into sediments and other organic phases, resulting in carcinogenic, teratogenic, and estrogenic effects through active catalytic interactions and mechanisms mediated by aryl hydrocarbon receptors. The proactive toxicity of ECs mixture complexation and, in part, the yet-to-be-identified environmental mixtures of ECs represent a blind spot in current literature, necessitating conceptual frameworks for assessing the toxicity and risks with individual components and mixtures. Lastly, this review concludes with an in-depth exploration of future scopes, knowledge gaps, and challenges, emphasizing the need for a concerted effort in managing ECs and other organic pollutants.
Collapse
Affiliation(s)
- Jayaraman Sethuraman Sudarsan
- School of Energy and Environment, NICMAR (National Institute of Construction Management and Research) University, Pune 411045, India
| | - Kanika Dogra
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Nirav P Raval
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh 522 240, India
| | - Mats Leifels
- Division Water Quality and Health, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems an der Donau, Austria
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Mrugesh H Trivedi
- Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj-Kachchh, Gujarat 370001, India
| | - Mayur Shirish Jain
- Department of Civil Engineering, Indian Institute of Technology Indore, Simrol, 453552, India
| | - Jian Zang
- School of Civil Engineering, Chongqing University, Chongqing, China
| | - Damià Barceló
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120, Almería, Spain
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico
| | - Manish Kumar
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico.
| |
Collapse
|
2
|
Liao Z, Jian Y, Lu J, Liu Y, Li Q, Deng X, Xu Y, Wang Q, Yang Y, Luo Z. Distribution, migration patterns, and food chain human health risks of endocrine-disrupting chemicals in water, sediments, and fish in the Xiangjiang River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172484. [PMID: 38631636 DOI: 10.1016/j.scitotenv.2024.172484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) in freshwater systems has garnered increasing attention. A comprehensive analysis of the migration patterns, bioaccumulation, and consumer health risk of EDCs along the Xiangjiang River due to fish consumption from the river ecosystem was provided. Twenty natural and synthetic target EDCs were detected and analyzed from the water, sediments, and fish samples collected along the Xiangjiang River. There were significant correlations between the EDC concentrations in fish and the sediments. This revealed that EDCs in sediments play a dominant role in the uptake of EDCs by fish. The bioaccumulation factor and biota-sediment accumulation factor were calculated, with the highest values observed for nonylphenol. Pearson's correlation analysis showed that bisphenol A is the most reliable biological indicator of EDC contamination in fish. Furthermore, based on the threshold of toxicological concerns and the health risk with dietary intake, crucian carp and catfish from the Xiangjiang River pose a certain risk for children and pregnant women compared to grass carp. The Monte Carlo simulation results indicated a certain risk of cumulative ∑EDC exposure for local residents due to fish consumption.
Collapse
Affiliation(s)
- Ze Liao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yu Jian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Lu
- Technology Center of Changsha Customs, Hunan Key Laboratory of Food Safety Science & Technology, Changsha 410004, PR China
| | - Yilin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Qinyao Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Xunzhi Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yin Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Qiuping Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Zhoufei Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
3
|
Adeel M, Zain M, Shakoor N, Azeem I, Hussain M, Ahmad MA, Chaudhary S, Zaheer U, Aziz MA, Ahmar S, Yukui R, Xu M. Estrogens in plants and emerging risks to human health. ENVIRONMENT INTERNATIONAL 2023; 178:107985. [PMID: 37364304 DOI: 10.1016/j.envint.2023.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/29/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
Steroid estrogens (SEs) accumulate in agro-food systems through wastewater treatment and dairy manure, but very little is known about their potential impact on plants and dietary risk to human health. We conducted a meta-analysis to address key questions including, how plants respond to SEs under different environmental conditions, what is the accumulation potential of SEs in distinct plant families, and associated daily dietary intake risks to humans. Based on 517 endpoints, we revealed that various crop species show a heterogeneous response to SEs types (n = 140), SEs concentrations (n = 141), and exposure medium (n = 166). A subsidy-stress response was observed in terms of SEs accumulation for plant growth. The bioaccumulation of SE in plants was shown to be greatest in sand, followed by soil, and hydroponic media. Plants exposed to SEs exhibit considerable changes in physiological and biochemical characteristics. Surprisingly, food crops such as carrot and potato were found as major source of SEs daily intake in food chain but their consequences remains largely unknown. Further field-oriented research is needed to unveil the threshold levels for SEs in soil-plant systems as it may pose a global threat to human health. The state of knowledge presented here may guide towards urgently needed future investigations in this field for reducing the risk in SEs in agro-food systems.
Collapse
Affiliation(s)
- Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, PR China.
| | - Muhammad Zain
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Muzammil Hussain
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Arslan Ahmad
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Sadaf Chaudhary
- Department of Botany, University of Agriculture Faisalabad, Pakistan
| | - Usama Zaheer
- Institute of Soil and Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Abdullah Aziz
- Institute of Soil and Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Rui Yukui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Ming Xu
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, PR China
| |
Collapse
|
4
|
Wahab RA, Omar TFT, Nurulnadia MY, Rozulan NNA. Occurrence, distribution, and risk assessment of parabens in the surface water of Terengganu River, Malaysia. MARINE POLLUTION BULLETIN 2023; 192:115036. [PMID: 37207388 DOI: 10.1016/j.marpolbul.2023.115036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
The concentration, distribution, and risk assessment of parabens were determined in the surface water of the Terengganu River, Malaysia. Target chemicals were extracted via solid-phase extraction, followed by high-performance liquid chromatography analysis. Method optimization produced a high percentage recovery for methylparaben (MeP, 84.69 %), ethylparaben (EtP, 76.60 %), and propylparaben (PrP, 76.33 %). Results showed that higher concentrations were observed for MeP (3.60 μg/L) as compared with EtP (1.21 μg/L) and PrP (1.00 μg/L). Parabens are ubiquitously present in all sampling stations, with >99 % of detection. Salinity and conductivity were the major factors influencing the level of parabens in the surface water. Overall, we found no potential risk of parabens in the Terengganu River ecosystem due to low calculated risk assessment values (risk quotient < 1). In conclusion, parabens are present in the river, but their levels are too low to pose risks to aquatic organisms.
Collapse
Affiliation(s)
- Rohaya Abd Wahab
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Tuan Fauzan Tuan Omar
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology Research Group, Faculty of Science and Marine Environment, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mohd Yusoff Nurulnadia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology Research Group, Faculty of Science and Marine Environment, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Najaa Nur Atiqah Rozulan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
5
|
Chen Y, Xie H, Junaid M, Xu N, Zhu Y, Tao H, Wong M. Spatiotemporal distribution, source apportionment and risk assessment of typical hormones and phenolic endocrine disrupting chemicals in environmental and biological samples from the mariculture areas in the Pearl River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150752. [PMID: 34619214 DOI: 10.1016/j.scitotenv.2021.150752] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The present work studied the levels, distribution, potential sources, ecological and human health risks of typical hormones and phenolic endocrine disrupting chemicals (EDCs) in the mariculture areas of the Pearl River Delta (PRD), China. The environmental levels of 11 hormones (6 estrogens, 4 progestogens, and 1 androgen) and 2 phenolic EDCs were quantified in various matrices including water, sediment, cultured fish and shellfish. Ultrahigh performance liquid chromatography-triple quadrupole tandem mass spectrometry analyses showed that all the 13 target compounds were detected in biotic samples, whereas 10 were detected in water and sediment, respectively. The total concentrations ranged from 35.06-364.53 ng/L in water and 6.31-29.30 ng/g in sediment, respectively. The average contaminant levels in shellfish (Ostrea gigas, Mytilus edulis and Mimachlamys nobilis) were significantly higher than those in fish (Culter alburnus, Ephippus orbis and Ephippus orbis). Source apportionment revealed that the pollution of hormones and phenolic EDCs in PRD mariculture areas was resulted from the combination of coastal anthropogenic discharges and mariculture activities. The hazard quotient values of the contaminants were all less than 1, implying no immediate human health risk. Overall, the present study is of great significance for scientific mariculture management, land-based pollution control, ecosystem protection, and safeguarding human health.
Collapse
Affiliation(s)
- Yupeng Chen
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Haiwen Xie
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Muhammad Junaid
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Youchang Zhu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huchun Tao
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Minghung Wong
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
6
|
Yin Y, Yang C, Tang J, Gu J, Li H, Duan M, Wang X, Chen R. Bamboo charcoal enhances cellulase and urease activities during chicken manure composting: Roles of the bacterial community and metabolic functions. J Environ Sci (China) 2021; 108:84-95. [PMID: 34465440 DOI: 10.1016/j.jes.2021.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 05/22/2023]
Abstract
Microbial enzymes are crucial for material biotransformation during the composting process. In this study, we investigated the effects of adding bamboo charcoal (BC) (i.e., at 5%, 10%, and 20% corresponding to BC5, BC10, and BC20, respectively) on the enzyme activity levels during chicken manure composting. The results showed that BC10 could increase the cellulose and urease activities by 56% and 96%, respectively. The bacterial community structure in BC10 differed from those in the other treatments, and Luteivirga, Lactobacillus, Paenalcaligenes, Ulvibacter, Bacillus, Facklamia, Pelagibacterium, Sporosarcina, Cellvibrio, and Corynebacterium had the most important roles in composting. Compared with other treatments, BC10 significantly enhanced the average rates of degradation of carbohydrates (D-xylose (40%) and α-D-lactose (44%)) and amino acids (L-arginine (16%), L-asparagine (14%), and L-threonine (52%)). We also explored the associations among the bacterial community and their metabolic functions with the changes in the activities of enzymes. Network analysis demonstrated that BC10 altered the co-occurrence patterns of the bacterial communities, where Ulvibacter and class Bacilli were the keystone bacterial taxa with high capacities for degrading carbon source, and they were related to increases in the activities of cellulase and urease, respectively. The results obtained in this study may help to further enhance the efficiency of composting.
Collapse
Affiliation(s)
- Yanan Yin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chao Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jingrui Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jie Gu
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Haichao Li
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Manli Duan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|