1
|
Wu Z, Wang L, Chen W, Wang Y, Cui K, Chen W, Liu J, Jin H, Zhou Z. Reproductive Toxicity and Multi/Transgenerational Effects of Emerging Pollutants on C. elegans. TOXICS 2024; 12:785. [PMID: 39590964 PMCID: PMC11598590 DOI: 10.3390/toxics12110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Emerging pollutants (EPs) are receiving increasing attention due to the threats they pose to the environment and human health. As EPs continue to emerge, risk assessment requires many model animals. Caenorhabditis elegans (C. elegans) has been an outstanding toxicological model organism due to its growth and development characteristics. Particularly, in studying the transgenerational influences of EPs, C. elegans has advantages in saving time and cost due to its short generation cycle. As infertility has become a major problem in human reproductive health, reproductive toxicities of EPs on contemporary nematodes and across generations of C. elegans were introduced in this review. Moreover, the underlying mechanisms involved in germ cell apoptosis, spermatogenesis, and epigenetic alteration were discussed. Future research opportunities and challenges are also discussed to expand our understanding of the reproductive influences of EPs.
Collapse
Affiliation(s)
- Zhiling Wu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Weihua Chen
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan 430010, China;
| | - Yiqi Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Ke Cui
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Jijun Liu
- Chongqing Center for Disease Control and Prevention, Chongqing 400707, China;
| | - Huidong Jin
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| |
Collapse
|
2
|
Liu F, Cao X, Zhou L. Lipid metabolism analysis providing insights into nonylphenol multi-toxicity mechanism. iScience 2023; 26:108417. [PMID: 38053636 PMCID: PMC10694653 DOI: 10.1016/j.isci.2023.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Nonylphenol (NP), a widely recognized endocrine disruptor, exhibits lipophobic properties that drive its accumulation in adipose tissue, leading to various physiological disruptions. Using Caenorhabditis elegans, this study investigated the effects of NP exposure on lipid homeostasis and physiological indicators. NP exposure increased lipid storage, hindered reproduction and growth, and altered phospholipid composition. Transcriptional analysis revealed NP's promotion of lipogenesis and inhibition of lipolysis. Metabolites related to lipid metabolism like citrate, amino acids, and neurotransmitters, along with lipids, collectively influenced physiological processes. This work elucidates the complex link between lipid metabolism disturbances and NP-induced physiological disruptions, enhancing our understanding of NP's multifaceted toxicity.
Collapse
Affiliation(s)
- Fuwen Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xue Cao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Lei Zhou
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Tejeda-Benítez L, Noguera K, Aga D, Olivero-Verbel J. Pesticides in sediments from Magdalena River, Colombia, are linked to reproductive toxicity on Caenorhabditis elegans. CHEMOSPHERE 2023; 339:139602. [PMID: 37480944 DOI: 10.1016/j.chemosphere.2023.139602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Pesticides are prevalent pollutants found in river sediments in agricultural regions worldwide, leading to environmental pollution and toxic effects on biota. In this study, twenty sediment samples were collected from the Magdalena River in Colombia and analyzed for forty pesticides. Methanolic extracts of the sediments were used to expose Caenorhabditis elegans for 24 h, evaluating the effects on its reproduction. The most abundant pesticides found in Magdalena River sediments were atrazine, bromacil, DDE, and chlorpyrifos. The concentrations of DDE and the sum of DDD, DDE, and DDT were above the Threshold Effect Concentration (TEC) values for freshwater sediments, indicating potential effects on aquatic organisms. The ratios of DDT/(DDE + DDD) and DDD/DDE suggest historical contributions of DDT and degradation under aerobic conditions. Several sampling sites displayed a moderate toxicity risk to biota, as calculated by the sediment quality guideline quotient (SQGQ). Nematode brood size was reduced by up to 37% after sediment extract exposure. The presence of chlordane, DDT-related compounds, and chlorpyrifos in Magdalena River sediments was associated with reproductive toxicity among C. elegans.
Collapse
Affiliation(s)
- Lesly Tejeda-Benítez
- Biomedical, Toxicological and Environmental Sciences (Biotoxam), Campus Piedra de Bolivar, University of Cartagena, Cartagena, Colombia
| | - Katia Noguera
- Department of Chemistry, University at Buffalo, Buffalo, NY, USA
| | - Diana Aga
- Department of Chemistry, University at Buffalo, Buffalo, NY, USA
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
4
|
Hua X, Feng X, Liang G, Chao J, Wang D. Long-term exposure to 6-PPD quinone reduces reproductive capacity by enhancing germline apoptosis associated with activation of both DNA damage and cell corpse engulfment in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131495. [PMID: 37119572 DOI: 10.1016/j.jhazmat.2023.131495] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Recently, 6-PPD quinone (6-PPDQ), a derivative of tire antioxidant 6-PPD, was reported to have acute toxicity for organisms. However, the possible reproductive toxicity of 6-PPDQ is still largely unclear. In this study, the reproductive toxicity of 6-PPDQ after long-term exposure was further investigated in Caenorhabditis elegans. Exposure to 1 and 10 μg/L 6-PPDQ reduced the reproductive capacity. Meanwhile, exposure to 1 and 10 μg/L 6-PPDQ enhanced the germline apoptosis, which was accompanied by upregulation of ced-3, ced-4, and egl-1 expressions and downregulation of ced-9 expression. The observed increase in germline apoptosis in 1 and 10 μg/L 6-PPDQ exposed nematodes was associated with the enhancement in DNA damage and increase in expressions of related genes of cep-1, clk-2, hus-1, and mrt-2. The detected enhancement in germline apoptosis in 1 and 10 μg/L 6-PPDQ exposed nematodes was further associated with the increase in expressions of ced-1 and ced-6 governing the cell corpse engulfment process. Molecular docking analysis indicated the binding potentials of 6-PPDQ with three DNA damage checkpoints (CLK-2, HUS-1, and MRT-2) and corpse-recognizing phagocytic receptor CED-1. Therefore, our data suggested the toxicity on reproductive capacity by 6-PPDQ at environmentally relevant concentrations by enhancing DNA damage- and cell corpse engulfment-induced germline apoptosis in organisms.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Xiao Feng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Jie Chao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
5
|
Xu C, Ling H, Fan C, Xiang L, Zhang S, Li W, Yi C. Higher levels of nonylphenol were found in human urine and drinking water from rural areas as compared to metropolitan regions of Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66950-66959. [PMID: 35511329 PMCID: PMC9492561 DOI: 10.1007/s11356-022-20513-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The suspected endocrine disruptor nonylphenol (NP) is closely associated with anthropogenic activities; therefore, studies on this compound have been clustered in urban areas. This study investigated the NP concentrations in drinking water sources (n = 8), terminal tap water (n = 36), and human urine samples (n = 127) collected from urban and rural areas in Wuhan, China. The mean concentrations of NP measured in drinking water sources in urban and rural areas were 92.3 ± 7.5 and 11.0 ± 0.8 ng/L (mean ± SD), respectively, whereas the mean levels in urban and rural tap waters were 5.0 ± 0.7 and 44.2 ± 2.6 ng/L (mean ± SD), respectively. Nevertheless, NP was detected in 74.1% and 75.4% of the human urine samples from urban and rural participants, with geometric mean concentrations of 0.19 ng/mL (0.26 µg/g creat) and 0.27 ng/mL (0.46 µg/g creat), respectively. Although the NP concentrations measured in the drinking water sources of urban areas were significantly higher than those in rural areas (P < 0.05), the tap water and urine NP concentrations measured in urban areas were unexpectedly lower than those of rural areas (P < 0.05). Additionally, this investigation showed that the materials comprising household water supply pipelines and drinking water treatment processes in the two areas were also different. Our results indicated that the levels of exposure to NP in drinking water and human urine in rural areas were not necessarily lower than those in urban areas. Thus, particular attention should be paid to rural areas in future studies of NP.
Collapse
Affiliation(s)
- Chunyan Xu
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| | - Haibo Ling
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| | - Chuangang Fan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, People's Republic of China
| | - Luojing Xiang
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| | - Shu Zhang
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| | - Weiwei Li
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| | - Chuan Yi
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China.
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Lu D, Yu L, Li M, Zhai Q, Tian F, Chen W. Behavioral disorders caused by nonylphenol and strategies for protection. CHEMOSPHERE 2021; 275:129973. [PMID: 33639553 DOI: 10.1016/j.chemosphere.2021.129973] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/22/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) is widely used in daily production and life due to its good emulsification. In this review, we discuss toxicology studies that examined behavioral disorders caused by NP, the corresponding toxicological mechanisms in the central nervous system (CNS), and strategies for protection. Available in vitro and in vivo evidence suggests that exposure to NP during adulthood or early childhood is associated with cognitive dysfunction, including depression-like behaviors, anxiety-like behaviors, and impaired learning and memory. The main mechanisms underlying NP-related cognitive disorders include inflammation, destruction of synaptic plasticity, and destruction of important signaling pathways that affect the synthesis and secretion of neurotransmitters. The effects and mechanisms of NP exposure on CNS-mediated reproductive function, including interference with the expression of hormones, proteins, and enzymes, are discussed. Other abnormal behaviors such as locomotor activity and swimming behavior are also described. Several measures to prevent NP neurotoxicity are summarized. These measures are based on the toxicological mechanisms underlying NP exposure and include external protection and internal self-regulation of the nervous system. Finally, a new treatment idea is proposed based on the gut-brain axis. Characterizing the behavioral changes and underlying toxicity mechanisms associated with NP exposure and investigating the possible methods of treatment will help to expand the understanding of these mechanisms and could lead to more effective treatments.
Collapse
Affiliation(s)
- Dezhi Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu, 214122 China.
| | - Miaoyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu, 214122 China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu, 214122 China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, 100048, China
| |
Collapse
|
7
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|