1
|
Yu L, Xu H, Xiong H, Yang C, Wu Y, Zhang Q. The role of m5C RNA modification in cancer development and therapy. Heliyon 2024; 10:e38660. [PMID: 39444404 PMCID: PMC11497397 DOI: 10.1016/j.heliyon.2024.e38660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
RNA modifications have been demonstrated to affect the function, stability, processing, and interactions of RNA, including pseudouridylation, acetylation and methylation. RNA methylation products, such as N6-methyladenosine (m6A), 5-methylcytidine (m5C), N7-methylguanosine (m7G), 2'-O-dimethyladenosine (m6Am), and N1-methyladenosine (m1A), have been reported to participate in tumorigenesis and tumor progression. The role of m6A in carcinogenesis has been well studied and summarized. In this review, we described the biological functions of m5C RNA modifications in tumorigenesis and tumor progression. Moreover, we highlighted the molecular mechanisms of m5C RNA modification in oncogenesis. Furthermore, we discussed whether targeting m5C regulator-associated genes could be a novel strategy for improving therapeutic outcomes in patients with cancer.
Collapse
Affiliation(s)
- Li Yu
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongen Xu
- Department of Oncology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hanchu Xiong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chunju Yang
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wu
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiong Zhang
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Xie W, Chen C, Li H, Tu Y, Zhong Y, Lin Z, Cai Z. Imidacloprid-induced lung injury in mice: Activation of the PI3K/AKT/NF-κB signaling pathway via TLR4 receptor engagement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172910. [PMID: 38701926 DOI: 10.1016/j.scitotenv.2024.172910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Significant impairment of pulmonary function has been demonstrated through long-term exposure to neonicotinoid insecticides, such as imidacloprid (IMI). However, the underlying mechanisms of lung injury induced by IMI remain unclear. In this study, a mouse model of IMI-induced pulmonary injury was established, and the toxicity and lung damage were assessed through mouse body weight, organ index, hematological parameters, and histopathological analysis of lung tissues. Furthermore, metabolomics and transcriptomics techniques were employed to explore the mechanistic aspects. Results from the toxicity assessments indicated that mouse body weight was significantly reduced by IMI, organ index was disturbed, and hematological parameters were disrupted, resulting in pulmonary injury. The mechanistic experimental results indicate that the differences in metabolites and gene expression in mouse lungs could be altered by IMI. Validation of the results through combined analysis of metabolomics and transcriptomics revealed that the mechanism by which IMI induces lung injury in mice might be associated with the activation of the TLR4 receptor, thereby activating the PI3K/AKT/NF-κB signaling pathway to induce inflammation in mouse lungs. This study provided valuable insights into the mechanisms underlying IMI-induced pulmonary damage, potentially contributing to the development of safer pest control strategies. The knowledge gained served as a robust scientific foundation for the prevention and treatment of IMI-related pulmonary injuries.
Collapse
Affiliation(s)
- Wen Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Canrong Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yuxin Tu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, Hong Kong.
| |
Collapse
|
3
|
Zhang Y, Yan C, Xie Q, Wu B, Zhang Y. Exposure to bisphenol A affects transcriptome-wide N6-methyladenine methylation in ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116071. [PMID: 38354435 DOI: 10.1016/j.ecoenv.2024.116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Bisphenol A (BPA) is an endocrine disruptor of potential reproductive toxicities. Increasingly research elucidated that BPA exposure to the environment would change the epigenetic modifications of transcriptome, but the mechanism by which BPA affects m6A methylation in interfering with female reproductive health remains uncertain. Therefore, this study preliminarily proposed and tested the hypothesis that BPA exposure alters the m6A modification level in transcripts in female ovarian granulosa cells. After BPA was exposed to granulosa cells for 24 h, RNA methylation related regulatory genes (such as METTL3, METTL14, ALKBH5, FTO) and the global m6A levels showed significant differences. Next, we applied MERIP-seq analysis to obtain information on the genome-wide m6A modification changes and identified 1595 differentially methylated mRNA transcripts, and 50 differentially methylated lncRNA transcripts. Further joint analysis of gene common expression showed that 33 genes were hypermethylated and up-regulated, 71 were hypermethylated and down-regulated, 49 were hypomethylated and up-regulated, and 20 were hypomethylated and down-regulated. Enriched Gene Ontology (GO) and biological pathway analysis revealed that these unique genes were mainly enriched in lipid metabolism, cell proliferation, and apoptosis related pathways. Six of these genes (mRNAs IMPA1, MCOLN1, DCTN3, BRCA2, and lncRNAs MALAT1, XIST) were validated using RT-qPCR and IGV software. Through comprehensive analysis of epitranscriptome and protein-protein interaction (PPI) data, lncRNAs MALAT1 and XIST are expected to serve as new markers for BPA interfering with the female reproductive system. In brief, these data show a novel and necessary connection between the damage of BPA exposure on female ovarian granulosa cells and RNA methylation modification.
Collapse
Affiliation(s)
- Yuxia Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Congcong Yan
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Xie
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Yingchun Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
4
|
Gionco JT, Bernstein AI. Emerging Role of Environmental Epitranscriptomics and RNA Modifications in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:643-656. [PMID: 38578904 PMCID: PMC11191529 DOI: 10.3233/jpd-230457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
Environmental risk factors and gene-environment interactions play a critical role in Parkinson's disease (PD). However, the relatively large contribution of environmental risk factors in the overwhelming majority of PD cases has been widely neglected in the field. A "PD prevention agenda" proposed in this journal laid out a set of research priorities focused on preventing PD through modification of environmental risk factors. This agenda includes a call for preclinical studies to employ new high-throughput methods for analyzing transcriptomics and epigenomics to provide a deeper understanding of the effects of exposures linked to PD. Here, we focus on epitranscriptomics as a novel area of research with the potential to add to our understanding of the interplay between genes and environmental exposures in PD. Both epigenetics and epitranscriptomics have been recognized as potential mediators of the complex relationship between genes, environment, and disease. Multiple studies have identified epigenetic alterations, such as DNA methylation, associated with PD and PD-related exposures in human studies and preclinical models. In addition, recent technological advancements have made it possible to study epitranscriptomic RNA modifications, such as RNA N6-methyladenosine (m6A), and a handful of recent studies have begun to explore epitranscriptomics in PD-relevant exposure models. Continued exploration of epitranscriptomic mechanisms in environmentally relevant PD models offers the opportunity to identify biomarkers, pre-degenerative changes that precede symptom onset, and potential mitigation strategies for disease prevention and treatment.
Collapse
Affiliation(s)
- John T. Gionco
- Graduate Program in Cell and Developmental Biology, Rutgers University, Piscataway, NJ, USA
| | - Alison I. Bernstein
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
5
|
Zhou R, Wang Q, Zeng S, Liang Y, Wang D. METTL14-mediated N6-methyladenosine modification of Col17a1/Itgα6/Itgβ4 governs epidermal homeostasis. J Dermatol Sci 2023; 112:138-147. [PMID: 37951776 DOI: 10.1016/j.jdermsci.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most abundant and reversible modification occurring in eukaryotic mRNAs, however, its functions in mammalian epidermal development are still not fully elucidated. OBJECTIVE To explore the role of METTL14 (Methyltransferase like 14), one of the m6A methyltransferases, in maintaining epidermal homeostasis. METHODS We constructed mice with Mettl14-inactivation in the epidermal basal cells. The phenotype was explored by H&E staining and immunofluorescence staining. To explore the underlying mechanisms, we performed RNA-seq, Ribosome profiling and MeRIP-seq on wild-type and Mettl14-inactivation epidermal keratinocytes. Moreover, HaCaT cells were used for in vitro validation. RESULTS Inactivation of Mettl14 in murine epidermis led to transient thicker epidermis and exhaustion of the epidermal stem cell pool. Interestingly, we found that the mRNA of type XVII collagen (Col17a1), integrin β4 (Itgβ4) and α6 (Itgα6) had m6A modifications, and the proteins expression were decreased in Mettl14-inactivated epidermis. Furthermore, in epidermis-specific Mettl4-inactivated mice, the epidermis was detached from the dermis and presented a phenotype similar to junctional epidermolysis bullosa (JEB), which may result from hemidesmosomes damage (decrease of COL17A1, ITGB4 and ITGA6). Knockdown of Mettl14 in HaCaT cells impaired the self-renewal and decreased the protein level of COL17A1, ITGB4 and ITGA6 and Itgβ4 knockdown inhibited colony formation. CONCLUSION Our study highlighted the role of METTL14 in the maintenance of epidermal homeostasis and identified its critical role through m6A-mediated translational inhibition of Col17a1, Itgβ4 and Itgα6. Our study suggested that METTL14 may be a potential therapeutic target for the treatment of hemidesmosomes-deficient diseases, such as JEB.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyi Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. Unveiling the future of metabolic medicine: omics technologies driving personalized solutions for precision treatment of metabolic disorders. Biochem Biophys Res Commun 2023; 682:1-20. [PMID: 37788525 DOI: 10.1016/j.bbrc.2023.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Metabolic disorders are increasingly prevalent worldwide, leading to high rates of morbidity and mortality. The variety of metabolic illnesses can be addressed through personalized medicine. The goal of personalized medicine is to give doctors the ability to anticipate the best course of treatment for patients with metabolic problems. By analyzing a patient's metabolomic, proteomic, genetic profile, and clinical data, physicians can identify relevant diagnostic, and predictive biomarkers and develop treatment plans and therapy for acute and chronic metabolic diseases. To achieve this goal, real-time modeling of clinical data and multiple omics is essential to pinpoint underlying biological mechanisms, risk factors, and possibly useful data to promote early diagnosis and prevention of complex diseases. Incorporating cutting-edge technologies like artificial intelligence and machine learning is crucial for consolidating diverse forms of data, examining multiple variables, establishing databases of clinical indicators to aid decision-making, and formulating ethical protocols to address concerns. This review article aims to explore the potential of personalized medicine utilizing omics approaches for the treatment of metabolic disorders. It focuses on the recent advancements in genomics, epigenomics, proteomics, metabolomics, and nutrigenomics, emphasizing their role in revolutionizing personalized medicine.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India.
| |
Collapse
|
7
|
Petri BJ, Cave MC, Klinge CM. Changes in m6A in Steatotic Liver Disease. Genes (Basel) 2023; 14:1653. [PMID: 37628704 PMCID: PMC10454815 DOI: 10.3390/genes14081653] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Fatty liver disease is one of the major causes of morbidity and mortality worldwide. Fatty liver includes non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), now replaced by a consensus group as metabolic dysfunction-associated steatotic liver disease (MASLD). While excess nutrition and obesity are major contributors to fatty liver, the underlying mechanisms remain largely unknown and therapeutic interventions are limited. Reversible chemical modifications in RNA are newly recognized critical regulators controlling post-transcriptional gene expression. Among these modifications, N6-methyladenosine (m6A) is the most abundant and regulates transcript abundance in fatty liver disease. Modulation of m6A by readers, writers, and erasers (RWE) impacts mRNA processing, translation, nuclear export, localization, and degradation. While many studies focus on m6A RWE expression in human liver pathologies, limitations of technology and bioinformatic methods to detect m6A present challenges in understanding the epitranscriptomic mechanisms driving fatty liver disease progression. In this review, we summarize the RWE of m6A and current methods of detecting m6A in specific genes associated with fatty liver disease.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
| | - Matthew C. Cave
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M. Klinge
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
| |
Collapse
|
8
|
Abstract
Epigenetics has transformed our understanding of the molecular basis of complex diseases, including cardiovascular and metabolic disorders. This review offers a comprehensive overview of the current state of knowledge on epigenetic processes implicated in cardiovascular and metabolic diseases, highlighting the potential of DNA methylation as a precision medicine biomarker and examining the impact of social determinants of health, gut bacterial epigenomics, noncoding RNA, and epitranscriptomics on disease development and progression. We discuss challenges and barriers to advancing cardiometabolic epigenetics research, along with the opportunities for novel preventive strategies, targeted therapies, and personalized medicine approaches that may arise from a better understanding of epigenetic processes. Emerging technologies, such as single-cell sequencing and epigenetic editing, hold the potential to further enhance our ability to dissect the complex interplay between genetic, environmental, and lifestyle factors. To translate research findings into clinical practice, interdisciplinary collaborations, technical and ethical considerations, and accessibility of resources and knowledge are crucial. Ultimately, the field of epigenetics has the potential to revolutionize the way we approach cardiovascular and metabolic diseases, paving the way for precision medicine and personalized health care, and improving the lives of millions of individuals worldwide affected by these conditions.
Collapse
Affiliation(s)
- Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, New York (A.A.B.)
| | - José Ordovás
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, at Tufts University, Boston, MA (J.O.)
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain (J.O.)
- Consortium CIBERObn, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (J.O.)
| |
Collapse
|
9
|
Piell KM, Petri BJ, Head KZ, Wahlang B, Xu R, Zhang X, Pan J, Rai SN, de Silva K, Chariker JH, Rouchka EC, Tan M, Li Y, Cave MC, Klinge CM. Disruption of the mouse liver epitranscriptome by long-term aroclor 1260 exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104138. [PMID: 37137421 PMCID: PMC10330322 DOI: 10.1016/j.etap.2023.104138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Chronic environmental exposure to polychlorinated biphenyls (PCBs) is associated with non-alcoholic fatty liver disease (NAFLD) and exacerbated by a high fat diet (HFD). Here, chronic (34 wks.) exposure of low fat diet (LFD)-fed male mice to Aroclor 1260 (Ar1260), a non-dioxin-like (NDL) mixture of PCBs, resulted in steatohepatitis and NAFLD. Twelve hepatic RNA modifications were altered with Ar1260 exposure including reduced abundance of 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A), in contrast to increased Am in the livers of HFD-fed, Ar1260-exposed mice reported previously. Differences in 13 RNA modifications between LFD- and HFD- fed mice, suggest that diet regulates the liver epitranscriptome. Integrated network analysis of epitranscriptomic modifications identified a NRF2 (Nfe2l2) pathway in the chronic, LFD, Ar1260-exposed livers and an NFATC4 (Nfatc4) pathway for LFD- vs. HFD-fed mice. Changes in protein abundance were validated. The results demonstrate that diet and Ar1260 exposure alter the liver epitranscriptome in pathways associated with NAFLD.
Collapse
Affiliation(s)
- Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA
| | - Banrida Wahlang
- University of Louisville Hepatobiology and Toxicology Center, USA
| | - Raobo Xu
- University of Louisville Hepatobiology and Toxicology Center, USA; Department of Chemistry, University of Louisville College of Arts and Sciences, USA
| | - Xiang Zhang
- University of Louisville Hepatobiology and Toxicology Center, USA; Department of Chemistry, University of Louisville College of Arts and Sciences, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA
| | - Jianmin Pan
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Cancer Data Science Center, Biostatistics and Informatics Shared Resource, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Shesh N Rai
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Cancer Data Science Center, Biostatistics and Informatics Shared Resource, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kalpani de Silva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA
| | - Julia H Chariker
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA
| | - Min Tan
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yan Li
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Matthew C Cave
- University of Louisville Hepatobiology and Toxicology Center, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA; The University of Louisville Superfund Research Center, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
10
|
Head KZ, Bolatimi OE, Gripshover TC, Tan M, Li Y, Audam TN, Jones SP, Klinge CM, Cave MC, Wahlang B. Investigating the effects of long-term Aroclor 1260 exposure on fatty liver disease in a diet-induced obesity mouse model. FRONTIERS IN GASTROENTEROLOGY (LAUSANNE, SWITZERLAND) 2023; 2:1180712. [PMID: 37426695 PMCID: PMC10327714 DOI: 10.3389/fgstr.2023.1180712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Introduction Polychlorinated biphenyls (PCBs) are persistent environmental toxicants that have been implicated in numerous health disorders including liver diseases such as non-alcoholic fatty liver disease (NAFLD). Toxicant-associated NAFLD, also known as toxicant-associated fatty liver disease (TAFLD), consists of a spectrum of disorders ranging from steatosis and steatohepatitis to fibrosis and hepatocellular carcinoma. Previously, our group demonstrated that 12-week exposure to the PCB mixture, Aroclor 1260, exacerbated steatohepatitis in high-fat diet (HFD)-fed mice; however, the longer-term effects of PCBs on TAFLD remain to be elucidated. This study aims to examine the longer-term effects of Aroclor 1260 (>30 weeks) in a diet-induced obesity model to better understand how duration of exposure can impact TAFLD. Methods Male C57BL/6 mice were exposed to Aroclor 1260 (20 mg/kg) or vehicle control by oral gavage at the beginning of the study period and fed either a low-fat diet (LFD) or HFD throughout the study period. Results Aroclor 1260 exposure (>30 weeks) led to steatohepatitis only in LFD-fed mice. Several Aroclor 1260 exposed LFD-fed mice also developed hepatocellular carcinoma (25%), which was absent in HFD-fed mice. The LFD+Aroclor1260 group also exhibited decreased hepatic Cyp7a1 expression and increased pro-fibrotic Acta2 expression. In contrast, longer term Aroclor 1260 exposure in conjunction with HFD did not exacerbate steatosis or inflammatory responses beyond those observed with HFD alone. Further, hepatic xenobiotic receptor activation by Aroclor 1260 was absent at 31 weeks post exposure, suggesting PCB redistribution to the adipose and other extra-hepatic tissues with time. Discussion Overall, the results demonstrated that longer-term PCB exposure worsened TAFLD outcomes independent of HFD feeding and suggests altered energy metabolism as a potential mechanism fueling PCB mediated toxicity without dietary insult. Additional research exploring mechanisms for these longer-term PCB mediated toxicity in TAFLD is warranted.
Collapse
Affiliation(s)
- Kimberly Z. Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
| | - Oluwanifemi E. Bolatimi
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Tyler C. Gripshover
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Min Tan
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Yan Li
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Timothy N. Audam
- Center for Cardiometabolic Science, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Steven P. Jones
- Center for Cardiometabolic Science, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, United States
| | - Matthew C. Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, United States
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY, United States
- Robley Rex Department of Veterans Affairs Medical Center, Louisville, KY, United States
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, United States
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
11
|
Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet 2023; 24:332-344. [PMID: 36717624 PMCID: PMC10562207 DOI: 10.1038/s41576-022-00569-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/01/2023]
Abstract
A substantial proportion of disease risk for common complex disorders is attributable to environmental exposures and pollutants. An appreciation of how environmental pollutants act on our cells to produce deleterious health effects has led to advances in our understanding of the molecular mechanisms underlying the pathogenesis of chronic diseases, including cancer and cardiovascular, neurodegenerative and respiratory diseases. Here, we discuss emerging research on the interplay of environmental pollutants with the human genome and epigenome. We review evidence showing the environmental impact on gene expression through epigenetic modifications, including DNA methylation, histone modification and non-coding RNAs. We also highlight recent studies that evaluate recently discovered molecular processes through which the environment can exert its effects, including extracellular vesicles, the epitranscriptome and the mitochondrial genome. Finally, we discuss current challenges when studying the exposome - the cumulative measure of environmental influences over the lifespan - and its integration into future environmental health research.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Christina M Eckhardt
- Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
12
|
Baccarelli A, Dolinoy DC, Walker CL. A precision environmental health approach to prevention of human disease. Nat Commun 2023; 14:2449. [PMID: 37117186 PMCID: PMC10147599 DOI: 10.1038/s41467-023-37626-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/24/2023] [Indexed: 04/30/2023] Open
Abstract
Human health is determined by the interaction of our environment with the genome, epigenome, and microbiome, which shape the transcriptomic, proteomic, and metabolomic landscape of cells and tissues. Precision environmental health is an emerging field leveraging environmental and system-level ('omic) data to understand underlying environmental causes of disease, identify biomarkers of exposure and response, and develop new prevention and intervention strategies. In this article we provide real-life illustrations of the utility of precision environmental health approaches, identify current challenges in the field, and outline new opportunities to promote health through a precision environmental health framework.
Collapse
Affiliation(s)
- Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Cheryl Lyn Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Yin L, Han K, Jiang B, Meng Q, Aschner M, Li X, Chen R. NAT10 accelerates pulmonary fibrosis through N4-acetylated TGFB1-initiated epithelial-to-mesenchymal transition upon ambient fine particulate matter exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121149. [PMID: 36731737 DOI: 10.1016/j.envpol.2023.121149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) has been linked to a higher pulmonary fibrosis risk. Dysregulation of the epitranscriptome results in abnormal expression of mRNAs during fibrosis development. N4-acetylcytidine (ac4C) is one of the most frequent RNA epigenetic alterations, however, its function in PM2.5-triggered fibrosis is yet unknown. In this study, lung epithelial and murine models were established and exposed to PM2.5 to analyze the function of ac4C alteration in pulmonary fibrosis and underlying mechanisms. Meanwhile, the expression levels of only known ac4C "writer" protein, N-acetyltransferase 10 (NAT10), were significantly induced in pulmonary epithelia, relative to the control. Subsequently, NAT10 enhanced the stability of transforming growth factor beta 1 (TGFB1) mRNA as well as protein levels. As an up-stream driver, TGFB1 accelerated EMT and fibrosis process. Inhibition of NAT10 significantly protected against pulmonary EMT and fibrosis driven by PM2.5 exposure, whereas TGFB1 overexpression reversed the protective effects of NAT10 inhibition. Thus, NAT10 accelerated PM2.5-triggered pulmonary fibrosis via increasing TGFB1 mRNA stability in an ac4C-dependent manner. Our results reveal a pivotal role of NAT10-regulated mRNA ac4C acetylation in PM2.5-triggered pulmonary fibrosis and uncover the potential epitranscriptional mechanism.
Collapse
Affiliation(s)
- Lijia Yin
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ke Han
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Bo Jiang
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Qingtao Meng
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, 100069, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China; Beijing laboratory of allergic diseases, Capital Medical University; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
14
|
Luo G, Xu W, Chen X, Xu W, Yang S, Wang J, Lin Y, Reinach PS, Yan D. The RNA m5C Methylase NSUN2 Modulates Corneal Epithelial Wound Healing. Invest Ophthalmol Vis Sci 2023; 64:5. [PMID: 36862118 PMCID: PMC9983701 DOI: 10.1167/iovs.64.3.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Purpose The emerging epitranscriptomics offers insights into the physiopathological roles of various RNA modifications. The RNA methylase NOP2/Sun domain family member 2 (NSUN2) catalyzes 5-methylcytosine (m5C) modification of mRNAs. However, the role of NSUN2 in corneal epithelial wound healing (CEWH) remains unknown. Here we describe the functional mechanisms of NSUN2 in mediating CEWH. Methods RT-qPCR, Western blot, dot blot, and ELISA were used to determine the NSUN2 expression and overall RNA m5C level during CEWH. NSUN2 silencing or overexpression was performed to explore its involvement in CEWH both in vivo and in vitro. Multi-omics was integrated to reveal the downstream target of NSUN2. MeRIP-qPCR, RIP-qPCR, and luciferase assay, as well as in vivo and in vitro functional assays, clarified the molecular mechanism of NSUN2 in CEWH. Results The NSUN2 expression and RNA m5C level increased significantly during CEWH. NSUN2 knockdown significantly delayed CEWH in vivo and inhibited human corneal epithelial cells (HCEC) proliferation and migration in vitro, whereas NSUN2 overexpression prominently enhanced HCEC proliferation and migration. Mechanistically, we found that NSUN2 increased ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) translation through the binding of RNA m5C reader Aly/REF export factor. Accordingly, UHRF1 knockdown significantly delayed CEWH in vivo and inhibited HCEC proliferation and migration in vitro. Furthermore, UHRF1 overexpression effectively rescued the inhibitory effect of NSUN2 silencing on HCEC proliferation and migration. Conclusions NSUN2-mediated m5C modification of UHRF1 mRNA modulates CEWH. This finding highlights the critical importance of this novel epitranscriptomic mechanism in control of CEWH.
Collapse
Affiliation(s)
- Guangying Luo
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Weiwei Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xiaoyan Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Wenji Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiao Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Yong Lin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Zhu X, Fu H, Sun J, Xu Q. Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced diseases in various organ systems. Chem Biol Interact 2023; 373:110376. [PMID: 36736874 DOI: 10.1016/j.cbi.2023.110376] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
A wide variety of chemicals are ubiquitous in the environment and thus exposure to these environmental chemicals poses a serious threat to public health. Particularly, environmental factors such as air pollution, heavy metals, and endocrine-disrupting chemicals (EDCs) can lead to diseases in various organ systems. Recent research in environmental epigenetics has demonstrated that N6-methyladenosine (m6A) modification is a key mechanism of environment-related diseases. m6A modification is the most abundant chemical modification in mRNAs, which can specifically regulate gene expression by affecting RNA translation, stability, processing, and nuclear export. In this review, we discussed how environmental chemicals affected m6A modification and mediated environment-related disease occurrence by classifying the diseases of various systems. Here, we conclude that environmental chemicals alter the levels of m6A and its modulators, which then participate in the occurrence of diseases in various systems by regulating gene expression and downstream signaling pathways such as METTL3/m6A ZBTB4/YTHDF2/EZH2, Foxo3a/FTO/m6A ephrin-B2/YTHDF2, and HIF1A/METTL3/m6A BIRC5/IGF2BP3/VEGFA. Considering the significant role of m6A and its modulators in response to environmental chemicals, they are expected to be used as biomarkers of environment-related diseases. Additionally, targeting m6A modulators using small molecule inhibitors and activators is expected to be a new method for the treatment of environment-related diseases. This review systematically and comprehensively clarifies the important role of m6A in diseases caused by environmental chemicals, thus establishing a scientific basis for the treatment of diseases in various organ systems.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Haowei Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Jiahui Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
16
|
Geng Z, Liu P, Yuan L, Zhang K, Lin J, Nie X, Jiang H, Li B, Liu T, Zhang B. Electroacupuncture attenuates ac4C modification of P16 mRNA in the ovarian granulosa cells of a mouse model premature ovarian failure. Acupunct Med 2023; 41:27-37. [PMID: 35475376 DOI: 10.1177/09645284221085284] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Premature ovarian failure (POF) is a type of pathological aging, which seriously interferes with the fertility of affected women. Electroacupuncture (EA) may have a beneficial effect; however, its mechanism of action is unknown. The purpose of this study was to determine the effect of EA on ovarian function in ovarian granulosa cells (OGCs) in a cyclophosphamide (CTX)-induced mouse model of POF. METHODS Mice were divided into three groups: wild type (WT) group, CTX group and CTX + EA group. EA was administered under isoflurane anesthesia at CV4, ST36 and SP6 for 30 min every 2 days, 2-3 times per week for a total of 4 weeks. Effects of EA on ovarian weight and level of estrogen were examined. The mRNA and protein expression levels of cell cycle-associated proteins were detected and mRNA modifications were analyzed. RESULTS EA significantly increased ovarian weight and reduced the proportion of atretic follicles in mice with CTX-induced POF (p < 0.05). EA increased the level of estrogen in the peripheral blood of mice and inhibited the modification of total mRNA N4-acetylcytidine (ac4C). A significant increase in the expression of P16 and N-acetyltransferase 10 (NAT10) and a significant decrease in the expression of Cyclin D (CCND1) and cyclin-dependent kinase 6 (CDK6) were observed in the OGCs of POF mice (p<0.05). After EA, P16 and NAT10 expression was decreased, and CCND1 and CDK6 expression was increased. Finally, EA reduced the ac4C modification of P16 mRNA-specific sites in the OGCs of POF mice. CONCLUSION This study demonstrated that EA promoted the repair of the ovarian microenvironment by inhibiting the ac4C modification of P16 mRNA to decrease its stability and expression intensity, and by altering the activity of the P16/CDK6/CCND1 axis in OGCs.
Collapse
Affiliation(s)
- Zixiang Geng
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Liu
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Yuan
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyong Zhang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Lin
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoli Nie
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiru Jiang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingrong Li
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Bimeng Zhang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Petri BJ, Piell KM, Wahlang B, Head KZ, Andreeva K, Rouchka EC, Cave MC, Klinge CM. Polychlorinated biphenyls alter hepatic m6A mRNA methylation in a mouse model of environmental liver disease. ENVIRONMENTAL RESEARCH 2023; 216:114686. [PMID: 36341798 PMCID: PMC10120843 DOI: 10.1016/j.envres.2022.114686] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 05/21/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) has been associated with liver injury in human cohorts and with nonalcoholic steatohepatitis (NASH) in mice fed a high fat diet (HFD). N (6)-methyladenosine (m6A) modification of mRNA regulates transcript fate, but the contribution of m6A modification on the regulation of transcripts in PCB-induced steatosis and fibrosis is unknown. This study tested the hypothesis that PCB and HFD exposure alters the levels of m6A modification in transcripts that play a role in NASH in vivo. Male C57Bl6/J mice were fed a HFD (12 wks) and administered a single oral dose of Aroclor1260, PCB126, or Aroclor1260 + PCB126. Genome-wide identification of m6A peaks was accomplished by m6A mRNA immunoprecipitation sequencing (m6A-RIP) and the mRNA transcriptome identified by RNA-seq. Exposure of HFD-fed mice to Aroclor1260 decreased the number of m6A peaks and m6A-containing genes relative to PCB vehicle control whereas PCB126 or the combination of Aroclor1260 + PCB126 increased m6A modification frequency. ∼41% of genes had one m6A peak and ∼49% had 2-4 m6A peaks. 117 m6A peaks were common in the four experimental groups. The Aroclor1260 + PCB126 exposure group showed the highest number (52) of m6A-peaks. qRT-PCR confirmed enrichment of m6A-containing fragments of the Apob transcript with PCB exposure. A1cf transcript abundance, m6A peak count, and protein abundance was increased with Aroclor1260 + PCB126 co-exposure. Irrespective of the PCB type, all PCB groups exhibited enriched pathways related to lipid/lipoprotein metabolism and inflammation through the m6A modification. Integrated analysis of m6A-RIP-seq and mRNA-seq identified 242 differentially expressed genes (DEGs) with increased or reduced number of m6A peaks. These data show that PCB exposure in HFD-fed mice alters the m6A landscape offering an additional layer of regulation of gene expression affecting a subset of gene responses in NASH.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Banrida Wahlang
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, USA; Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, USA
| | - Matthew C Cave
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
18
|
Feng Y, Liu T, Xu S, Ren Y, Ge Y, Yin L, Pu Y, Liang G. The role of N6-methyladenosine methylation in environmental exposure-induced health damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69153-69175. [PMID: 35951238 DOI: 10.1007/s11356-022-22093-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The health risks caused by environmental pollution have long been of substantial concern. With the development of epigenetics, a large number of studies have demonstrated that N6-methyladenosine (m6A) modification is involved in the regulation of various important life activities associated with various diseases. Recent studies have revealed that m6A plays a key role in health damage caused by environmental exposure by regulating post-transcriptional gene expression. Therefore, our study outlined the effects of environmental pollutant exposure on m6A methylation and its regulator levels. Moreover, we found that m6A methylation modifications were involved in the development of various health damages by regulating important life activities in vivo, such as reactive oxygen species imbalance, apoptosis, epithelial-mesenchymal transition (EMT), and inflammatory processes. More importantly, we delved into the regulatory mechanisms of m6A methylation dysregulation in environmental pollution-induced diseases. Finally, by examining the published literature, we found that methyltransferase-like protein 3 (METTL3) and fat mass- and obesity-associated protein (FTO) were potentially used as biomarkers of health damage induced by particulate matter exposure and heavy metal exposure, respectively. The current studies on regulators of METTL3 and FTO were more promising to bring new perspectives for the treatment of environmental health-related diseases.
Collapse
Affiliation(s)
- Yanlu Feng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Siyi Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yiyi Ren
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Mubarak G, Zahir FR. Recent Major Transcriptomics and Epitranscriptomics Contributions toward Personalized and Precision Medicine. J Pers Med 2022; 12:199. [PMID: 35207687 PMCID: PMC8877836 DOI: 10.3390/jpm12020199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/07/2022] Open
Abstract
With the advent of genome-wide screening methods-beginning with microarray technologies and moving onto next generation sequencing methods-the era of precision and personalized medicine was born. Genomics led the way, and its contributions are well recognized. However, "other-omics" fields have rapidly emerged and are becoming as important toward defining disease causes and exploring therapeutic benefits. In this review, we focus on the impacts of transcriptomics, and its extension-epitranscriptomics-on personalized and precision medicine efforts. There has been an explosion of transcriptomic studies particularly in the last decade, along with a growing number of recent epitranscriptomic studies in several disease areas. Here, we summarize and overview major efforts for cancer, cardiovascular disease, and neurodevelopmental disorders (including autism spectrum disorder and intellectual disability) for transcriptomics/epitranscriptomics in precision and personalized medicine. We show that leading advances are being made in both diagnostics, and in investigative and landscaping disease pathophysiological studies. As transcriptomics/epitranscriptomics screens become more widespread, it is certain that they will yield vital and transformative precision and personalized medicine contributions in ways that will significantly further genomics gains.
Collapse
Affiliation(s)
| | - Farah R. Zahir
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
20
|
Nanoparticle-Induced m6A RNA Modification: Detection Methods, Mechanisms and Applications. NANOMATERIALS 2022; 12:nano12030389. [PMID: 35159736 PMCID: PMC8839700 DOI: 10.3390/nano12030389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
With the increasing application of nanoparticles (NPs) in medical and consumer applications, it is necessary to ensure their safety. As m6A (N6-methyladenosine) RNA modification is one of the most prevalent RNA modifications involved in many diseases and essential biological processes, the relationship between nanoparticles and m6A RNA modification for the modulation of these events has attracted substantial research interest. However, there is limited knowledge regarding the relationship between nanoparticles and m6A RNA modification, but evidence is beginning to emerge. Therefore, a summary of these aspects from current research on nanoparticle-induced m6A RNA modification is timely and significant. In this review, we highlight the roles of m6A RNA modification in the bioimpacts of nanoparticles and thus elaborate on the mechanisms of nanoparticle-induced m6A RNA modification. We also summarize the dynamic regulation and biofunctions of m6A RNA modification. Moreover, we emphasize recent advances in the application perspective of nanoparticle-induced m6A RNA modification in medication and toxicity of nanoparticles to provide a potential method to facilitate the design of nanoparticles by deliberately tuning m6A RNA modification.
Collapse
|
21
|
Schnegelberger RD, Lang AL, Arteel GE, Beier JI. Environmental toxicant-induced maladaptive mitochondrial changes: A potential unifying mechanism in fatty liver disease? Acta Pharm Sin B 2021; 11:3756-3767. [PMID: 35024304 PMCID: PMC8727895 DOI: 10.1016/j.apsb.2021.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Occupational and environmental exposures to industrial chemicals are well known to cause hepatotoxicity and liver injury. However, despite extensive evidence showing that exposure can lead to disease, current research approaches and regulatory policies fail to address the possibility that subtle changes caused by low level exposure to chemicals may also enhance preexisting conditions. In recent years, the conceptual understanding of the contribution of environmental chemicals to liver disease has progressed significantly. Mitochondria are often target of toxicity of environmental toxicants resulting in multisystem disorders involving different cells, tissues, and organs. Here, we review persistent maladaptive changes to mitochondria in response to environmental toxicant exposure as a mechanism of hepatotoxicity. With better understanding of the mechanism(s) and risk factors that mediate the initiation and progression of toxicant-induced liver disease, rational targeted therapy can be developed to better predict risk, as well as to treat or prevent this disease.
Collapse
Affiliation(s)
- Regina D. Schnegelberger
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anna L. Lang
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gavin E. Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Juliane I. Beier
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Abstract
Epigenetic modifications have gained attention since they can be potentially changed with environmental stimuli and can be associated with adverse health outcomes. Epitranscriptome field has begun to attract attention with several aspects since RNA modifications have been linked with critical biological processes and implicated in diseases. Several RNA modifications have been identified as reversible indicating the dynamic features of modification which can be altered by environmental cues. Currently, we know more than 150 RNA modifications in different organisms and on different bases which are modified by various chemical groups. RNA editing, which is one of the RNA modifications, occurs after transcription, which results in RNA sequence different from its corresponding DNA sequence. Emerging evidence reveals the functions of RNA editing as well as the association between RNA editing and diseases. However, the RNA editing field is beginning to grow up and needs more empirical evidence in regard to disease and toxicology. Thus, this review aims to provide the current evidence-based studies on RNA editing modifying genes for genotoxicity and cancer. The review presented the association between environmental xenobiotics exposure and RNA editing modifying genes and focused on the association between the expression of RNA editing modifying genes and cancer. Furthermore, we discussed the future directions of scientific studies in the area of RNA modifications, especially in the RNA editing field, and provided a knowledge-based framework for further studies.
Collapse
Affiliation(s)
- Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
23
|
Yuan Q, Zhu H, Liu H, Wang M, Chu H, Zhang Z. METTL3 regulates PM 2.5-induced cell injury by targeting OSGIN1 in human airway epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125573. [PMID: 33730643 DOI: 10.1016/j.jhazmat.2021.125573] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/30/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
N6-methyladenosine (m6A) is implicated in alteration of cellular biological processes caused by exogenous environmental factors. However, little is known about the role of m6A in airborne fine particulate matter (PM2.5)-induced adverse effects. Thus, we investigated the role of m6A modification in PM2.5-induced airway epithelial cell injury. We observed a methyltransferase-like 3 (METTL3)-dependent induction of m6A modification after PM2.5 treatment in HBE and A549 cells. METTL3 knockdown attenuated PM2.5-induced apoptosis and arrest of cell cycle. mRNA sequencing and RNA N6-methyladenosine binding protein immunoprecipitation (Me-RIP) assay identified m6A-modified oxidative stress induced growth inhibitor 1 (OSGIN1) as the target gene of METTL3. Knockdown of METTL3 resulted a shorter mRNA half-life of OSGIN1 by catalyzing its m6A modification. Knockdown of METTL3 or OSGIN1 attenuated cell apoptosis, arrest of cell cycle and autophagy induced by PM2.5. In conclusion, METTL3 may mediate PM2.5-induced cell injury by targeting OSGIN1 in human airway epithelial cells. Our work uncovered a critical role of METTL3 in PM2.5-induced airway epithelial cell injury and provided insight into the vital role of m6A modification in PM2.5-induced human hazards.
Collapse
Affiliation(s)
- Qi Yuan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Huanhuan Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
24
|
RNA methyltransferase NSUN2 promotes hypopharyngeal squamous cell carcinoma proliferation and migration by enhancing TEAD1 expression in an m 5C-dependent manner. Exp Cell Res 2021; 404:112664. [PMID: 34048786 DOI: 10.1016/j.yexcr.2021.112664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/19/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
RNA methyltransferase NSUN2 is involved in cell proliferation and invasion in a variety of tumors. However, the expression, function, and mechanism of NSUN2 in hypopharyngeal squamous cell carcinoma (HPSCC) remains unknown. We used a bioinformatics database, polymerase chain reaction, cell culture and transfection, immunohistochemistry, cell proliferation assay, wound healing experiments, transwell assays, western blotting, RNA-seq detection, dual-luciferase reporter assay, in vivo experiments, and a dot blot assay to evaluate the role of NSUN2 in HPSCC. NSUN2 mRNA and protein were highly expressed in HPSCC; NSUN2 knockdown in vitro and in vivo decreased cell proliferation and invasion. Studies have shown that TEAD1, a transcription factor, may act downstream of NSUN2 in HPSCC. NSUN2 was found to promote the proliferation and invasion of HPSCC by upregulating TEAD1 in an 5-methylcytosine-dependent manner, thereby representing an oncogene and potential new target for treating HPSCC.
Collapse
|
25
|
Aluru N, Karchner SI. PCB126 Exposure Revealed Alterations in m6A RNA Modifications in Transcripts Associated With AHR Activation. Toxicol Sci 2021; 179:84-94. [PMID: 33064826 PMCID: PMC8453794 DOI: 10.1093/toxsci/kfaa158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chemical modifications of proteins, DNA, and RNA moieties play critical roles in regulating gene expression. Emerging evidence suggests the RNA modifications (epitranscriptomics) have substantive roles in basic biological processes. One of the most common modifications in mRNA and noncoding RNAs is N6-methyladenosine (m6A). In a subset of mRNAs, m6A sites are preferentially enriched near stop codons, in 3' UTRs, and within exons, suggesting an important role in the regulation of mRNA processing and function including alternative splicing and gene expression. Very little is known about the effect of environmental chemical exposure on m6A modifications. As many of the commonly occurring environmental contaminants alter gene expression profiles and have detrimental effects on physiological processes, it is important to understand the effects of exposure on this important layer of gene regulation. Hence, the objective of this study was to characterize the acute effects of developmental exposure to PCB126, an environmentally relevant dioxin-like PCB, on m6A methylation patterns. We exposed zebrafish embryos to PCB126 for 6 h starting from 72 h post fertilization and profiled m6A RNA using methylated RNA immunoprecipitation followed by sequencing (MeRIP-seq). Our analysis revealed 117 and 217 m6A peaks in the DMSO and PCB126 samples (false discovery rate 5%), respectively. The majority of the peaks were preferentially located around the 3' UTR and stop codons. Statistical analysis revealed 15 m6A marked transcripts to be differentially methylated by PCB126 exposure. These include transcripts that are known to be activated by AHR agonists (eg, ahrra, tiparp, nfe2l2b) as well as others that are important for normal development (vgf, cebpd, sned1). These results suggest that environmental chemicals such as dioxin-like PCBs could affect developmental gene expression patterns by altering m6A levels. Further studies are necessary to understand the functional consequences of exposure-associated alterations in m6A levels.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Sibel I Karchner
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
26
|
Cayir A. Environmental exposures and RNA N6-Methyladenosine modified long Non-Coding RNAs. Crit Rev Toxicol 2020; 50:641-649. [PMID: 32924714 DOI: 10.1080/10408444.2020.1812511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent advances in the field of RNA modifications and long non-coding RNAs (lncRNAs) have provided substantial evidence on important biological functions. LncRNAs are defined as longer than 200 nucleotides which are not translated into proteins. The term "epitranscriptome" refers to all modifications in RNA types. Adenine-6 methylation (m6A) is the most common, dynamic and prominent modifications in coding and non-coding RNAs and has critical and previously unappreciated functional roles. Accumulation evidence indicated the association between RNA m6A modification and cancer and nonmalignant diseases. Recent studies reported that several lncRNAs including MALAT1, MEG3, XIST, GAS5, and KCNK15-AS1 are subject to m6A modification. It can be suggested that lncRNAs modified by m6A modification have substantive roles in diseases. Currently limited data are available regarding how environmental exposure affects m6A-modified lncRNAs. Furthermore, we do not know the interaction of environmental exposure and m6A-modified lncRNAs in development of adverse human health outcomes. Thus, in this systematic review, we aimed to present the data of the studies that reported a significant association between environmental exposure and expression/DNA methylation of m6A-modified long non-coding RNAs.
Collapse
Affiliation(s)
- Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|