1
|
Huang X, Toro M, Reyes-Jara A, Moreno-Switt AI, Adell AD, Oliveira CJB, Bonelli RR, Gutiérrez S, Álvarez FP, Rocha ADDL, Kraychete GB, Chen Z, Grim C, Brown E, Bell R, Meng J. Integrative genome-centric metagenomics for surface water surveillance: Elucidating microbiomes, antimicrobial resistance, and their associations. WATER RESEARCH 2024; 264:122208. [PMID: 39116611 DOI: 10.1016/j.watres.2024.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Surface water ecosystems are intimately intertwined with anthropogenic activities and have significant public health implications as primary sources of irrigation water in agricultural production. Our extensive metagenomic analysis examined 404 surface water samples from four different geological regions in Chile and Brazil, spanning irrigation canals (n = 135), rivers (n = 121), creeks (n = 74), reservoirs (n = 66), and ponds (n = 8). Overall, 50.25 % of the surface water samples contained at least one of the pathogenic or contaminant bacterial genera (Salmonella: 29.21 %; Listeria: 6.19 %; Escherichia: 35.64 %). Furthermore, a total of 1,582 antimicrobial resistance (AMR) gene clusters encoding resistance to 25 antimicrobial classes were identified, with samples from Brazil exhibiting an elevated AMR burden. Samples from stagnant water sources were characterized by dominant Cyanobacteriota populations, resulting in significantly reduced biodiversity and more uniform community compositions. A significant association between taxonomic composition and the resistome was supported by a Procrustes analysis (p < 0.001). Notably, regional signatures were observed regarding the taxonomic and resistome profiles, as samples from the same region clustered together on both ordinates. Additionally, network analysis illuminated the intricate links between taxonomy and AMR at the contig level. Our deep sequencing efforts not only mapped the microbial landscape but also expanded the genomic catalog with newly characterized metagenome-assembled genomes (MAGs), boosting the classification of reads by 12.85 %. In conclusion, this study underscores the value of metagenomic approaches in surveillance of surface waters, enhancing our understanding of microbial and AMR dynamics with far-reaching public health and ecological ramifications.
Collapse
Affiliation(s)
- Xinyang Huang
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), Food Safety and Security Systems (CFS(3)), University of Maryland, College Park, MD, USA
| | - Magaly Toro
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), Food Safety and Security Systems (CFS(3)), University of Maryland, College Park, MD, USA; Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Angélica Reyes-Jara
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - Aiko D Adell
- Escuela de Medicina Veterinaria, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Celso J B Oliveira
- Laboratório de Avaliação de Produtos de Origem Animal, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Raquel R Bonelli
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Sebastián Gutiérrez
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Francisca P Álvarez
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - Alan Douglas de Lima Rocha
- Laboratório de Avaliação de Produtos de Origem Animal, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Gabriela B Kraychete
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Zhao Chen
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), Food Safety and Security Systems (CFS(3)), University of Maryland, College Park, MD, USA
| | - Christopher Grim
- Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, College Park, MD, USA
| | - Eric Brown
- Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, College Park, MD, USA
| | - Rebecca Bell
- Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, College Park, MD, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), Food Safety and Security Systems (CFS(3)), University of Maryland, College Park, MD, USA.
| |
Collapse
|
2
|
Soni K, Jyoti K, Kumar A, Chandra R. Coexistence of multidrug resistance and ESBL encoding genes - bla TEM, bla SHV, and bla CTX-M; its amplification and dispersion in the environment via municipal wastewater treatment plant. CHEMOSPHERE 2024; 362:142829. [PMID: 38992444 DOI: 10.1016/j.chemosphere.2024.142829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 03/07/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Municipal wastewater treatment plants (MWWTPs) are a global source of antibiotic resistance genes (ARGs), collecting wastewater from a variety of sources, including hospital wastewater, domestic wastewater, runoff from agricultural and livestock farms, etc. These sources are contaminated with organic and inorganic pollutants, ARGs and antibiotic-resistant bacteria (ARB). Such pollutants aided eutrophication and encouraged bacterial growth. During bacterial growth horizontal gene transfer (HGT) and vertical gene transfer (VGT) of ARGs and extended-spectrum β-lactamase (ESBL) encoding genes may facilitate, resulting in the spread of antibiotic resistance exponentially. The current study investigated the prevalence of multidrug resistance (MDR) and ESBL encoding genes in various treatment units of MWWTP and their spread in the environment. A total of three sampling sites (BUT, BRO, and BFB) were chosen, and 33 morphologically distinct bacterial colonies were isolated. 14 of the 33 isolates tested positive for antibiotic resistance and were further tested for the coexistence of MDR and ESBL production. The selected 14 isolates showed the highest resistance to trimethoprim (85.71%), followed by ciprofloxacin, azithromycin, and ampicillin (71.42%), tetracycline (57.14%), and vancomycin, gentamicin, and colistin sulphate (50%). A total of 9 isolates (64.28%) were phenotypically positive for ESBL production (BUT2, BUT3, BUT5, BRO1, BRO2, BRO3, BRO4, BRO5 and BFB1). The molecular detection of ESBL encoding genes, i.e. blaTEM, blaSHV, and blaCTX-M was carried out. The most prevalent gene was blaTEM (69.23%), followed by blaSHV (46.15%), and blaCTX-M (23.07%). In this study, 9 isolates (64.28%) out of 14 showed the coexistence of MDR and ESBL encoding genes, namely BUT3, BUT4, BUT5, BUT6, BUT7, BRO1, BRO2, BRO4, and BFB1. The coexistence of ESBL encoding genes and resistance to other antibiotic classes exacerbates human health and the environment.
Collapse
Affiliation(s)
- Kuldeep Soni
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Km Jyoti
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Anil Kumar
- State Level Water Analysis Laboratory, UP Jal Nigam (Urban) 6, Rana Pratap Marg, Lucknow, 226001, India
| | - Ram Chandra
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
3
|
Hafiane FZ, Tahri L, El Jarmouni M, Reyad AM, Fekhaoui M, Mohamed MO, Abdelrahman EA, Rizk SH, El-Sayyad GS, Elkhatib WF. Incidence, identification and antibiotic resistance of Salmonella spp. in the well waters of Tadla Plain, Morocco. Sci Rep 2024; 14:15380. [PMID: 38965268 PMCID: PMC11224349 DOI: 10.1038/s41598-024-61917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/10/2024] [Indexed: 07/06/2024] Open
Abstract
Concerns about challenges with water availability in the Tadla Plain region of Morocco have grown as a result of groundwater contamination brought on by human activity, climate change, and insufficient groundwater management. The objective of the study is to measure the number of resistant bacteria in the groundwater of Beni Moussa and Beni Aamir, as well as to evaluate the level of water pollution in this area. 200 samples were therefore gathered from 43 wells over the course of four seasonal campaigns in 2017 and 2018. Additionally, the samples were examined to determine whether Salmonella species were present and if they were resistant to the 16 antibiotics that were tested. Salmonella spp. have been identified in 31 isolated strains in total, accounting for 18.02% of all isolated strains. Data on antibiotic resistance show that 58.1% of Salmonella spp. strains are multidrug-resistant (MDR); 38.7% of Salmonella strains are tolerant to at least six antibiotics, 19.4% to at least nine antibiotics, 9.7% to four to seven antibiotics, 6.5% to at least eleven antibiotics, and the remaining 3.2% to up to twelve antibiotics. A considerable level of resistance to cefepime (61.29%), imipenem (54.84%), ceftazidime (45.16%), ofloxacin (70.97%), and ertapenem (74.19%) was found in the data. Consequently, it is important to monitor and regulate the growth of MDR in order to prevent the groundwater's quality from declining.
Collapse
Affiliation(s)
- Fatima Zahra Hafiane
- Geo-Biodiversity and Natural Patrimony Laboratory GEOPAC Research Center Scientific Institute, Mohammed V University in Rabat, Ibn Battuta Av, B. P1040, Rabat, Morocco
| | - Latifa Tahri
- Geo-Biodiversity and Natural Patrimony Laboratory GEOPAC Research Center Scientific Institute, Mohammed V University in Rabat, Ibn Battuta Av, B. P1040, Rabat, Morocco
| | | | - Ahmed M Reyad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohammed Fekhaoui
- Geo-Biodiversity and Natural Patrimony Laboratory GEOPAC Research Center Scientific Institute, Mohammed V University in Rabat, Ibn Battuta Av, B. P1040, Rabat, Morocco
| | - Mohamed O Mohamed
- Biotechnology and Genetic Engineering Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Samar H Rizk
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt.
| | - Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt.
| |
Collapse
|
4
|
Pauletto M, De Liguoro M. A Review on Fluoroquinolones' Toxicity to Freshwater Organisms and a Risk Assessment. J Xenobiot 2024; 14:717-752. [PMID: 38921651 PMCID: PMC11205205 DOI: 10.3390/jox14020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Fluoroquinolones (FQs) have achieved significant success in both human and veterinary medicine. However, regulatory authorities have recommended limiting their use, firstly because they can have disabling side effects; secondly, because of the need to limit the spread of antibiotic resistance. This review addresses another concerning consequence of the excessive use of FQs: the freshwater environments contamination and the impact on non-target organisms. Here, an overview of the highest concentrations found in Europe, Asia, and the USA is provided, the sensitivity of various taxa is presented through a comparison of the lowest EC50s from about a hundred acute toxicity tests, and primary mechanisms of FQ toxicity are described. A risk assessment is conducted based on the estimation of the Predicted No Effect Concentration (PNEC). This is calculated traditionally and, in a more contemporary manner, by constructing a normalized Species Sensitivity Distribution curve. The lowest individual HC5 (6.52 µg L-1) was obtained for levofloxacin, followed by ciprofloxacin (7.51 µg L-1), sarafloxacin and clinafloxacin (12.23 µg L-1), and ofloxacin (17.12 µg L-1). By comparing the calculated PNEC with detected concentrations, it is evident that the risk cannot be denied: the potential impact of FQs on freshwater ecosystems is a further reason to minimize their use.
Collapse
Affiliation(s)
| | - Marco De Liguoro
- Department of Comparative Biomedicine & Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy;
| |
Collapse
|
5
|
Stankiewicz K, Boroń P, Prajsnar J, Żelazny M, Heliasz M, Hunter W, Lenart-Boroń A. Second life of water and wastewater in the context of circular economy - Do the membrane bioreactor technology and storage reservoirs make the recycled water safe for further use? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170995. [PMID: 38378066 DOI: 10.1016/j.scitotenv.2024.170995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
In recent years water demand drastically increased which is particularly evident in tourism-burdened mountain regions. In these areas, climate neutral circular economy strategies to minimize human impact on the environment can be successfully applied. Among these strategies, treated wastewater reuse and retaining water in storage reservoirs deserve particular attention. This study aimed to determine if recycled water produced with two circular economy systems, namely membrane bioreactor treatment plant (MBR) with UV-light effluent disinfection and a storage reservoir, is safe enough for further use in green areas irrigation in summer and artificial snow production in winter. The assessment was based on the presence and concentration of antimicrobial agents, antibiotic resistant bacteria, antibiotic resistance genes, bacterial community composition and diversity. The treated water and wastewater was compared with natural water in their vicinity. Both systems fulfill the criteria set by the European Union in terms of reclaimed water suitable for reuse. Although the MBR/UV light wastewater treatment substantially reduced the numbers of E. coli and E. faecalis (from e.g. 32,000 CFU/100 ml to 20 CFU/100 ml and 15,000 CFU/100 ml to nearly 0 CFU/ml), bacteria resistant to ampicillin, aztreonam, cefepime, ceftazidime, ertapenem and tigecycline, as well as ESBL-positive and multidrug resistant E. coli were highly prevalent in MBR-treated wastewater (88.9 %, 55.6 %, 33.3 %, 22.2 % and 11.1 % and 44.4 and 55.6 %, respectively). Applying additional tertiary treatment technology is recommended. Retaining water in storage reservoirs nearly eliminated bacterial contaminants (e.g. E. coli dropped from 350 CFU/100 ml to 10 CFU/100 ml), antibiotic resistant bacteria, resistance genes (none detected in the storage reservoir) and antibiotics (only enrofloxacin detected once in the concentration of 3.20 ng/l). Findings of this study point to the limitations of solely culture-based assessment of reclaimed water and wastewater while they may prove useful in risk management and prevention in wastewater reuse.
Collapse
Affiliation(s)
- Klaudia Stankiewicz
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland
| | - Piotr Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Justyna Prajsnar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239 Kraków, Poland
| | - Mirosław Żelazny
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387 Kraków, Poland
| | - Miłosz Heliasz
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listpada Ave. 54, 31-425 Kraków, Poland
| | - Walter Hunter
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listpada Ave. 54, 31-425 Kraków, Poland
| | - Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland.
| |
Collapse
|
6
|
Żandarek J, Żmudzki P, Obradović D, Lazović S, Bogojević A, Koszła O, Sołek P, Maciąg M, Płazińska A, Starek M, Dąbrowska M. Analysis of pharmacokinetic profile and ecotoxicological character of cefepime and its photodegradation products. CHEMOSPHERE 2024; 353:141529. [PMID: 38428534 DOI: 10.1016/j.chemosphere.2024.141529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
An important problem is the impact of photodegradation on product toxicity in biological tests, which may be complex and context-dependent. Previous studies have described the pharmacology of cefepime, but the toxicological effects of its photodegradation products remain largely unknown. Therefore, photodegradation studies were undertaken in conditions similar to those occurring in biological systems insilico, in vitro, in vivo and ecotoxicological experiments. The structures of four cefepime photodegradation products were determined by UPLC-MS/MS method. The calculated in silico ADMET profile indicates that carcinogenic potential is expected for compounds CP-1, cefepime, CP-2 and CP-3. The Cell Line Cytomotovity Predictor 2.0 tool was used to predict the cytotoxic effects of cefepime and related compounds in non-transformed and cancer cell lines. The results indicate that possible actions include: non-small cell lung cancer, breast adenocarcinoma, prostate cancer and papillary renal cell carcinoma. OPERA models were used to predict absorption, distribution, metabolism and excretion (ADME) endpoints, and potential bioactivity of CP-2, cefepime and CP-4. The results obtained in silico show that after 96h of exposure, cefepime, CP-1, CP-2, and CP-3 are moderately toxic in the zebrafish model, while CP-4 is highly toxic. On the contrary, cefepime is more toxic to T. platyurus (highly toxic) compared to the zebrafish model, similar to products CP-4, CP-3 and CP-2. In vitro cytotoxicity studies were performed by MTT assay and in vivo acute embryo toxicity studies using Danio rerio embryos and larvae. In vitro showed an increase in the cytotoxicity of products with the longest exposure period i.e. for 8 h. Additionally, at a concentration of 200 μg/mL, statistically significant changes in metabolic activity were observed depending on the irradiation time. In vivo studies conducted with Zebrafish showed that both cefepime and its photodegradation products have only low toxicity. Assessment of potential ecotoxicity included Microbiotests on invertebrates (Thamnotoxkit F and Daphtoxkit F), and luminescence inhibition tests (LumiMara). The observed toxicity of the tested solutions towards both Thamnocephalus platyurus and Daphnia magna indicates that the parent substance (unexposed) has lower toxicity, which increases during irradiation. The acute toxicity (Lumi Mara) of nonirradiated cefepime solution is low for all tested strains (<10%), but mixtures of cefepime and its photoproducts showed growth inhibition against all tested strains (except #6, Photobacterium phoreum). Generally, it can be concluded that after UV-Vis irradiation, the mixture of cefepime phototransformation products shows a significant increase in toxicity.
Collapse
Affiliation(s)
- Joanna Żandarek
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza St, 31-530, Kraków, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Medical College, Jagiellonian University, 9 Medyczna, 30-688 Kraków, Poland
| | - Darija Obradović
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Saša Lazović
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Aleksandar Bogojević
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Oliwia Koszła
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland
| | - Przemysław Sołek
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland; Department of Biochemistry and Toxicology, University of Life Sciences, 13 Akademicka St, 20-950 Lublin, Poland
| | - Monika Maciąg
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland; Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland
| | - Anita Płazińska
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland
| | - Małgorzata Starek
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Monika Dąbrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland.
| |
Collapse
|
7
|
Du C, Lv Y, Yu H, Zhang Y, Zhu H, Dong W, Zou Y, Peng H, Zhou L, Wen X, Cao J, Jiang J. In situ synthesis of oxygen-doped carbon quantum dots embedded in MIL-53(Fe) for efficient degradation of oxytetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26686-26698. [PMID: 38456976 DOI: 10.1007/s11356-024-32729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Introducing carbon quantum dots (CQDs) into photocatalysts is believed to boost the charge transfer rate and reduce charge complexation. Doping heteroatoms such as N, S, or P enable CQDs to have an uplifting electron transfer capability. However, the application of oxygen-doped CQDs to improve the performance of photocatalysts has rarely been reported. Herein, a type of carbon-oxygen quantum dots (COQDs) was in situ embedded into MIL-53(Fe) to aid peroxydisulfate (PDS)-activated degradation of oxytetracycline (OTC) under visible light irradiation. The successful embedding of COQDs was confirmed by XRD, FT-IR, XPS, SEM, and TEM techniques. Photoelectrochemical testing confirmed its better performance. The prepared COQDs1/MIL-53(Fe) showed 88.2% decomposition efficiency of OTC in 60 min, which was 1.45 times higher than that of pure MIL-53(Fe). In addition, the performance of the material was tested at different pH, OTC concentrations, catalyst dosing, and PDS dosing. It was also subjected to cyclic testing to check stability. Moreover, free radical trapping experiments and electron paramagnetic resonance were conducted to explore the possible OTC deterioration mechanism. Our work provides a new idea for the development of MOFs for water treatment and remediation.
Collapse
Affiliation(s)
- Chunyan Du
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| | - Yinchu Lv
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Hanbo Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China.
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China.
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China.
| | - Yin Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Hao Zhu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Wei Dong
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Yulv Zou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Huaiyuan Peng
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Lu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| | - Jiao Cao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| | - Jingyi Jiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| |
Collapse
|
8
|
Singh S, Sharma P, Pal N, Sarma DK, Kumar M. Antibiotic disposal challenges in India: investigating causes and effects. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:325. [PMID: 38421517 DOI: 10.1007/s10661-024-12425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Antibiotic resistance has become a global problem and India emerges as a key battlefield in the fight against it. While inappropriate use of antibiotics is well known, the review article deliberates a less recognized yet equally perilous facet of the crisis i.e. improper antibiotic disposal. An investigation of the sources of antibiotic pollution in Indian water bodies identifies discharge of pharmaceutical effluents, hospital waste, and agricultural runoff as major contributing factors. Furthermore, it discusses the repercussions of antibiotic pollution including those relating to human health, aquatic ecosystems, and antibiotic resistance. Reviewing the causes and consequences of improper antibiotic disposal practices emphasizes the necessity of rethinking antibiotic waste management practices. The review highlights the need for stringent rules and increased awareness, while also discussing the emerging technologies and strategies to mitigate the risks of antibiotic disposal in India.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, Madhya Pradesh, India
| | - Poonam Sharma
- ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, Madhya Pradesh, India
| | - Namrata Pal
- ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, Madhya Pradesh, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, Madhya Pradesh, India.
| |
Collapse
|
9
|
Săndulescu O, Preoțescu LL, Streinu-Cercel A, Şahin GÖ, Săndulescu M. Antibiotic Prescribing in Dental Medicine-Best Practices for Successful Implementation. Trop Med Infect Dis 2024; 9:31. [PMID: 38393120 PMCID: PMC10892960 DOI: 10.3390/tropicalmed9020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/25/2024] Open
Abstract
With rising rates of antimicrobial resistance throughout the world, it is time to revisit antibiotic prescribing policies and practices, and dentistry is an important area for focused intervention, as it accounts for up to 15% of all antimicrobial prescriptions. In this narrative review, we have analyzed the current state of the knowledge, attitudes, and practice regarding antimicrobial use among dental professionals, and we have identified a set of seven recurring themes that drive inappropriate antibiotic prescribing in dental medicine. These include: 1. Prescribing antibiotics to delay or avoid dental treatment. 2. Overlooking the 5Ds-dental treatment (source control), dental condition (indication), drug (antibiotic choice), dose, and duration. 3. Relying on education from the distant past and on previous experience. 4. The heterogeneity of (too many) guideline recommendations leads to confusion and over-prescribing. 5. Decreased access to guideline information in private practice. 6. Psychological factors such as pressure to prescribe, comfort prescribing and the weekend effect, and 7. Feeling removed from antimicrobial resistance and externalizing responsibility. Based on the existing knowledge, we propose a framework based on four key pillars for focused intervention: 1. Education. 2. Internalizing responsibility. 3. Recognizing recurring counter-productive practices, and 4. Addressing recurring counter-productive practices. This framework can be applied in different dental settings to ensure best practices for the successful implementation of rational antimicrobial prescribing.
Collapse
Affiliation(s)
- Oana Săndulescu
- Department of Infectious Diseases I, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Liliana Lucia Preoțescu
- Department of Infectious Diseases I, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Adrian Streinu-Cercel
- Department of Infectious Diseases I, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Gülşen Özkaya Şahin
- Department of Translational Medicine, Faculty of Medicine, Lund University, 223 62 Malmö, Sweden
- Department of Laboratory Medicine, Section of Clinical Microbiology, Region Skåne, 221 85 Lund, Sweden
| | - Mihai Săndulescu
- Department of Implant-Prosthetic Therapy, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| |
Collapse
|
10
|
Shen M, Hu Y, Zhao K, Li C, Liu B, Li M, Lyu C, Sun L, Zhong S. Occurrence, Bioaccumulation, Metabolism and Ecotoxicity of Fluoroquinolones in the Aquatic Environment: A Review. TOXICS 2023; 11:966. [PMID: 38133367 PMCID: PMC10747319 DOI: 10.3390/toxics11120966] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been growing concern about antibiotic contamination in water bodies, particularly the widespread presence of fluoroquinolones (FQs), which pose a serious threat to ecosystems due to their extensive use and the phenomenon of "pseudo-persistence". This article provides a comprehensive review of the literature on FQs in water bodies, summarizing and analyzing contamination levels of FQs in global surface water over the past three years, as well as the bioaccumulation and metabolism patterns of FQs in aquatic organisms, their ecological toxicity, and the influencing factors. The results show that FQs contamination is widespread in surface water across the surveyed 32 countries, with ciprofloxacin and norfloxacin being the most heavy contaminants. Furthermore, contamination levels are generally higher in developing and developed countries. It has been observed that compound types, species, and environmental factors influence the bioaccumulation, metabolism, and toxicity of FQs in aquatic organisms. FQs tend to accumulate more in organisms with higher lipid content, and toxicity experiments have shown that FQs exhibit the highest toxicity to bacteria and the weakest toxicity to mollusk. This article summarizes and analyzes the current research status and shortcomings of FQs, providing guidance and theoretical support for future research directions.
Collapse
Affiliation(s)
- Mengnan Shen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Yi Hu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Chenyang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Binshuo Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Chen Lyu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Lei Sun
- Liaoning Provincial Mineral Exploration Institute Co., Ltd., Shenyang 110031, China
| | - Shuang Zhong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| |
Collapse
|
11
|
Alsolami ES, Mkhalid IA, Shawky A, Hussein MA. AgVO3-anchored 2D CeO2 nanocrystals prepared by solution process for visible-light-driven photooxidation of ciprofloxacin antibiotic in water. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Xu N, Shen Y, Jiang L, Jiang B, Li Y, Yuan Q, Zhang Y. Occurrence and risk levels of antibiotic pollution in the coastal waters of eastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27500-5. [PMID: 37162672 DOI: 10.1007/s11356-023-27500-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
In order to preliminarily explore the distribution of antibiotic pollution in the coastal waters of eastern China, the concentrations of 13 antibiotics in 5 representative coastal rivers in Jiangsu and 21 sampling sites in the coastal waters of Jiangsu were analyzed. The total antibiotic concentrations in the 5 rivers ranged from 33.14 to 417.78 ng L-1, and the total antibiotic concentrations in the 21 sampling sites ranged from 0.90 to 86.33 ng L-1. Macrolides exhibited the highest total concentration and the maximum detection frequency in both coastal rivers and the coastal waters. The concentrations of antibiotics in a sampling site decreased as the distance of the sampling site from the coastline increased, indicating that river inputs are important sources of antibiotic pollution in the coastal waters of Jiangsu. The detection frequencies of roxithromycin, lincomycin, azithromycin, and sulfamethoxazole in the rivers and sampling sites were above 70%. Correlation analysis showed that the concentrations of antibiotics were positively correlated with the levels of chemical oxygen demand, total phosphorus, and total nitrogen. Risk assessments revealed that roxithromycin and ofloxacin posed medium ecological and resistance risks, respectively, to the most sensitive aquatic organisms in the coastal waters of Jiangsu. The results of this study highlight the significance of monitoring and controlling the concentrations of antibiotic contaminants in the coastal waters of Jiangsu.
Collapse
Affiliation(s)
- Ning Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yi Shen
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Lei Jiang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Bin Jiang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Ying Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Qingbin Yuan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
13
|
Zhang Z, Xu Z, Wang X. The greenhouse effect of antibiotics: The influence pathways of antibiotics on methane release from freshwater sediment. ENVIRONMENT INTERNATIONAL 2023; 176:107964. [PMID: 37209487 DOI: 10.1016/j.envint.2023.107964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/25/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
The impact of antibiotics on methane (CH4) release from sediment involves both CH4 production and consumption processes. However, most relevant studies lack a discussion of the pathways by which antibiotics affect CH4 release and do not highlight the role played by the sediment chemical environment in this influence mechanism. Here, we collected field surface sediments and grouped them with various antibiotic combination concentration gradients (50, 100, 500, 1000 ng g-1) under a 35-day indoor anaerobic constant temperature incubation. We found that the positive effect of antibiotics on sediment CH4 release potential appeared later than the positive effect on sediment CH4 release flux. Still, the positive effect of high-concentration antibiotics (500, 1000 ng g-1) occurred with a lag in both processes. Also, the positive effect of high-concentration antibiotics was significantly higher than low-concentration antibiotics (50, 100 ng g-1) in the later incubation period (p < 0.05). We performed a multi-collinearity assessment of sediment biochemical indicators, followed by a generalized linear model with negative binomial regression (GLM-NB) to obtain essential variables. In particular, we conducted the interaction analysis on CH4 release potential and flux regression for the influence pathways construction. The partial least-squares path modeling (PLS-PM) demonstrated that the positive effect of antibiotics on CH4 release (Total effect = 0.2579) was primarily attributed to their effect on the sediment chemical environment (Direct effect = 0.5107). These findings greatly expand our understanding of the antibiotic greenhouse effect in freshwater sediment. Further studies should more carefully consider the effects of antibiotics on the sediment chemical environment, and continuously improve the mechanistic studies of antibiotics on sediment CH4 release.
Collapse
Affiliation(s)
- Ziqi Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Zhinan Xu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Xiangrong Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Research Center for Urban Ecological Planning and Design, Fudan University, Shanghai 200433, China.
| |
Collapse
|
14
|
Adewuyi A, Oderinde RA. Synthesis of neodymium ferrite incorporated graphitic carbonitride (NdFe 2O 4@g-C 3N 4) and its application in the photodegradation of ciprofloxacin and ampicillin in a water system. RSC Adv 2023; 13:5405-5418. [PMID: 36793298 PMCID: PMC9923821 DOI: 10.1039/d2ra08070b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Purification of antibiotic-contaminated drinking water sources is faced with limitations. Therefore, this study incorporated neodymium ferrite (NdFe2O4) in graphitic carbonitride (g-C3N4) to form NdFe2O4@g-C3N4 as a photocatalyst for removing ciprofloxacin (CIP) and ampicillin (AMP) from aqueous systems. X-ray diffraction (XRD) revealed a crystallite size of 25.15 nm for NdFe2O4 and 28.49 nm for NdFe2O4@g-C3N4. The bandgap is 2.10 and 1.98 eV for NdFe2O4 and NdFe2O4@g-C3N4, respectively. The transmission electron micrograph (TEM) images of NdFe2O4 and NdFe2O4@g-C3N4 gave an average particle size of 14.10 nm and 18.23 nm, respectively. Scanning electron micrograph (SEM) images showed heterogeneous surfaces with irregular-sized particles suggesting agglomeration at the surfaces. NdFe2O4@g-C3N4 (100.00 ± 0.00% for CIP and 96.80 ± 0.80% for AMP) exhibited better photodegradation efficiency towards CIP and AMP than NdFe2O4 (78.45 ± 0.80% for CIP and 68.25 ± 0.60% for AMP) in a process described by pseudo-first-order kinetics. NdFe2O4@g-C3N4 showed a stable regeneration capacity towards degradation of CIP and AMP with a capacity that is above 95% even at the 15th cycle of treatment. The use of NdFe2O4@g-C3N4 in this study revealed its potential as a promising photocatalyst for removing CIP and AMP in water systems.
Collapse
Affiliation(s)
- Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University Ede Osun State Nigeria +2348035826679
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Rotimi A Oderinde
- Department of Chemistry, Faculty of Science, University of Ibadan Ibadan Oyo State Nigeria
| |
Collapse
|
15
|
Lenart-Boroń A, Boroń P, Kulik K, Prajsnar J, Żelazny M, Chmiel MJ. Anthropogenic pollution gradient along a mountain river affects bacterial community composition and genera with potential pathogenic species. Sci Rep 2022; 12:18140. [PMID: 36307524 PMCID: PMC9614195 DOI: 10.1038/s41598-022-22642-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
Mountain regions in Poland are among the most frequently visited tourist destinations, causing a significant anthropogenic pressure put on the local rivers. In this study, based on numbers of 9 microorganisms, content of 17 antibiotics and 17 physicochemical parameters, we determined a pollution gradient in six sites along Białka, a typical mountain river in southern Poland. The E.coli/Staphylococcus ratio varied evidently between polluted and non-polluted sites, indicating that the possible utility of this parameter in assessing the anthropogenic impact on river ecosystems is worth further investigation. Then, using next generation sequencing, we assessed the changes in bacterial community structure and diversity as a response to the pollution gradient. Proteobacteria and Bacteroidetes were the most abundant phyla in the majority of samples. Actinobacteria were the most abundant in the most pristine (groundwater) sample, while Firmicutes and Verrucomicrobia were more prevalent in polluted sites. Bacterial diversity at various levels increased with water pollution. Eleven bacterial genera potentially containing pathogenic species were detected in the examined samples, among which Acinetobacter, Rhodococcus, and Mycobacterium were the most frequent. At the species level, Acinetobacter johnsonii was most prevalent potential pathogen, detected in all surface water samples, including the pristine ones. Two bacterial taxa-genus Flectobacillus and order Clostridiales showed very distinct variation in the relative abundance between the polluted and non-polluted sites, indicating their possible potential as biomarkers of anthropogenic impact on mountain river waters.
Collapse
Affiliation(s)
- Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059, Kraków, Poland.
| | - Piotr Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425, Kraków, Poland
| | - Klaudia Kulik
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059, Kraków, Poland
| | - Justyna Prajsnar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239, Kraków, Poland
| | - Mirosław Żelazny
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387, Kraków, Poland
| | - Maria J Chmiel
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059, Kraków, Poland
| |
Collapse
|
16
|
Burgess SA, Moinet M, Brightwell G, Cookson AL. Whole genome sequence analysis of ESBL-producing Escherichia coli recovered from New Zealand freshwater sites. Microb Genom 2022; 8. [PMID: 36200854 DOI: 10.1099/mgen.0.000893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extended-spectrum beta lactamase (ESBL)-producing Escherichia coli are often isolated from humans with urinary tract infections and may display a multidrug-resistant phenotype. These pathogens represent a target for a One Health surveillance approach to investigate transmission between humans, animals and the environment. This study examines the multidrug-resistant phenotype and whole genome sequence data of four ESBL-producing E. coli isolated from freshwater in New Zealand. All four isolates were obtained from a catchment with a mixed urban and pastoral farming land-use. Three isolates were sequence type (ST) 131 (CTX-M-27-positive) and the other ST69 (CTX-M-15-positive); a phylogenetic comparison with other locally isolated strains demonstrated a close relationship with New Zealand clinical isolates. Genes associated with resistance to antifolates, tetracyclines, aminoglycosides and macrolides were identified in all four isolates, together with fluoroquinolone resistance in two isolates. The ST69 isolate harboured the bla CTX-M-15 gene on a IncHI2A plasmid, and two of the three ST131 isolates harboured the bla CTX-M-27 genes on IncF plasmids. The last ST131 isolate harboured bla CTX-M-27 on the chromosome in a unique site between gspC and gspD. These data highlight a probable human origin of the isolates with subsequent transmission from urban centres through wastewater to the wider environment.
Collapse
Affiliation(s)
- Sara A Burgess
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Marie Moinet
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North 4410, New Zealand
| | - Gale Brightwell
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North 4410, New Zealand.,New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L Cookson
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand.,AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
17
|
Shawky A, Tashkandi NY. Visible-light photooxidation of ciprofloxacin utilizing metal oxide incorporated sol-gel processed La-doped NaTaO 3 nanoparticles: A comparative study. ENVIRONMENTAL RESEARCH 2022; 213:113718. [PMID: 35750127 DOI: 10.1016/j.envres.2022.113718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The supper dissemination of antibiotic waste in water resources has exponentially progressed the vital water and soil pollution that affect human health and the environment. Consequently, there have been several types of research anticipated for the green mineralization of such pollutants. Herein, we intended a surfactant-aided sol-gel formation of lanthanum-doped sodium tantalate (LNTO) nanocrystals. The synthesized 13 nm averaged-size perovskite LNTO nanocrystals were responsive to visible-light irradiation by incorporation of 4.4-5.2 nm oxide nanoparticles, namely Bi2O3, CdO, Fe2O3, and CuO at 4.0 wt% through coprecipitation. The formed nanomaterials unveiled mesostructured surface textures with specific surface areas of 199-229 m2 g-1. The obtained nanoceramics were employed for the mineralization of 10 ppm of ciprofloxacin antibiotic (CPF) as an emerging antibiotic waste in water under visible light irradiation. The CuO-incorporated LNTO exhibited the best photocatalytic oxidation of CPF after 120 min compared with other oxides with an excellent photoreaction rate of 0.0343 min-1 which is 49 times higher than the pure LNTO. The 2.0 gL-1 CuO/LNTO-dose achieved the full photooxidation of CPF at an oxidation speed of 0.0738 min -1 within just 1.0 h of visible light irradiation and magnificent regeneration ability. This enhanced activity of CuO/LNTO is regarded as significant light absorption and a bandgap energy reduction to 2.12 eV. Besides that, the heterojunction between CuO and LNTO amended the photogenerated carrier mobility and separation as concluded from the photoluminescence and photocurrent exploration. This comparative work suggests the proper design of low bandgap oxide decoration of solution-based perovskite oxide photocatalysts for promoting the visible-light mineralization of antibiotics in water.
Collapse
Affiliation(s)
- Ahmed Shawky
- Nanomaterials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical R&D Institute (CMRDI), P.O. Box 87, Helwan, 11421, Cairo, Egypt.
| | - Nada Y Tashkandi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
18
|
Chen J, Liu C, Teng Y, Zhao S, Chen H. The combined effect of an integrated reclaimed water system on the reduction of antibiotic resistome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156426. [PMID: 35660592 DOI: 10.1016/j.scitotenv.2022.156426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The reuse of urban reclaimed water is conducive to alleviate the current serious shortage of water resources. However, antibiotic resistance genes (ARGs) in reclaimed water have received widespread attention due to their potential risks to public health. Deciphering the fate of ARGs in reclaimed water benefits the development of effective strategies to control resistome risk and guarantees the safety of water supply of reclaimed systems. In this study, the characteristics of ARGs in an integrated reclaimed water system (sewage treatment plant-constructed wetland, STP-CW) in Beijing (China) have been identified using metagenomic assembly-based analysis, as well as the combined effect of the STP-CW system on the reduction of antibiotic resistome. Results showed a total of 29 ARG types and 813 subtypes were found in the reclaimed water system. As expected, the STP-CW system improved the removal of ARGs, and about 58% of ARG subtypes were removed from the effluent of the integrated STP-CW system, which exceeded 43% for the STP system and 37% for the CW system. Although the STP-CW system had a great removal on ARGs, abundant and diverse ARGs were still found in the downstream river. Importantly, network analysis revealed the co-occurrence of ARGs, mobile genetic elements and virulence factors in the downstream water, implying potential resistome dissemination risk in the environment. Source identification with SourceTracker showed the STP-effluent was the largest contributor of ARGs in the downstream river, with a contribution of 45%. Overall, the integrated STP-CW system presented a combined effect on the reduction of antibiotic resistome, however, the resistome dissemination risk was still non-negligible in the downstream reclaimed water. This study provides a comprehensive analysis on the fate of ARGs in the STP-CW-river system, which would benefit the development of effective strategies to control resistome risk for the reuse of reclaimed water.
Collapse
Affiliation(s)
- Jinping Chen
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Chang Liu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuang Zhao
- Beijing BHZQ Environmental Engineering Technology Co., LTD, Beijing 100176, China
| | - Haiyang Chen
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
19
|
Kang J, Zhang Z, Chen Y, Zhou Z, Zhang J, Xu N, Zhang Q, Lu T, Peijnenburg WJGM, Qian H. Machine learning predicts the impact of antibiotic properties on the composition and functioning of bacterial community in aquatic habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154412. [PMID: 35276139 DOI: 10.1016/j.scitotenv.2022.154412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In the past decades, hundreds of antibiotics have been isolated from microbial metabolites or have been artificially synthesized for protecting humans, animals and crops from microbial infections. Their everlasting usage results in impacts on the microbial community composition and causes well-known collateral damage to the functioning of microbial communities. Nevertheless, the impact of different antibiotic properties on aquatic microbial communities have so far only poorly been disentangled. Here we characterized the environmental risk of 50 main kinds of antibiotics from 9 classes at a concentration of 10 μg/L for aquatic bacterial communities via metadata analysis combined with machine learning. Metadata analysis showed that the alpha diversity of the bacterial community increased only after treatment with aminoglycoside and β-lactam antibiotics, while its structure was changed by almost all tested antibiotics. The antibiotic treatment also disturbed the functions of the bacterial community, especially with regard to metabolic pathways, including amino acids, cofactors, vitamins, xenobiotics and carbohydrate metabolism. The critical characteristics (atom stereocenter count, number of hydrogen atoms in the antibiotic, and the adipose water coefficient) of antibiotics affecting the composition of the bacterial community in aquatic habitats were screened by machine learning. The key characteristics of antibiotics affecting the function bacterial communities were the number of hydrogen atoms, molecular weight and complexity. In summary, by developing machine learning models and by performing metadata analysis, this study provides the relationship between the properties of antibiotics and their adverse impacts on aquatic microbial communities from a macro perspective. The study also provides guidance for the rational design of antibiotics.
Collapse
Affiliation(s)
- Jian Kang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Yiling Chen
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Jinfeng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300, RA, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
20
|
Alistar CF, Nica IC, Nita-Lazar M, Vasile GG, Gheorghe S, Croitoru AM, Dolete G, Mihaiescu DE, Ficai A, Craciun N, Gradisteanu Pircalabioru G, Chifiriuc MC, Stan MS, Dinischiotu A. Antioxidative Defense and Gut Microbial Changes under Pollution Stress in Carassius gibelio from Bucharest Lakes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7510. [PMID: 35742758 PMCID: PMC9224152 DOI: 10.3390/ijerph19127510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023]
Abstract
Fish are able to accumulate by ingestion various contaminants of aquatic environment, with negative consequences on their intestine, being continuously threatened worldwide by heavy metals, pesticides and antibiotics resulted from the human activities. Consequently, the health of other species can be affected by eating the contaminated fish meat. In this context, our study aimed to perform a comparison between the changes in intestine samples of Carassius gibelio individuals collected from different artificial lakes in Bucharest (Romania), used by people for leisure and fishing. The presence of various metals, pesticides and antibiotics in the gut of fish was assessed in order to correlate their accumulation with changes of antioxidative enzymes activities and microbiome. Our results showed that fish from Bucharest lakes designed for leisure (Chitila, Floreasca and Tei lakes) have an increased level of oxidative stress in intestine tissue, revealed by affected antioxidant enzymes activities and GSH levels, as well as the high degree of lipid peroxidation, compared to the fish from protected environment (Vacaresti Lake). Some heavy metals (Fe, Ni and Pb) and pesticides (aldrin and dieldrin) were in high amount in the gut of fish with modified antioxidative status. In conclusion, our study could improve the knowledge regarding the current state of urban aquatic pollution in order to impose several environmental health measures.
Collapse
Affiliation(s)
- Cristina F. Alistar
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
| | - Ionela C. Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania; (G.G.P.); (M.C.C.)
| | - Mihai Nita-Lazar
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (M.N.-L.); (G.G.V.); (S.G.)
| | - Gabriela Geanina Vasile
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (M.N.-L.); (G.G.V.); (S.G.)
| | - Stefania Gheorghe
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (M.N.-L.); (G.G.V.); (S.G.)
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (G.D.); (D.E.M.); (A.F.)
- National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (G.D.); (D.E.M.); (A.F.)
- National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (G.D.); (D.E.M.); (A.F.)
- National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (G.D.); (D.E.M.); (A.F.)
- National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Nicolai Craciun
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania; (G.G.P.); (M.C.C.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania; (G.G.P.); (M.C.C.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania; (G.G.P.); (M.C.C.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
| |
Collapse
|
21
|
Ma J, Gao M, Liu Q, Wang Q. High efficiency three-dimensional electrochemical treatment of amoxicillin wastewater using Mn-Co/GAC particle electrodes and optimization of operating condition. ENVIRONMENTAL RESEARCH 2022; 209:112728. [PMID: 35081359 DOI: 10.1016/j.envres.2022.112728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In this work, Mn-Co/GAC particle electrode was prepared by loading Mn and Co as catalysts on granular activated carbon (GAC) and used in a three-dimensional (3D) electrochemical system for mineralization of amoxicillin wastewater. Observation results by SEM, EDS and XRD confirmed that Mn and Co catalysts were successfully loaded onto GAC. The electrochemical properties were measured using an electrochemical workstation. Mn-Co/GAC had a much higher oxygen evolution potential (1.46V) than GAC (1.1V), which demonstrated that it could effectively reduce the oxygen evolution side reaction. In addition, Mn-Co/GAC had an electrochemically active surface area 1.34 times that of GAC and a much smaller mass transfer resistance than GAC, which could provide favorable conditions for the degradation of pollutants. The investigation of the influences of single operating parameters on total organic carbon (TOC) removal rate and electrical energy consumption (EEC) indicated that current density and treatment time had the greatest effect. In order to maximize TOC removal rate and minimize EEC, optimization of operating parameters was also carried out using response surface method in combination with central composite design. The optimal operating parameters were determined as current density of 5.68 mA/cm2, electrolyte concentration of 0.127M, particle electrode dosage of 31.14g and treatment time of 120min. Under this optimum operating condition, TOC removal rate of 85.24% and amoxicillin removal rate of 100% could be achieved with a low EEC of 0.073 kWh/g TOC. In addition, TOC removal rate and EEC were significantly improved compared to the use of bare GAC as particle electrode under the same operating conditions, demonstrating the excellent electrocatalytic ability of the new particle electrode Mn-Co/GAC. A possible mechanism of enhanced amoxicillin and TOC removal was also recommended. In summary, the 3D electrochemical method using Mn-Co/GAC particle electrodes is a suitable choice for amoxicillin wastewater treatment.
Collapse
Affiliation(s)
- Jinsong Ma
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Department of Electrical Engineering, Kim Chaek University of Technology, Kyogu dong 60, Central District, Pyongyang, Democratic People's Republic of Korea
| | - Ming Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qin Liu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
22
|
Shawky A, Albukhari SM. Design of Ag3VO4/ZnO nanocrystals as visible-light-active photocatalyst for efficient and rapid oxidation of ciprofloxacin antibiotic waste. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Shawky A, Alshaikh H. Cobalt ferrite-modified sol-gel synthesized ZnO nanoplatelets for fast and bearable visible light remediation of ciprofloxacin in water. ENVIRONMENTAL RESEARCH 2022; 205:112462. [PMID: 34863987 DOI: 10.1016/j.envres.2021.112462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/29/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Currently, metal oxide photocatalysts is a green and facile tool for the elimination of emerging pollutants utilizing light illumination. Though, the wide bandgap energy (Eg), rapid recombination of photogenerated carriers, and photostability of these oxides represent critical issues before the actual application. Herein, we familiarise a sol-gel based synthesis of ZnO hexagonal nanoplatelets modified with CoFe2O4 (CFO) nanoparticles at minor loading (1.0-4.0 wt %) to yield CFO/ZnO nanoheterojunctions. The CFO/ZnO unveiled mesostructured surfaces at surface areas of 102-120 m2 g-1 and photoactive in the visible region with high. The CFO addition to ZnO reduced its Eg from 3.14 to 2.66 eV. The formed nanoheterojunctions were applied to remediate ciprofloxacin (CPF), as an antibiotic pollutant in wastewater. The 2.4 g L-1 3.0 wt % CFO-added ZnO exhibited a 100% removal of 10-ppm CPF within 45 min of visible-light irradiation and sustainable recycling ability for five consecutive runs at 97%. The sustainable performance of CFO/ZnO is ascribed to the suppression of photogenerated carriers and reduction of E by p-n nanoheterojunction formation. This study broadens the way for nanoheterojunction oxides for the destruction of pharmaceutical wastes under visible-light illumination.
Collapse
Affiliation(s)
- Ahmed Shawky
- Nanomaterials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical R&D Institute (CMRDI), P.O. Box 87, Helwan, 11421, Cairo, Egypt.
| | - Hind Alshaikh
- Chemistry Department, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
24
|
Ma N, Tong L, Li Y, Yang C, Tan Q, He J. Distribution of antibiotics in lake water-groundwater - Sediment system in Chenhu Lake area. ENVIRONMENTAL RESEARCH 2022; 204:112343. [PMID: 34748778 DOI: 10.1016/j.envres.2021.112343] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/01/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics pollution in lakes has been widely reported worldwide, however rare studies were concerned about antibiotics distribution in lake water - groundwater - sediment system. Here, a total of 22 antibiotics and 4 sulfonamides metabolites were detected in lake water, sediments, and different depth of groundwater surrounding Chenhu Lake during the wet and dry seasons. N4-acetylsulfonamides (Ac-SAs), fluoroquinolones (FQs), and tetracyclines (TCs) were the main groups of antibiotics in the study area. In the whole lake environment, there were more types of antibiotics in the aquatic environments than in the sediments, and the antibiotics distribution was closely related to geographical location. Specifically, the average concentration of antibiotics in groundwater decreased with an increase in sampling site distance from the lake. All antibiotics, except oxytetracycline (OTC), showed a significant decline during the dry season that could be due to the implementation of lake conservation policies, which significantly helped reducing lake pollution. There were obvious differences in the distribution of antibiotics in distinct sedimentary environments. In the surface sediments, the antibiotics content in the reclamation and the perennially flooded areas was higher than in the lakeshore area. The hydraulic interactions in the perennial flooded area facilitated the deep migration of antibiotics into lake sediments. Correlation analysis revealed a good relevance between the distribution of antibiotics in lake water and groundwater. Redundancy analysis shows that dissolved oxygen and temperature were the main factors affecting the distribution of antibiotics.
Collapse
Affiliation(s)
- Naijin Ma
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China
| | - Lei Tong
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, PR China.
| | - Yuqiong Li
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China
| | - Cong Yang
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China
| | - Qin Tan
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China
| | - Jun He
- Wuhan Geological Survey Center, China Geological Survey, Wuhan, PR China
| |
Collapse
|
25
|
Lenart-Boroń AM, Boroń PM, Prajsnar JA, Guzik MW, Żelazny MS, Pufelska MD, Chmiel MJ. COVID-19 lockdown shows how much natural mountain regions are affected by heavy tourism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151355. [PMID: 34740648 PMCID: PMC9755070 DOI: 10.1016/j.scitotenv.2021.151355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 05/02/2023]
Abstract
Mountain areas in Poland are among the most frequented tourist destinations and such intensive tourism negatively affects the natural environment. The COVID-19 pandemic and the resulting lockdown restricted travel for a few months in 2020, providing a unique opportunity to observe the studied mountain environment without the impact of typical tourist traffic. This study is based on the determination of antibiotic content, hydrochemical parameters, enumeration of culturable bacterial water quality indicators, antimicrobial susceptibility tests together with extended spectrum beta-lactamase (ESBL) gene detection in waterborne E. coli and NGS-based bacterial community composition at six sites along the Białka river valley (one of the most popular touristic regions in Poland) in three periods: in summer and winter tourist seasons and during the COVID-19 lockdown. The results of individual measurements showed decreased numbers of bacterial indicators of water contamination (e.g. numbers of E. coli dropped from 99 × 104 CFU/100 ml to 12 CFU/100 ml at the most contaminated site) and the share of antimicrobial resistant E. coli (total resistance dropped from 21% in summer to 9% during lockdown, share of multidrug resistant strains from 100 to 44%, and ESBL from 20% in summer to none during lockdown). Antibiotic concentrations were the highest during lockdown. The use of multivariate analysis (principal component analysis - PCA and heatmaps) revealed a clear pattern of tourism-related anthropogenic pressure on the water environment and positive impact of COVID-19 lockdown on water quality. PCA distinguished three major factors determining water quality: F1 shows strong effect of anthropogenic pressure; F2 describes the lockdown-related quality restoration processes; F3 is semi-natural and describes the differences between the most pristine and most anthropogenically-impacted waters.
Collapse
Affiliation(s)
- Anna M Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland.
| | - Piotr M Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Justyna A Prajsnar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239, Kraków, Poland
| | - Maciej W Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239, Kraków, Poland
| | - Mirosław S Żelazny
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387, Kraków, Poland
| | - Marta D Pufelska
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387, Kraków, Poland
| | - Maria J Chmiel
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland
| |
Collapse
|
26
|
Stable self-assembly Cu2O/ZIF-8 heterojunction as efficient visible light responsive photocatalyst for tetracycline degradation and mechanism insight. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Bojar B, Sheridan J, Beattie R, Cahak C, Liedhegner E, Munoz-Price LS, Hristova KR, Skwor T. Antibiotic resistance patterns of Escherichia coli isolates from the clinic through the wastewater pathway. Int J Hyg Environ Health 2021; 238:113863. [PMID: 34662851 DOI: 10.1016/j.ijheh.2021.113863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022]
Abstract
Antimicrobial resistance (AMR) remains one of the leading global health threats. This study compared antimicrobial resistance patterns among E. coli isolates from clinical uropathogenic Escherichia coli (UPEC) to hospital wastewater populations and throughout an urban wastewater treatment facility - influent, pre- and post-chlorinated effluents. Antibiotic susceptibility of 201 isolates were analyzed against eleven different antibiotics, and the presence of twelve antibiotic resistant genes and type 1 integrase were identified. AMR exhibited the following pattern: UPEC (46.8%) > hospital wastewater (37.8%) > urban post-chlorinated effluent (27.6%) > pre-chlorinated effluent (21.4%) > urban influent wastewater (13.3%). However, multi-drug resistance against three or more antimicrobial classes was more prevalent among hospital wastewater populations (29.7%) compared to other sources. E. coli from wastewaters disinfected with chlorine were significantly correlated with increased trimethoprim-sulfamethoxazole resistance in E. coli compared to raw and treated wastewater populations. blaCTX-M-1 group was the most common extended spectrum beta-lactamase in E. coli from hospital wastewater (90%), although UPEC strains also encoded blaCTX-M-1 group (50%) and blaTEM (100%) genes. Among tetracycline-resistant populations, tetA and tetB were the only resistance genes identified throughout wastewater populations that were associated with increased phenotypic resistance. Further characterization of the E. coli populations identified phylogroup B2 predominating among clinical UPEC populations and correlated with the highest AMR, whereas the elevated rate of multi-drug resistance among hospital wastewater was mostly phylogroup A. Together, our findings highlight hospital wastewater as a rich source of AMR and multi-drug resistant bacterial populations.
Collapse
Affiliation(s)
- Brandon Bojar
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, 53211, USA
| | - Jennifer Sheridan
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, 53211, USA
| | - Rachelle Beattie
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Caitlin Cahak
- Wisconsin Diagnostic Laboratories, Milwaukee, WI, 53226, USA
| | - Elizabeth Liedhegner
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, 53211, USA
| | | | | | - Troy Skwor
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
28
|
Chen Y, Tian H, Zhu W, Zhang X, Li R, Chen C, Huang Y. l-Cysteine directing synthesis of BiOBr nanosheets for efficient cefazolin photodegradation: The pivotal role of thiol. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125544. [PMID: 33676252 DOI: 10.1016/j.jhazmat.2021.125544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Cefazolin (CFZ) is widely present in the wastewater treatment effluents and in receiving waters and has caused severe impacts to the ecosystem. CFZ degradation by photocatalysis has attracted increasing attention due to its eco-friendly features. Herein, we presented a green synthesis strategy for a highly active BiOBr photocatalyst for CFZ removal with L-cysteine as a directing agent, and the role of thiol in cysteine for facets control and morphology regulation was discussed. We found that the photoactivity of cysteine-induced BiOBr nanosheet was much higher than those prepared by using arginine and glycine as directing agent. Further experiments showed that the cysteine preferentially coordinated Bi3+ with thiol rather than carboxyl. The strong interactions of thiol group with the external surface of the BiOBr crystals stabilize the small crystals that have high surface energy without the cysteine. Such a chemical environment favors forming BiOBr crystalline with small size of high surface area and oriented growth in [110] direction, which facilitates the photogenerated electron-hole separation to achieve significantly promoted photocatalytic activity. Moreover, the cysteine-directed BiOBr nanosheets displayed good photoreactivity to more pollutants (i.e. rhodamine B, cefradine and cefoperazone sodium) and excellent reusability as verified via seven consecutive recycle experiments. The proper photocatalyst dosage (0.4 g/L), relatively acidic water environment (pH 3.4) and high temperature (35 °C) would be beneficial to CFZ photodegrdation by BiOBr. Also, the CFZ photodegradation mechanism and degradation pathway were also proposed by combining radical trapping experiments and electron spin resonance (ESR) test with LC-MS analysis in the photocatalytic process.
Collapse
Affiliation(s)
- Yingying Chen
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China; College of Biology & Pharmacy, China Three Gorges University, Yichang 443002, Hubei, China
| | - Hailin Tian
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Wenxue Zhu
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China; College of Biology & Pharmacy, China Three Gorges University, Yichang 443002, Hubei, China
| | - Xin Zhang
- Three Gorges Public Inspection and Testing Center, Yichang 443002, Hubei, China
| | - Ruiping Li
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China.
| | - Chuncheng Chen
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Yingping Huang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China.
| |
Collapse
|
29
|
Alshaikh H, Shawky A, Mohamed R, Knight JG, Roselin LS. Solution-based synthesis of Co3O4/ZnO p-n heterojunctions for rapid visible-light-driven oxidation of ciprofloxacin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116092] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Shawky A, Albukhari SM, Tashkandi NY, Zaki ZI. Sol–gel synthesis of photoactive Ag2O/Y3Fe5O12 nanojunctions for promoted degradation of ciprofloxacin under visible light. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01920-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Highly active ZIF-8 derived CuO@ZnO p-n heterojunction nanostructures for fast visible-light-driven photooxidation of antibiotic waste in water. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Lamaoui A, Palacios-Santander JM, Amine A, Cubillana-Aguilera L. Fast microwave-assisted synthesis of magnetic molecularly imprinted polymer for sulfamethoxazole. Talanta 2021; 232:122430. [PMID: 34074416 DOI: 10.1016/j.talanta.2021.122430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/16/2022]
Abstract
A fast and simple strategy based on the microwave technique for the preparation of magnetic molecularly imprinted polymers (MMIPs) is proposed for the selective determination of sulfamethoxazole (SMX). The MMIPs were synthesized at 70 °C in 20 min, being much faster than the conventional techniques. A computational approach based on density functional theory was used to design the MMIP and compare the two most used monomers in MIPs, including methacrylic acid (MAA) and acrylamide (AM). Then, two different MMIPs were prepared using AM and MAA as monomers. The resultant materials were characterized with X-ray diffraction, thermogravimetric analysis, scanning/transmission electron microscopy, and Fourier-transform infrared spectroscopy. Besides, the adsorption characterizations suggested that the adsorption of SMX followed the pseudo-second-order model in the kinetic study and the Sips model in the isotherm study. The experimental results corroborated the computational approach. Furthermore, Both MMIPs demonstrated good selectivity. The MMIP-AM and MMIP-MAA were applied as adsorbents in magnetic dispersive solid-phase extraction combined with UV-visible spectroscopy to quantify SMX. The obtained limits of detection and quantification were lower than 0.59 and 1.77 μM, respectively for both MMIPs. The sensitivity of both MMIPs was in the range of 0.021-0.023 (SI). Our findings revealed that there is no significant difference in the analytical parameters between MMIP-AM and MMIP-MAA. However, the application of both MMIPs in a real sample (tap water) showed that the recovery values of SMX obtained with MMIP-AM (68-70%) were lower than that with MMIP-MAA (80-90%) suggesting that MMIP-MAA is more appropriate for SMX determination.
Collapse
Affiliation(s)
- Abderrahman Lamaoui
- Laboratoire Génie des Procédés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco; Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510, Puerto Real, Cádiz, Spain
| | - José María Palacios-Santander
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510, Puerto Real, Cádiz, Spain.
| | - Aziz Amine
- Laboratoire Génie des Procédés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco.
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
33
|
Zhang Y, Jiang W, Dong H, Hu X, Fang B, Gao G, Zhao R. Study on the Electrochemical Removal Mechanism of Oxytetracycline by a Ti/IrO 2-Ta 2O 5 Plate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041708. [PMID: 33578856 PMCID: PMC7916611 DOI: 10.3390/ijerph18041708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 11/16/2022]
Abstract
In this study, a Ti/IrO2-Ta2O5 anode was prepared by a hydrothermal method, and the prepared electrode was characterized by techniques such as scanning electron microscopy, X-ray diffraction, and electron dispersive spectroscopy. At the same time, the anode characteristics before and after electrochemical experiments were analyzed. The electrode gradation mechanism of oxytetracycline is discussed. In the whole experimental process, the range of electrolysis conditions was determined by single factor experiment, and then the optimal removal condition of oxytetracycline was determined by orthogonal experiments. The removal rate of oxytetracycline reached 99.02% after 20 min of electrolysis under the following optimal conditions: a current of 0.500 A, plate spacing of 2 cm, Na2SO4 electrolyte concentration of 4 g/L, and solution pH of 3. Additionally, the mechanism of oxytetracycline removal was explored, free radical scavenging experiments were performed, and the degradation mechanism was inferred based on the changes in the ultraviolet absorption of the oxytetracycline solution before and after electrolysis. Then, based on the liquid chromatography-mass spectrometry data, seven possible compounds and five possible removal pathways were proposed.
Collapse
|