1
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Dashner-Titus EJ, Schilz JR, Alvarez SA, Wong CP, Simmons K, Ho E, Hudson LG. Zinc supplementation alters tissue distribution of arsenic in Mus musculus. Toxicol Appl Pharmacol 2023; 478:116709. [PMID: 37797845 PMCID: PMC10729601 DOI: 10.1016/j.taap.2023.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Arsenic occurs naturally in the environment and humans can be exposed through food, drinking water and inhalation of air-borne particles. Arsenic exposure is associated with cardiovascular, pulmonary, renal, immunologic, and developmental toxicities as well as carcinogenesis. Arsenic displays dose-depen toxicities in target organs or tissues with elevated levels of arsenic. Zinc is an essential micronutrient with proposed protective benefits due to its antioxidant properties, integration into zinc-containing proteins and zinc-related immune signaling. In this study, we tested levels of arsenic and zinc in plasma, kidney, liver, and spleen as model tissues after chronic (42-day) treatment with either arsenite, zinc, or in combination. Arsenite exposure had minimal impact on tissue zinc levels with the exception of the kidney. Conversely, zinc supplementation of arsenite-exposed mice reduced the amount of arsenic detected in all tissues tested. Expression of transporters associated with zinc or arsenic influx and efflux were evaluated under each treatment condition. Significant effects of arsenite exposure on zinc transporter expression displayed tissue selectivity for liver and kidney, and was restricted to Zip10 and Zip14, respectively. Arsenite also interacted with zinc co-exposure for Zip10 expression in liver tissue. Pairwise comparisons show neither arsenite nor zinc supplementation alone significantly altered expression of transporters utilized by arsenic. However, significant interactions between arsenite and zinc were evident for Aqp7 and Mrp1 in a tissue selective manner. These findings illustrate interactions between arsenite and zinc leading to changes in tissue metal level and suggest a potential mechanism by which zinc may offer protection from arsenic toxicities.
Collapse
Affiliation(s)
- Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America.
| | - Jodi R Schilz
- Division of Physical Therapy, School of Medicine, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| | - Sandra A Alvarez
- Early Childhood Services Center, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| | - Carmen P Wong
- School of Public Health, College of Health, Oregon State University, Corvallis, OR 97331, United States of America
| | - Karen Simmons
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| | - Emily Ho
- School of Public Health, College of Health, Oregon State University, Corvallis, OR 97331, United States of America; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
3
|
Pan I, Umapathy S, Issac PK, Rahman MM, Guru A, Arockiaraj J. The bioaccessibility of adsorped heavy metals on biofilm-coated microplastics and their implication for the progression of neurodegenerative diseases. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1264. [PMID: 37782357 DOI: 10.1007/s10661-023-11890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Microplastic (MP) tiny fragments (< 5 mm) of conventional and specialized industrial polymers are persistent and ubiquitous in both aquatic and terrestrial ecosystem. Breathing, ingestion, consumption of food stuffs, potable water, and skin are possible routes of MP exposure that pose potential human health risk. Various microorganisms including bacteria, cyanobacteria, and microalgae rapidly colonized on MP surfaces which initiate biofilm formation. It gradually changed the MP surface chemistry and polymer properties that attract environmental metals. Physicochemical and environmental parameters like polymer type, dissolved organic matter (DOM), pH, salinity, ion concentrations, and microbial community compositions regulate metal adsorption on MP biofilm surface. A set of highly conserved proteins tightly regulates metal uptake, subcellular distribution, storage, and transport to maintain cellular homeostasis. Exposure of metal-MP biofilm can disrupt that cellular homeostasis to induce toxicities. Imbalances in metal concentrations therefore led to neuronal network dysfunction, ROS, mitochondrial damage in diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and Prion disorder. This review focuses on the biofilm development on MP surfaces, factors controlling the growth of MP biofilm which triggered metal accumulation to induce neurotoxicological consequences in human body and stategies to reestablish the homeostasis. Thus, the present study gives a new approach on the health risks of heavy metals associated with MP biofilm in which biofilms trigger metal accumulation and MPs serve as a vector for those accumulated metals causing metal dysbiosis in human body.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India.
| | - Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
- Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
4
|
Cheng R, Zhang Z, Zhan C, Qin T, Wang L, Zhang X. Environmentally relevant concentrations of selenite trigger reproductive toxicity by affecting oocyte development and promoting larval apoptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120648. [PMID: 36375579 DOI: 10.1016/j.envpol.2022.120648] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
As a trace element, selenium (Se) has been widely added to food to maintain the physiological homeostasis of the organism. The adverse effects of Se on the reproduction of zebrafish have been investigated, however, the effects of Se on the maturation and apoptosis of zebrafish oocytes remain unclear. In this study, zebrafish embryos (2 h post fertilization, hpf) were exposed to 0, 12.5, 25, 50, and 100 μg Se/L for 120 days. The results demonstrated that exposure to selenite decreased the gonad-somatic index (GSI) and cumulative production of eggs, inhibited oocyte maturation (OM), and increased oocyte apoptosis in females. Exposure to selenite decreased the contents of sex hormones (E2) in the serum and increased the levels of reactive oxygen species (ROS) and cyclic adenosine monophosphate (cAMP) in the ovary. Furthermore, exposure to selenite downregulated the transcription level of genes on the HPG axis, decreased the phosphorylation level of CyclinB and the protein content of cAMP-dependent protein kinase (Pka), and upregulated the expression of genes (eif2s1a and chop) and proteins (Grp78, Chop) related to endoplasmic reticulum stress (ERS) and apoptosis. Moreover, maternal exposure to selenite resulted in the apoptosis of offspring and upregulated the content of ROS and the transcription level of genes related to ERS and apoptosis.
Collapse
Affiliation(s)
- Rui Cheng
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, MWR & CAS, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhiming Zhang
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, MWR & CAS, Wuhan, 430070, China
| | - Chunhua Zhan
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Tianlong Qin
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Li Wang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
5
|
Mu M, Zhao H, Wang Y, Guo M, Nie X, Liu Y, Xing M. Interferon-beta, interferon-gamma and their fusion interferon of Siberian tigers (Panthera tigris altaica) in China are involved in positive-feedback regulation of interferon production. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104211. [PMID: 34329648 DOI: 10.1016/j.dci.2021.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
As a group of cytokines, interferons are the first line of defense in the antiviral immunity. In this study, Siberian tiger IFN-β (PtIFN-β) and IFN-γ (PtIFN-γ) were successfully amplified, and the two were fused (PtIFN-γ) by overlap extension polymerase chain reaction (SOE-PCR). Bioinformatics analysis disclosed that PtIFN-β and PtIFN-γ have species-specificity and conservation in the course of evolution. After being expressed in prokaryotes, the antiviral activities and physicochemical properties of PtIFN-β, PtIFN-γ and PtIFNβ-γ were analyzed. In Feline kidney cells (F81), PtIFNβ-γ showed more active antiviral activity than PtIFN-β and PtIFN-γ, which has more stable physicochemical properties (acid and alkali resistance, high temperature resistance). In addition, PtIFN-β, PtIFN-γ and PtIFN-γ activated the JAK-STAT pathway and induced the transcription and expression of interferon-stimulated genes (ISGs). Janus kinase (JAK) 1 inhibitor inhibited ISGs expression induced by PtIFN-β, PtIFN-γ and PtIFN-γ. Overall, this research clarified that PtIFN-β, PtIFN-γ and PtIFNβ-γ have the ability to inhibit viral replication and send signals through the JAK-STAT pathway. These findings may facilitate further study on the role of PtIFN in the antiviral immune response, and help to develop approaches for the prophylactic and therapeutic of viral diseases based on fusion interferon.
Collapse
Affiliation(s)
- Mengyao Mu
- College of wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yu Wang
- College of wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Xiaopan Nie
- College of wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
6
|
Sijko M, Kozłowska L. Influence of Dietary Compounds on Arsenic Metabolism and Toxicity. Part I-Animal Model Studies. TOXICS 2021; 9:toxics9100258. [PMID: 34678954 PMCID: PMC8536957 DOI: 10.3390/toxics9100258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Population and laboratory studies indicate that exposure to various forms of arsenic (As) is associated with many adverse health effects; therefore, methods are being sought out to reduce them. Numerous studies focus on the effects of nutrients on inorganic As (iAs) metabolism and toxicity, mainly in animal models. Therefore, the aim of this review was to analyze the influence of methionine, betaine, choline, folic acid, vitamin B2, B6, B12 and zinc on the efficiency of iAs metabolism and the reduction of the severity of the whole spectrum of disorders related to iAs exposure. In this review, which includes 58 (in vivo and in vitro studies) original papers, we present the current knowledge in the area. In vitro and in vivo animal studies showed that methionine, choline, folic acid, vitamin B2, B12 and zinc reduced the adverse effects of exposure to iAs in the gastrointestinal, urinary, lymphatic, circulatory, nervous, and reproductive systems. On the other hand, it was observed that these compounds (methionine, choline, folic acid, vitamin B2, B12 and zinc) may increase iAs metabolism and reduce toxicity, whereas their deficiency or excess may impair iAs metabolism and increase iAs toxicity. Promising results of in vivo and in vitro on animal model studies show the possibility of using these nutrients in populations particularly exposed to As.
Collapse
Affiliation(s)
- Monika Sijko
- Correspondence: (M.S.); (L.K.); Tel.: +48-22-59-370-23 (M.S.); +48-22-59-370-17 (L.K.)
| | - Lucyna Kozłowska
- Correspondence: (M.S.); (L.K.); Tel.: +48-22-59-370-23 (M.S.); +48-22-59-370-17 (L.K.)
| |
Collapse
|
7
|
Exposure to Environmental Arsenic and Emerging Risk of Alzheimer's Disease: Perspective Mechanisms, Management Strategy, and Future Directions. TOXICS 2021; 9:toxics9080188. [PMID: 34437506 PMCID: PMC8402411 DOI: 10.3390/toxics9080188] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is one of the most prevailing neurodegenerative diseases, characterized by memory dysfunction and the presence of hyperphosphorylated tau and amyloid β (Aβ) aggregates in multiple brain regions, including the hippocampus and cortex. The exact etiology of AD has not yet been confirmed. However, epidemiological reports suggest that populations who were exposed to environmental hazards are more likely to develop AD than those who were not. Arsenic (As) is a naturally occurring environmental risk factor abundant in the Earth’s crust, and human exposure to As predominantly occurs through drinking water. Convincing evidence suggests that As causes neurotoxicity and impairs memory and cognition, although the hypothesis and molecular mechanism of As-associated pathobiology in AD are not yet clear. However, exposure to As and its metabolites leads to various pathogenic events such as oxidative stress, inflammation, mitochondrial dysfunctions, ER stress, apoptosis, impaired protein homeostasis, and abnormal calcium signaling. Evidence has indicated that As exposure induces alterations that coincide with most of the biochemical, pathological, and clinical developments of AD. Here, we overview existing literature to gain insights into the plausible mechanisms that underlie As-induced neurotoxicity and the subsequent neurological deficits in AD. Prospective strategies for the prevention and management of arsenic exposure and neurotoxicity have also been discussed.
Collapse
|
8
|
Wang Y, Zhao H, Liu Y, Li J, Nie X, Huang P, Xing M. Environmentally relevant concentration of sulfamethoxazole-induced oxidative stress-cascaded damages in the intestine of grass carp and the therapeutic application of exogenous lycopene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116597. [PMID: 33540255 DOI: 10.1016/j.envpol.2021.116597] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/06/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Due to the unreasonable use and discharge of the aquaculture industry, over standard of the antibiotics has been frequent in different types of water environments, causing adverse effects on aquatic organisms. Lycopene (LYC) is an esculent carotenoid, which is considered to be a strong antioxidant. This study was designed to explore the therapeutic effect of LYC on antibiotic (sulfamethoxazole (SMZ)) induced intestinal injury in grass carp Ctenopharyngodon idella. The 120 carps (the control, LYC, SMZ, and co-administration groups) were treated for 30 days. We found that treatment with LYC significantly suppressed SMZ-induced intestinal epithelial cell damage and tight junction protein destruction through histopathological observation, transmission electron microscopy and detection of related genes (Claudin-1/3/4, Occludin and zonula occludens (ZO)-1/2). Furthermore, LYC mitigated SMZ-induced dysregulation of oxidative stress markers, including elevated malondialdehyde (MDA) levels, and consumed super oxide dimutese (SOD), catalase (CAT) activities and glutathione (GSH) content. In the same treatment, LYC reduced inflammation and apoptosis by a detectable change in pro-inflammatory factors (tumor necrosis factor-alpha (TNF-β), interleukin (IL)-1β, IL-6 and IL-8), anti-inflammatory factors (transforming growth factor-beta (TGF-β) and IL-10) and pro-apoptosis related genes (p53, p53 upregulated modulator of apoptosis (PUMA), Bax/Bcl-2 ratio, caspase-3/9). In addition, activation of autophagy (as indicated by increased autophagy-related genes through AMPK/ATK/MTOR signaling pathway) under the stress of SMZ was also dropped back to the original levels by LYC co-administration. Collectively, our findings identified that LYC can serve as a protectant agent against SMZ-induced intestinal injury.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Jingyan Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Xiaopan Nie
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Puyi Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
9
|
Cai J, Guan H, Jiao X, Yang J, Chen X, Zhang H, Zheng Y, Zhu Y, Liu Q, Zhang Z. NLRP3 inflammasome mediated pyroptosis is involved in cadmium exposure-induced neuroinflammation through the IL-1β/IkB-α-NF-κB-NLRP3 feedback loop in swine. Toxicology 2021; 453:152720. [PMID: 33592257 DOI: 10.1016/j.tox.2021.152720] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Cadmium (Cd) chloride, as widely distributed toxic environmental pollutants by using in industry, severely imperils animal and human health. Pyroptosis is a Cas1-dependent pro-inflammatory programmed cell death and involves in various types of diseases. Nevertheless, the mechanism of pyroptosis and Cd-induced neurotoxicity remains obscure. To investigate the specific molecular mechanisms of Cd-induced neurotoxicity, 10 weaned piglets were randomly divided into 2 groups treated with 0 and 20 mg/kg CdCl2 in the diet for 40 days. The levels of pyroptosis, mitochondrial and inflammation-related genes were validated by qRT-PCR and WB in vivo. Our results revealed that Cd caused cerebral histopathology lesions, inducing cerebral pyroptosis and the mass generation of inflammatory cytokines, as indicated by the increased NLRP3 inflammasome activation (NLRP3, Cas1 and ASC) and the upregulation of inflammation factors IL-2, IL-6, IL-7 and inhibition of IL-10. Subsequently, further research indicated that Cd triggered pyroptosis via activating the TRAF6-IkB-α-NF-κB pathway, which interfered with the phosphorylation and ubiquitination of IkB-α. Furthermore, Cd caused mitochondrial dysfunction and fragmentation by inhibiting the AMPK-PGC-1α-NRF1/2 signaling pathway and reduced the expression of mitochondrial-related regulatory factors OPA1, TFAM and mtDNA, resulting in the increase of NLRP3 inflammasome. Besides, we found eight hub genes (IKK, IKB-α, NLRP3, TRAF6, NF-κB, AMPK, TNFα and PGC-1α), mainly related to the interaction between the NF-κB pathway and NLRP3 inflammasome. Overall, these results demonstrated that Cd could promote the IL-1β/IkB-α-NF-κB-NLRP3 inflammasome activation positive feedback loop to result in neuroinflammation in swine, which provided new insights in understanding Cd-induced toxicity.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haoyue Guan
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, PR China
| | - Xing Jiao
- China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingying Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
10
|
Li X, Yao Y, Wang S, Xu S. Resveratrol relieves chlorothalonil-induced apoptosis and necroptosis through miR-15a/Bcl2-A20 axis in fish kidney cells. FISH & SHELLFISH IMMUNOLOGY 2020; 107:427-434. [PMID: 33186708 DOI: 10.1016/j.fsi.2020.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Chlorothalonil (CT) is a commonly used fungicide and its excessive application seriously threatens aquatic life and human health. Resveratrol (RSV) is a natural polyphenol and can be used as a therapeutic and preventive agent for the treatment of various diseases. To explore the toxic mechanism of CT exposure on fish kidney cell, as well as the alleviation effect of RSV, we established CT poisoning and/or RSV treatment fish kidney cell models. Ctenopharyngodon idellus kidney (CIK) cell line was treated with CT (5 μg/L) and/or RSV (10 μM) for 48 h. The results showed that CT exposure activated cytochromeP450s (CYPs) including CYP1A1, CYP1B1 and CYP1C, caused malondialdehyde (MDA) accumulation, inhibited glutathione (GSH) levels and glutathione peroxidase (GPX) activities, increased the expression of miR-15a and downregulated BCL2 and TNFα-induced protein 3 (TNFAIP3, A20), triggered mitochondrial pathway mediated apoptosis and receptor interacting serine/threonine kinase (RIP)-dependent necroptosis in CIK cells. However, cell death under CT exposure could be relieved by RSV treatment through inhibiting the expression of CYP1 family genes and restoring miR-15a/BCL2-A20 axis disorders. Overall, we conclude that RSV could relieve CT-induced apoptosis and necroptosis through miR-15a/Bcl2-A20 axis in CIK cells. These results enrich the toxicological mechanisms of the CT and confirm that RSV can be used as a potential antidote for CT poisoning.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|