1
|
Zhu S, Yang L, Zhao Y. Ethyl 3-aminobenzo[b]thiophene-2-carboxylate Derived Ratiometric Schiff Base Fluorescent Sensor for the Recognition of In 3+ and Pb 2. J Fluoresc 2024:10.1007/s10895-023-03576-7. [PMID: 38206512 DOI: 10.1007/s10895-023-03576-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
An ethyl 3-aminobenzo[b]thiophene-2-carboxylate derived ratiometric Schiff base fluorescent sensor R was devised and synthesized. R exhibited a highly sensitive and selective ratiometric response to In3+ in DMF/H2O tris buffer solution. R exhibited a colorimetric/fluorescent dual-channel response to In3+. More importantly, R can distinguish In3+ from Ga3+ and Al3+ in less than 5 min. R exhibited a good linear correlation with the concentration of In3+ in the 5-25 μM range and the limit of detection for In3+ was found to be 8.36 × 10-9 M. According to the job`s plot and MS spectra, R formed a complex with In3+ at 1:2 with a complexation constant of 8.24 × 109 M2. Based on Gaussian theory calculations, the response mechanism of R to In3+ can be explained by photo-induced electron transfer (PET) and intramolecular charge transfer (ICT) mechanisms. In addition, R can be used for the detection of indium in tap water with satisfactory recoveries. Meanwhile, R displayed a linear relationship to micromolar concentrations (0-50 μM) of Pb2+ and recognized Pb2+ in a ratiometric response with a detection limit of 8.3 × 10-9 M.
Collapse
Affiliation(s)
- Shifeng Zhu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Liangru Yang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yingying Zhao
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Li W, Huang G, Tang N, Lu P, Jiang L, Lv J, Qin Y, Lin Y, Xu F, Lei D. Effects of heavy metal exposure on hypertension: A machine learning modeling approach. CHEMOSPHERE 2023; 337:139435. [PMID: 37422210 DOI: 10.1016/j.chemosphere.2023.139435] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Heavy metal exposure is a common risk factor for hypertension. To develop an interpretable predictive machine learning (ML) model for hypertension based on levels of heavy metal exposure, data from the NHANES (2003-2016) were employed. Random forest (RF), support vector machine (SVM), decision tree (DT), multilayer perceptron (MLP), ridge regression (RR), AdaBoost (AB), gradient boosting decision tree (GBDT), voting classifier (VC), and K-nearest neighbour (KNN) algorithms were utilized to generate an optimal predictive model for hypertension. Three interpretable methods, the permutation feature importance analysis, partial dependence plot (PDP), and Shapley additive explanations (SHAP) methods, were integrated into a pipeline and embedded in ML for model interpretation. A total of 9005 eligible individuals were randomly allocated into two distinct sets for predictive model training and validation. The results showed that among the predictive models, the RF model demonstrated the highest performance, achieving an accuracy rate of 77.40% in the validation set. The AUC and F1 score for the model were 0.84 and 0.76, respectively. Blood Pb, urinary Cd, urinary Tl, and urinary Co levels were identified as the main influencers of hypertension, and their contribution weights were 0.0504 ± 0.0482, 0.0389 ± 0.0256, 0.0307 ± 0.0179, and 0.0296 ± 0.0162, respectively. Blood Pb (0.55-2.93 μg/dL) and urinary Cd (0.06-0.15 μg/L) levels exhibited the most pronounced upwards trend with the risk of hypertension within a specific value range, while urinary Tl (0.06-0.26 μg/L) and urinary Co (0.02-0.32 μg/L) levels demonstrated a declining trend with hypertension. The findings on the synergistic effects indicated that Pb and Cd were the primary determinants of hypertension. Our findings underscore the predictive value of heavy metals for hypertension. By utilizing interpretable methods, we discerned that Pb, Cd, Tl, and Co emerged as noteworthy contributors within the predictive model.
Collapse
Affiliation(s)
- Wenxiang Li
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China.
| | - Guangyi Huang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Ningning Tang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Peng Lu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Li Jiang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Jian Lv
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Yuanjun Qin
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Yunru Lin
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Fan Xu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China.
| | - Daizai Lei
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China.
| |
Collapse
|
3
|
Liao KW, Chen PC, Chou WC, Shiue I, Huang HI, Chang WT, Huang PC. Human biomonitoring reference values, exposure distribution, and characteristics of metals in the general population of Taiwan: Taiwan environmental survey for Toxicants (TESTs), 2013-2016. Int J Hyg Environ Health 2023; 252:114195. [PMID: 37321161 DOI: 10.1016/j.ijheh.2023.114195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/17/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Human biomonitoring (HBM) provides information to identify chemicals that need to be assessed regarding potential health risks to human populations. We established a population-representative sample in Taiwan, namely the Taiwan Environmental Survey for Toxicants (TESTs) in 2013-2016. In total, 1871 participants (aged 7-97 years) were recruited from throughout Taiwan. A questionnaire survey was applied to obtain individuals' demographic characteristics, and urine samples were obtained to assess metal concentrations. Inductively coupled plasma-mass spectrometry was used to determine concentrations of urinary As (total), Cd, Co, Cr, Cu, Fe, Ga, In, Mn, Ni, Pb, Se, Sr, Tl, and Zn. The purpose of this study was to establish the human urinary reference levels (RVs) for metals in the general population of Taiwan. We found that median concentrations of urinary Cu, Fe, Pb, and Zn in males were statistically significant (p < 0.05) higher than in females (Cu: 11.48 vs. 10.00 μg/L; Fe: 11.48 vs. 10.46 μg/L; Pb: 0.87 vs. 0.76 μg/L; and Zn: 448.93 vs. 348.35 μg/L). On the contrary, Cd and Co were significantly lower in males than in females (Cd: 0.61 vs. 0.64 μg/L; and Co: 0.27 vs. 0.40 μg/L). Urinary Cd levels in the ≥18-year-old group (0.69 μg/L) were significantly higher than those in the 7-17-year-old group (0.49 μg/L, p < 0.001). Among the investigated metals, most were significantly higher in the 7-17-year-old group than in the ≥18-year-old group, except for Cd, Ga, and Pb. Participants who lived in central Taiwan had higher median levels of urinary Cd, Cu, Ga, Ni, and Zn than those in other regions. Median levels of urinary As, Cd, Pb, and Se were significantly higher in participants who lived in harbor (94.12 μg/L), suburban (0.68 μg/L), industrial (0.92 μg/L), and rural (50.29 μg/L) areas, respectively, than the others who lived in other areas. RV95 percentiles of urinary metals (ng/mL) for 7-17/≥18-year-old groups were As (346.9/370.0), Cd (1.41/2.21), Co (2.30/1.73), Cr (0.88/0.88), Cu (28.02/22.78), Fe (42.27/42.36), Ga (0.13/0.12), In (0.05/0.04), Mn (3.83/2.91), Ni (8.09/6.17), Pb (8.09/5.75), Se (122.4/101.9), Sr (556.5/451.3), Tl (0.57/0.49), and Zn (1314.6/1058.8). In this study, we have highlighted the importance of As, Cd, Pb, and Mn exposure in the general population of Taiwan. The established RV95 of urinary metals in Taiwanese would be fundamental information to promote the reduction of metal exposure or policy intervention. We concluded that urinary levels of exposure to certain metals in the general Taiwanese population varied by sex, age, region, and urbanization level. References of metal exposure in Taiwan were established in the current study.
Collapse
Affiliation(s)
- Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Pau-Chung Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Ivy Shiue
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-I Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Zhao H, Qian R, Liang X, Ou Y, Sun C, Lin X. Indium induces nitro-oxidative stress in roots of wheat (Triticum aestivum). JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128260. [PMID: 35038664 DOI: 10.1016/j.jhazmat.2022.128260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
The entrance of indium, an emerging contaminant from electronics, into the agroecosystem inevitably causes its accumulation in crops and raises exposure risk of humans via food chain. This study investigated indium uptake and toxicological effects in wheat plants under a worst-case scenario. Inhibition of root growth is a primary manifestation of indium toxicity and most absorbed indium accumulated in wheat roots with only a tiny portion reaching the leaves. The enhancement of reactive oxygen species (ROS), lipid peroxidation and protein oxidation in roots suggest that indium caused oxidative stress. Additionally, we found the levels of nitric oxide and peroxyinitrite, two major reactive nitrogen species (RNS), also increased in wheat roots under indium stress. These changes were accompanied by a raise in protein tyrosine nitration, thereby provoking nitrosative stress. The increase in peroxyinitrite and S-nitrosoglutathione content, S-nitrosoglutathione reductase activity as well as a concomitant reduction in glutathione concentrations suggest a rigorous metabolic interplay between ROS and RNS. Moreover, indium simultaneously triggered alteration in protein carbonylation and nitration. Overall, our results suggest that indium induced nitro-oxidative stress which probably contributes to toxicological effects in wheat plants, which are helpful in reducing the potential risk from emerging contaminants analogous to indium to humans.
Collapse
Affiliation(s)
- Hongcheng Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruyi Qian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Liang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiqun Ou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Liu J, Ouyang Q, Wang L, Wang J, Zhang Q, Wei X, Lin Y, Zhou Y, Yuan W, Xiao T. Quantification of smelter-derived contributions to thallium contamination in river sediments: Novel insights from thallium isotope evidence. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127594. [PMID: 34763928 DOI: 10.1016/j.jhazmat.2021.127594] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Thallium(Tl), an extremely toxic metal, is posing great hazards to water safety through anthropogenic activities (e.g., Pb-Zn smelter) and natural weathering in riverine systems. However, the relative contribution from each source remains obscure. This study investigated enrichment pattern of Tl and its isotopic compositions in sediment profiles from a recipient river, which was continuously collecting various Tl-bearing wastes discharged from a large Pb-Zn smelter in South China. Results show that high Tl content and ultra-fine particles (~ μm) of Tl-bearing mineral assemblages, probably derived from Pb-Zn smelting wastes, were ubiquitously observed in both of the depth profiles. In addition, the sediments generally yielded intermediate ε205Tl values of -3.76 to 1.01, which resembled those found in smelting wastes. A ternary mixing model was for the first time proposed for quantifying relative Tl contributions from each possible source. The calculation suggests that the smelter wastes are the major contributors, contributing approximately 80% of Tl contamination. All these results indicate that Tl isotope can be used as powerful proxies for quantitatively identifying potential different contributors in the environment. This is of critical importance to further implementation of pollution control and remediation strategy for the riverine systems in the near future.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| | - Qi'en Ouyang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Lulu Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Qiong Zhang
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuyang Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuting Zhou
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wenhuan Yuan
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
6
|
Zhou Y, He H, Wang J, Liu J, Lippold H, Bao Z, Wang L, Lin Y, Fang F, Huang Y, Jiang Y, Xiao T, Yuan W, Wei X, Tsang DCW. Stable isotope fractionation of thallium as novel evidence for its geochemical transfer during lead‑zinc smelting activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150036. [PMID: 34525718 DOI: 10.1016/j.scitotenv.2021.150036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Thallium (Tl) is a highly toxic trace metal. Lead (Pb)‑zinc (Zn) smelting, which is a pillar industry in various countries, is regarded as one of the dominant anthropogenic sources of Tl contamination in the environment. In this study, thallium isotope data have been evaluated for raw material and a set of industrial wastes produced at different stages of Pb-Zn smelting in a representative large facility located by the North River, South China, in order to capture Tl isotope signatures of such typical anthropogenic origin for laying the foundation of tracking Tl pollution. Large variations in Tl isotopic compositions of raw Pb-Zn ores and solid smelting wastes produced along the process chain were observed. The ε205Tl values of raw Pb-Zn ores and return fines are -0.87 ± 0.26 and -1.0 ± 0.17, respectively, contrasted by increasingly more negative values for electrostatic precipitator dust (ε205Tl = -2.03 ± 0.14), lime neutralizing slag (ε205Tl = -2.36 ± 0.18), and acid sludge (ε205Tl = -4.62 ± 0.76). The heaviest ε205Tl (1.12 ± 0.51) was found in clinker. These results show that isotopic fractionation occurs during the smelting processes. Obviously, the lighter Tl isotope is enriched in the vapor phase (-3.75 ε205Tl units). Further XPS and STEM-EDS analyses show that Tl isotope fractionation conforms to the Rayleigh fractionation model, and adsorption of 205Tl onto hematite (Fe2O3) may play an important role in the enrichment of the heavier Tl isotope. The findings demonstrate that Tl isotope analysis is a robust tool to aid our understanding of Tl behavior in smelting processes and to provide a basis for source apportionment of Tl contaminations.
Collapse
Affiliation(s)
- Yuting Zhou
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Hongping He
- Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Holger Lippold
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Germany
| | - Zhi'an Bao
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, China
| | - Lulu Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuyang Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Fa Fang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yeliang Huang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yanjun Jiang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| | - Wenhuan Yuan
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Ancient Ceramic Casting Molds from the Southern Russian Far East: Identification of Alloy Traces via Application of Nondestructive SEM-EDS and pXRF Methods. HERITAGE 2021. [DOI: 10.3390/heritage4040149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The investigation presented in this paper is a unique assemblage of ceramic casting molds discovered at one of the sites from the Bohai period (698–926) in the territory of the southern Russian Far East. The main research aim is to recognize probable traces of metal alloys cast in ceramic molds. Nondestructive pXRF and SEM-EDS methods were used as the research instruments for detecting the expected alloys’ chemical components. As a result, the elements Pb, Sn, Cu, and As were indicated at the surfaces of the molds’ cavities with evidence of carbonization caused by the casting process. Preliminarily, two groups of alloys were distinguished: lead-bearing alloys and lead-free alloys. Our new insights are in good accordance with the results of previous investigations on chemical compositions of bronzes from the Bohai period archaeological sites of the southern Russian Far East. In particular, data on the examination of ceramic molds confirm the conclusion that various kinds of copper alloys were known and used in the bronze casting craft of the Bohai period.
Collapse
|