1
|
Li Y, Zhang L, Wang J, Xu S, Zhang Z, Guan Y. Activation of persulfate by a layered double oxide supported sulfidated nano zero-valent iron for efficient degradation of 2,2',4,4'-tetrabromodiphenyl ether in soil. ENVIRONMENT INTERNATIONAL 2024; 194:109098. [PMID: 39579442 DOI: 10.1016/j.envint.2024.109098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
The nano zero-valent iron (nZVI) activated persulfate (PS) is recognized as a promising approach to degrade 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), which is ubiquitous in the soil at electronic waste sites. However, all the reported studies were performed in liquids, gaps in the real behaviour and microbial contribution to the degradation of BDE-47 in soil media need to be urgently filled. The removal efficiency of BDE-47 is low using traditional nZVI as activator because of its aggregation and corrosion. Herein, we designed a novel layered double oxide supported sulfidated nano zero-valent iron (S-nZVI@LDO) composite and explored the performance of S-nZVI@LDO/PS to remediate BDE-47 contaminated soil. The results showed that S-nZVI@LDO has excellent stability and superior reduction capability. It could couple PS to achieve a rapid and efficient degradation of BDE-47, and the removal efficiency reached 92.31 % (5 mg/kg) within 6 h, which was much higher than that of n-ZVI/PS (53.38 %) or S-nZVI/PS (75.69 %). The kinetic constant of BDE-47 degradation by S-nZVI@LDO/PS was 23.6 and 3.7 times higher than that by single S-nZVI@LDO and nZVI/PS, respectively. It is attributable to the efficient production of SO4•-, •OH, O2•-, and 1O2 in the system, in which SO4•- and •OH dominated. The bioinformatic analysis demonstrate that soil remediation by S-nZVI@LDO/PS significantly enriched aromatic compounds-degrading bacteria and increased the abundance of hydrocarbon degradation functions. Microbial degradation may play important roles in the BDE-47 degradation and soil quality recovery. The identification of degradation pathways suggests that BDE-47 was degraded to very low-toxic products based on GHS toxicity prediction through a series process of debromination, hydroxylation, cleavage central oxygen, and ring opening, or even completely mineralized. The findings may provide significant implications for the in-situ clean-up of brominated flame retardants in contaminated soil using S-nZVI@LDO/PS Fenton-like system.
Collapse
Affiliation(s)
- Yibing Li
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Lixun Zhang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Jing Wang
- JiangSu Longhuan Environmental Technology Co., LTD, Changzhou 213000, PR China
| | - Shan Xu
- JiangSu Longhuan Environmental Technology Co., LTD, Changzhou 213000, PR China
| | - Zhengfang Zhang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuntao Guan
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Kong Y, Takaya Y, Córdova-Udaeta M, Tokoro C. A comprehensive approach for the recycling of anode materials from spent lithium-ion batteries: Separation, lithium recovery, and graphite reutilization as environmental catalyst. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 188:60-71. [PMID: 39116657 DOI: 10.1016/j.wasman.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
The effective recovery of valuables from anodes coming from spent lithium-ion batteries (LIBs) is of great importance to ensure resource supply and reduce the environmental burden for recycling. In this work, a simple and low energy consumption roasting method was proposed by employing low-temperature eutectic NaOH-KOH as reaction medium, in order to simultaneously separate graphite from Cu foils, extract lithium from it and set it up for reuse as environmental catalyst through one-step water washing process. Our results show that polyvinylidene difluoride (PVDF) was effectively deactivated due to dehydrofluorination/carbonization at a relatively low temperature and short time (150 °C, 20 min) when a mass ratio of 1:1 for eutectic NaOH-KOH to spent LIBs anodes was used, yielding 97.3 % of graphite detached. Moreover, a remarkable lithium extraction efficiency of 93.2 % was simultaneously obtained. Afterwards, the reusability of the recycled graphite was tested by employing it as a catalyst for the treatment of a contaminant organic dye (Rhodamine B) in the presence of NaClO. Our results show that a superior NaClO activation was obtained with the addition of recycled graphite, being this fact closely associated to the abundant active sites formed during the long-term charging/discharging cycles in the original battery. The alkaline-mediated roasting process presented in this work presents an energy-saving scheme to efficiently recover useful components from spent anodes, whereas the reusability example highlighted a useful option for repurposing the severely damaged graphite as an environmental catalyst rather than disposing it in landfills, turning waste into a valuable material.
Collapse
Affiliation(s)
- Yanhui Kong
- Graduate School of Creative Science and Engineering, Waseda University, Okubo 3-4-1, Shinju-ku, Tokyo 169-8555, Japan
| | - Yutaro Takaya
- Faculty of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan; Faculty of Science and Engineering, Waseda University, Okubo 3-4-1, Shinju-ku, Tokyo 169-8555, Japan
| | - Mauricio Córdova-Udaeta
- Research Institute for Science and Engineering, Waseda University, Okubo 3-4-1, Shinju-ku, Tokyo 169-8555, Japan
| | - Chiharu Tokoro
- Faculty of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan; Faculty of Science and Engineering, Waseda University, Okubo 3-4-1, Shinju-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
3
|
Zheng Y, Ran L, Zhang X, Zhu L, Zhang H, Xu J, Zhao Q, Zhou L, Ye Z. Enhanced Fenton catalytic degradation of methylene blue by the synergistic effect of Fe and Ce in chitosan-supported mixed-metal MOFs (Fe/Ce-BDC@CS). Int J Biol Macromol 2024; 279:134872. [PMID: 39173787 DOI: 10.1016/j.ijbiomac.2024.134872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/28/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Methylene blue (MB) is a refractory organic pollutant that poses a potential threat to the aquatic environment. Fenton reaction is considered a primrose strategy to treat MB. However, the traditional Fenton process is plagued by narrow pH application range, poor stability, and secondary pollution. To solve these problems, many Fenton-like catalysts including metal-organic frameworks (MOFs) have been prepared. Herein, a novel bimetallic MOF (Fe/Ce-BDC@CS) was prepared through simple adsorption for the effective removal of MB, where chitosan (CS) was used as the carrier. The degradation performance of Fe/Ce-BDC@CS (100 % within 20 min) was better than that of most reported monometallic MOFs. Moreover, Fe/Ce-BDC@CS exhibited good repeatability and its anti-interference performance of some inorganic ions was also remarkable. Column loading experiments showed that the removal efficiency of MB was still about 50 % over 155 h with a flowing speed of 0.30 L/h. Comparative analysis indicated that such excellent performances could be attributed to the synergistic effect between Fe and Ce. Furthermore, the results of quenching tests indicate that OH, O2-, and 1O2 contributed to MB degradation. In brief, Fe/Ce-BDC@CS has promising prospects in MB treatment, which can provide scientific references for the design and application of bimetallic MOFs.
Collapse
Affiliation(s)
- Yajuan Zheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Lang Ran
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Xu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Lingxiao Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Heng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Jiaming Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Quanlin Zhao
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China.
| | - Lincheng Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China.
| |
Collapse
|
4
|
Haider MR, Jiang WL, Han JL, Mahmood A, Djellabi R, Liu H, Asif MB, Wang AJ. Boosting Hydroxyl Radical Yield via Synergistic Activation of Electrogenerated HOCl/H 2O 2 in Electro-Fenton-like Degradation of Contaminants under Chloride Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18668-18679. [PMID: 36730709 DOI: 10.1021/acs.est.2c07752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydroxyl radical production via catalytic activation of HOCl is a new type of Fenton-like process. However, metal-chlorocomplex formation under high chloride conditions could deactivate the catalyst and reduce the process efficiency. Herein, in situ electrogenerated HOCl was activated to •OH via a metal-free, B/N-codoped carbon nanofiber cathode for the first time to degrade contaminant under high chloride condition. The results show 98% degradation of rhodamine B (RhB) within 120 min (k = 0.036 min-1) under sulfate conditions, while complete degradation (k = 0.188 min-1) was obtained in only 30 min under chloride conditions. An enhanced degradation mechanism consists of an Adsorb & Shuttle process, wherein adsorption concentrates the pollutants at the cathode surface and they are subsequently oxidized by the large amount of •OH produced via activation of HOCl and H2O2 at the cathode. Density functional theory calculations verify the pyridinic N as the active site for the activation of HOCl and H2O2. The process efficiency was also evaluated by treating tetracycline and bisphenol A as well as high chloride-containing real secondary effluents from a pesticide manufacturing plant. High yields of •OH and HOCl allow continuous regeneration of the cathode for several cycles, limiting its fast deactivation, which is promising for real application.
Collapse
Affiliation(s)
- Muhammad Rizwan Haider
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, P.R. China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, P.R. China
| | - Wen-Li Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, P.R. China
- Department of Civil and Environmental Engineering, University of California, Berkeley, California94720, United States
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, P.R. China
| | - Ayyaz Mahmood
- College of Physics and Optical Engineering, Shenzhen University, Shenzhen518060, P.R. China
| | - Ridha Djellabi
- Department d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007Tarragona, Spain
| | - Huiling Liu
- School of Science, Hunan University of Technology and Business, Changsha410205, Hunan, China
| | - Muhammad Bilal Asif
- Advanced Membrane and Porous Materials Center (AMPMC), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, P.R. China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, P.R. China
| |
Collapse
|
5
|
Yan J, Liu H, Dou C, Wu Y, Dong W. Quantitative probing of reactive oxygen species and their selective degradation on contaminants in peroxymonosulfate-based process enhanced by picolinic acid. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132083. [PMID: 37499497 DOI: 10.1016/j.jhazmat.2023.132083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
The processes of Fe(III) activated peroxymonosulfate (PMS) in degrading contaminants have been extensively studied. Herein, a biodegradable chelating agent, picolinic acid (PICA), was introduced to the PMS/Fe(III) process to improve the reaction efficiency. The emphases of this study were placed on the quantification of steady-state concentrations of reactive oxygen species (ROS). Experiments presented that five types of ROS, including Fe(IV), SO4•-, HO•, 1O2 and O2•- coexisted in this system. Four typical probe compounds were used to quantify the steady-state concentration of ROS under different variables. The steady-state concentration of Fe(IV) ([Fe(IV)]ss) was 3-5 orders of magnitude higher than that of other ROS, followed by 1O2 and SO4•-, whereas HO• had the lowest concentration. The reaction between PMS and PICA was first explored in our study and results showed that 1O2 and O2•- would form in this reaction. Owing to the hybrid oxidation by multiple ROS, this system showed high oxidation capacity, and could effectively degrade a variety of pollutants. The contributions of ROS to the alleviation of pollutants varied depending on their concentrations and specific reactivity of substrates. Generally, organic contaminants with phenol structures were prone to react with Fe(IV). Overall, this study compared the steady-state concentrations of different ROS and revealed the intrinsic ROS formation mechanisms.
Collapse
Affiliation(s)
- Jiaying Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Huihui Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Chenfei Dou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Yanlin Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China.
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Zhang T, Chen Y, Wang T, Liu C, He D, Liu B, Liu Y. Efficient removal of petroleum hydrocarbons from soil by percarbonate with catechin-promoted Fe(III)/Fe(II) redox cycling: Activation of ferrous and roles of ·OH and ·CO 3. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130875. [PMID: 36731317 DOI: 10.1016/j.jhazmat.2023.130875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Advanced oxidation processes are widely used to remove petroleum hydrocarbons from soil, but usually consume large quantities of ferrous and acidify the soil. This study tested an advanced oxidation approach based on percarbonate in laboratory experiments. It removed 88% petroleum hydrocarbons in soil with a pH increase from 8.2 to 10.2. ·OH and ·CO3- were the main reactive species, and degraded 41% and 37% PHCs from soil respectively. The o-dihydroxybenzene structure in catechin was found to reduce ferric to ferrous, and prolong the generation of ·OH from 120 s to over 1800 s. The petroleum hydrocarbons were degraded to intermediates including alkanes and olefins through hydrogen-abstraction by ·OH and ·CO3-, and by dimerization and β-scission of alkyl radicals. These intermediates were then oxidized to CO2 and H2O by ·OH and ·CO3-. The main residual intermediates in the soil were low-molecular-weight n-alkanes and branched alkanes, and they were found to inhibit the growth of oats (Avena sativa L.) much less than the original petroleum hydrocarbons. These findings provide a fundamental basis for designing effective technologies which use percarbonate to remove organic pollutants.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Yuan Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Tao Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Chang Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Dan He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Bin Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Yuanyuan Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
7
|
Lai X, Huang N, Zhao X, Li Y, He Y, Li J, Deng J, Ning XA. Oxidation of simulated wastewater by Fe 2+-catalyzed system: The selective reactivity of chlorine radicals and the oxidation pathway of aromatic amines. CHEMOSPHERE 2023; 317:137816. [PMID: 36638926 DOI: 10.1016/j.chemosphere.2023.137816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Aromatic amines (AAs), a characteristic pollutant with electron-donating groups in textile industry, having high reactivity with reactive chlorine free radicals, is probably the precursor of chlorinated aromatic products in advanced oxidation treatment. In this study, Fe2+/peroxydisulfate (PDS)/Cl- and Fe2+/H2O2/Cl-systems were used to treat four kinds of AAs (5-Nitro-o-toluidine (NT), 4-Aminoazobenzol (AAB), O-Aminoazotoluene (OAAT), 4,4'-Methylene-bis(2-chloroaniline) (MBCA)) in simulated wastewater, and the selectivity of various reactive species to AAs, the oxidation law and pathway of AAs were explored. The results showed that dichloride anion radical (Cl2·-) could effectively oxidize four AAs, and chlorine radical (·Cl) was strongly reactive to AAB and MBCA, especially MBCA. The largest f - (Fukui function) of MBCA is 0.0822, which is the lowest of the four AAs, so ·Cl might be more sensitive to electrophilic point than hydroxyl radical (·OH). The oxidation pathway of NT and MBCA showed that ·Cl mainly played the role of electron transfer to AAs instead of generating chlorinated products, but the addition of ·OH to -NH2 generated aromatic nitro compounds with higher toxicity than NT and MBCA. Therefore, the electron transfer of ·Cl and Cl2·- could not only improve the removal of AAs but also reduce the generation of toxic products. This study found that the reactivity of reactive chlorine free radicals was not necessarily related to chlorination, which provided a theoretical basis for the further studies into the formation mechanism of chlorination products.
Collapse
Affiliation(s)
- Xiaojun Lai
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Nuoyi Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaohua Zhao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Li
- College of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Yao He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiesen Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Department of Research and Development, Guangzhou Ginpie Technology Co., Ltd., Guangzhou, China
| | - Jinhuan Deng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xun-An Ning
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
8
|
Yang B, Luo Q, Li Q, Jia R, Liu Y, Huang X, Zhou M, Li L. Dye mineralization under UV/H 2O 2 promoted by chloride ion at high concentration and the generation of chlorinated byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159453. [PMID: 36252669 DOI: 10.1016/j.scitotenv.2022.159453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Chloride ion (Cl-) may promote or inhibit the oxidation of specific organic compounds treated by hydroxyl radical based advanced oxidation processes (HR-AOPs) depending on the reactivity of chlorine radicals towards the organics. However, the effects of high contents of Cl- on the removal of total organic compounds (TOC) in high salinity organic wastewater treated by HR-AOPs were unclear. The removal and mineralization of azo dye Orange II (OrgII) by UV/H2O2 process with Cl- at high contents under various pH conditions were investigated. As the pH conditions increased higher than pH 5, TOC removal rates increased slightly possibly related to the increase of O2- production and the reduce of futile decomposition of H2O2 into O2. Cl- at relative high concentration (1000 and 2000 mM) significantly promoted the mineralization of dyes with TOC removal increasing by 10 %-40 % under both acid and alkaline conditions. The proposed mechanism is that the reaction of Cl- with OH would decline the decomposition of H2O2 into O2 by inhibiting the reaction between OH and H2O2, and the generated chlorine species (Cl and Cl2-) could further promote the oxidation of dye molecules into intermediates and be helpful for the subsequent mineralization process. In addition, H2O2 and Cl- can slowly react to give HClO and ClO-, which may partly contribute to the decolorization and mineralization of OrgII. Meanwhile, an appropriate relative proportion between Cl2- and OH depending on Cl- contents and pH conditions is important to enhance the TOC removal. However, the formation of various chlorinated byproducts especially under alkaline condition may increase the risk of environmental pollution accidents. The results demonstrate the promotion of TOC removal by UV/H2O2 under certain high contents of Cl- and provide new insight into the application of HR-AOPs to the pretreatment of high salinity organic wastewater.
Collapse
Affiliation(s)
- Bing Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Institute of Industrial Hazardous Waste Disposal and Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, China.
| | - Qiuping Luo
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Qinman Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Rong Jia
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Institute of Industrial Hazardous Waste Disposal and Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Xiangfu Huang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Mi Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Lingli Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
| |
Collapse
|
9
|
Comparison of sulfate radical with other reactive species. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Hung CM, Chen CW, Huang CP, Sheu DS, Dong CD. Metal-free catalysis for organic micropollutant degradation in waste activated sludge via poly(3-hydroxybutyrate) biopolymers using Cupriavidus sp. L7L coupled with peroxymonosulfate. BIORESOURCE TECHNOLOGY 2022; 361:127680. [PMID: 35878764 DOI: 10.1016/j.biortech.2022.127680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This study employed a novel and environment-friendly biopolymer/oxidant catalytic system, viz., poly(3-hydroxybutyrate)/peroxymonosulfate (PHB/PMS), for pretreating wastewater sludge for the first time. Under optimal conditions, i.e., 3.1 × 10-4 M of PMS and 3.3 g/L of PHB at pH = 6.0, the PAHs in the sludge matrix was decreased by 79 % in 12 h. Increase in salinity (75 % synthetic seawater) achieved 83 % of PAHs degradation. Functional groups (CO) of the biopolymer matrix were active centers for biopolymer-mediated electron transfer that produced reactive oxygen species (SO4-, HO, and 1O2) for adsorption and catalytic oxidation of PAHs in the sludge. Functional metagenomic analysis revealed the main genus, Conexibacter (phylum, Actinobacteria) exhibited PAH-degrading function with high efficiency in the biodegradation of PAHs from sludge pretreated with PHB/PMS. Coupling chemical oxidation and biostimulation using bacterial polymer-based biomaterials is effective and beneficial for pretreating wastewater sludge toward circular bioeconomy.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Der-Shyan Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
11
|
Lai X, Huang N, Pillai SC, Sarmah AK, Li Y, Wang G, Wang H. Formation and transformation of reactive species in the Fe 2+/peroxydisulfate/Cl - system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115219. [PMID: 35537272 DOI: 10.1016/j.jenvman.2022.115219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The influence of Cl- on the formation mechanism of active components is often neglected in the Fe2+/peroxydisulfate (PDS) system containing a large amount of ferryl ion reactive specie (Fe(Ⅳ)). In the current investigation, the effects of Cl- concentration on the removal of methyl phenyl sulfoxide (PMSO), the formation of methyl phenyl sulfone (PMSO2), the transformation of reactive species and oxidation products were investigated under different reaction conditions that included Fe2+ dosage, PDS dosage, and pH0. The results showed that Cl- complexing Fe2+ increased the formation path of sulfate radical (SO4·-) in the Fe2+/PDS system. Fe2+ dosage and pH0 value affected the content and morphology of Fe2+-Cl- complex, thus affecting the composition of reactive species. According to the experiment of free radical steady-state concentration, it was found that low concentration of Cl- reacted with SO4·- and increased the steady-state concentration of chlorine radicals (8.09 × 10-13 M [·Cl]ss at 1.41 mM Cl-), while at high concentration of Cl-, the contents of SO4·-, hydroxyl radical (·OH) and dichloride anion radicals (Cl2·-) increased and the contents of Fe(Ⅳ) and ·Cl decreased. ·Cl had strong reactivity with PMSO, and PMSO and its oxidation products were chlorinated under the combined action of ·Cl and Cl2·-. This work reveals the reaction mechanism and environmental application risks of Fe2+/PDS technology and lays the groundwork for subsequent industrial application of Fe2+/PDS system.
Collapse
Affiliation(s)
- Xiaojun Lai
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Nuoyi Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group and the Health and Biomedical (HEAL) Research Centre, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Yang Li
- College of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Guangwen Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
12
|
Li S, Tang J, Yu C, Liu Q, Wang L. Efficient degradation of anthracene in soil by carbon-coated nZVI activated persulfate. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128581. [PMID: 35247741 DOI: 10.1016/j.jhazmat.2022.128581] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The easy passivation defect of nano zero-valent iron (nZVI) greatly limits its application in site pollution remediation. Carbon coating can effectively inhibit the passivation of nZVI, but its effectiveness in the soil is still unknown. This study investigated the feasibility of carbon-coated nZVI (Fe0@C) as a persulfate (PS) activator to degrade anthracene (ANT) in soil. The results show that the Fe0@C/PS system can remove 51.6% of ANT in the soil after 0.5 h of reaction, and reach 76.4% after 12 h of reaction. Not only that, the Fe0@C/PS system shows a good removal effect on ANT within the initial pH range of 3-9. Free radical scavenging experiments show that superoxide radicals (O2•-) and singlet oxygen (1O2) are mainly responsible for the removal of ANT, while O2•- may be mainly used as a precursor for the generation of 1O2. The activation of PS by Fe0@C can generate a large number of free radicals, and soil components (such as β-MnO2) can promote the conversion of O2•- to 1O2. Furthermore, the possible degradation pathway of ANT was also proposed. The findings are of great significance to fill up the knowledge gaps in the application of nZVI in soil remediation.
Collapse
Affiliation(s)
- Song Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Chen Yu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qinglong Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Lan Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
13
|
He Y, Hu X, Jiang J, Zhang J, Liu F. Remediation of PAHs contaminated industrial soils by hypochlorous acid: performance and mechanisms. RSC Adv 2022; 12:10825-10834. [PMID: 35424989 PMCID: PMC8988275 DOI: 10.1039/d2ra00514j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/27/2022] [Indexed: 11/21/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) mainly originate from incomplete combustion of organic substances and are carcinogenic, mutagenic and teratogenetic, posing a high risk to the ecosystem and human health. The remediation of soils contaminated with PAHs has aroused wide public concern. In this study, hypochlorous acid (HOCl) was applied to realize PAHs removal from industrial contaminated soil with an extremely high degradation efficiency of 93.33% when the initial chlorine concentration was 5000 mg L−1. The degradation behavior of PAHs by HOCl oxidation was investigated in detail. Parameters including chlorine dosage, pH and temperature that had effects on the degradation process were evaluated systematically. The removal of PAHs was followed well with the pseudo-first-order kinetic model. It is found that HOCl and OH˙ were major contributors to the degradation products of chlorinated and oxygenated PAHs. This research provided an easy-operating and energy-saving way to realize the remediation of PAHs contaminated industrial soil practically with high efficiency. An extremely high degradation efficiency of 93.3% was realized for PAHs in contaminated industrial soil by HOCl oxidation.![]()
Collapse
Affiliation(s)
- Yufeng He
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Jingxian Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Jinyang Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Fuwen Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| |
Collapse
|
14
|
Chen M, Bi J, Huang X, Wang J, Wang T, Wang Z, Hao H. ZIF-8 engineered bismuth nanosheet arrays for boosted electrochemical reduction of nitrate. NANOSCALE 2021; 13:13786-13794. [PMID: 34477653 DOI: 10.1039/d1nr02339j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Removal of nitrate in wastewater is of great importance to environmental protection and humanity. However, the competitive reaction of hydrogen evolution (HER), which could occupy most active sites of the electrocatalyst, is one of the big challenges for nitrate removal. In this study, a novel zeolitic imidazolate framework-8 film engineered bismuth nanosheet electrocatalyst (ZIF-8/Bi-CC) was designed and synthesized for the electrochemical reduction of nitrate. The water contact angle and electrochemical tests demonstrated that the construction of the hydrophobic ZIF-8 film effectively weakened the competition of HER. And the nitrate removal efficiency and ammonium selectivity increased by 25.9% and 34.2% respectively after bismuth nanosheets were embedded into the ZIF-8 film. Besides, the bismuth concentration detection results indicated that the ZIF-8 film as the protective shell could effectively prevent the leaching of bismuth into the solution. More importantly, the final nitrate removal rate of ZIF-8/Bi-CC was close to 90% after 5 h when treating actual garbage fly ash wastewater, the NITRR efficiency stability and the obtained product were confirmed by five electrochemical cycles. The metal-organic framework film engineered electrocatalyst is a promising strategy for designing a new catalyst for the removal of nitrate in industrial wastewater.
Collapse
Affiliation(s)
- Miao Chen
- National Engineering Research Center for Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | |
Collapse
|