1
|
Tariq F, Ahrens L, Alygizakis NA, Audouze K, Benfenati E, Carvalho PN, Chelcea I, Karakitsios S, Karakoltzidis A, Kumar V, Mora Lagares L, Sarigiannis D, Selvestrel G, Taboureau O, Vorkamp K, Andersson PL. Computational Tools to Facilitate Early Warning of New Emerging Risk Chemicals. TOXICS 2024; 12:736. [PMID: 39453156 PMCID: PMC11511557 DOI: 10.3390/toxics12100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Innovative tools suitable for chemical risk assessment are being developed in numerous domains, such as non-target chemical analysis, omics, and computational approaches. These methods will also be critical components in an efficient early warning system (EWS) for the identification of potentially hazardous chemicals. Much knowledge is missing for current use chemicals and thus computational methodologies complemented with fast screening techniques will be critical. This paper reviews current computational tools, emphasizing those that are accessible and suitable for the screening of new and emerging risk chemicals (NERCs). The initial step in a computational EWS is an automatic and systematic search for NERCs in literature and database sources including grey literature, patents, experimental data, and various inventories. This step aims at reaching curated molecular structure data along with existing exposure and hazard data. Next, a parallel assessment of exposure and effects will be performed, which will input information into the weighting of an overall hazard score and, finally, the identification of a potential NERC. Several challenges are identified and discussed, such as the integration and scoring of several types of hazard data, ranging from chemical fate and distribution to subtle impacts in specific species and tissues. To conclude, there are many computational systems, and these can be used as a basis for an integrated computational EWS workflow that identifies NERCs automatically.
Collapse
Affiliation(s)
- Farina Tariq
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden;
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), 756 51 Uppsala, Sweden;
| | - Nikiforos A. Alygizakis
- Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Karine Audouze
- University Paris Cité, INSERM U1124, 75006 Paris, France; (K.A.); (O.T.)
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (E.B.); (G.S.)
| | - Pedro N. Carvalho
- Department of Environmental Science, Aarhus University, 8000 Roskilde, Denmark; (P.N.C.); (K.V.)
| | - Ioana Chelcea
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden;
- Department of Chemical and Pharmaceutical Safety, Research Institutes of Sweden (RISE), 103 33 Stockholm, Sweden
| | - Spyros Karakitsios
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.); (A.K.); (D.S.)
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Achilleas Karakoltzidis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.); (A.K.); (D.S.)
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vikas Kumar
- Environmental Analysis and Management Using Computer Aided Process Engineering (AGACAPE), Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43204 Reus, Spain;
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Liadys Mora Lagares
- Laboratory for Cheminformatics, Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia;
| | - Dimosthenis Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.); (A.K.); (D.S.)
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- National Hellenic Research Foundation, 11635 Athens, Greece
- University School of Advanced Study IUSS, 27100 Pavia, Italy
| | - Gianluca Selvestrel
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (E.B.); (G.S.)
| | - Olivier Taboureau
- University Paris Cité, INSERM U1124, 75006 Paris, France; (K.A.); (O.T.)
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, 8000 Roskilde, Denmark; (P.N.C.); (K.V.)
| | | |
Collapse
|
2
|
Lohmann R, Abass K, Bonefeld-Jørgensen EC, Bossi R, Dietz R, Ferguson S, Fernie KJ, Grandjean P, Herzke D, Houde M, Lemire M, Letcher RJ, Muir D, De Silva AO, Ostertag SK, Rand AA, Søndergaard J, Sonne C, Sunderland EM, Vorkamp K, Wilson S, Weihe P. Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176274. [PMID: 39304148 DOI: 10.1016/j.scitotenv.2024.176274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014-2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.
Collapse
Affiliation(s)
- Rainer Lohmann
- University of Rhode Island, Graduate School of Oceanography, South Ferry Road, Narragansett, RI 02882, USA.
| | - Khaled Abass
- University of Sharjah, College of Health Sciences, Department of Environmental Health Sciences, The United Arab Emirates; University of Oulu, Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, Finland
| | - Eva Cecilie Bonefeld-Jørgensen
- Aarhus University, Center for Arctic Health and Molecular Epidemiology, Department of Public Health, DK-8000 Aarhus C, Denmark; University of Greenland, Greenland Center for Health Research, GL-3905 Nuuk, Greenland
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Steve Ferguson
- Fisheries and Oceans Canada, Arctic Region, Winnipeg, MB R3T 2N6, Canada
| | - Kim J Fernie
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | - Philippe Grandjean
- University of Rhode Island, College of Pharmacy, Kingston, RI 02881, USA; University of Southern Denmark, Department of Public Health, DK-5230 Odense, Denmark
| | - Dorte Herzke
- The Norwegian Institute of Public Health, Division of Climate and Environmental Health, P.O.Box 222, Skøyen 0213, Oslo, Norway; Norwegian Institute for Air Research, Hjalmar Johansen gt 14 9006 Tromsø, Norway
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Mélanie Lemire
- Université Laval, Centre de recherche du CHU de Québec, Département de médecine sociale et préventive & Institut de biologie intégrative et des systèmes, 1030 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Carleton University, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada
| | - Derek Muir
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Amila O De Silva
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Sonja K Ostertag
- University of Waterloo, School of Public Health, 200 University Ave W, Waterloo, Ontario, Canada
| | - Amy A Rand
- Carleton University, Department of Chemistry, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Jens Søndergaard
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Elsie M Sunderland
- Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United States
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606 Stakkevollan, 9296 Tromsø, Norway
| | - Pal Weihe
- The National Hospital of the Faroe Islands, Department of Research, Sigmundargøta 5, FO-100 Torshavn, The Faroe Islands; University of the Faroe Islands, Center of Health Science, Torshavn, The Faroe Islands.
| |
Collapse
|
3
|
Starnes HM, Jackson TW, Rock KD, Belcher SM. Quantitative cross-species comparison of serum albumin binding of per- and polyfluoroalkyl substances from five structural classes. Toxicol Sci 2024; 199:132-149. [PMID: 38518100 PMCID: PMC11057469 DOI: 10.1093/toxsci/kfae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of over 8000 chemicals, many of which are persistent, bioaccumulative, and toxic to humans, livestock, and wildlife. Serum protein binding affinity is instrumental in understanding PFAS toxicity, yet experimental binding data is limited to only a few PFAS congeners. Previously, we demonstrated the usefulness of a high-throughput, in vitro differential scanning fluorimetry assay for determination of relative binding affinities of human serum albumin for 24 PFAS congeners from 6 chemical classes. In the current study, we used this assay to comparatively examine differences in human, bovine, porcine, and rat serum albumin binding of 8 structurally informative PFAS congeners from 5 chemical classes. With the exception of the fluorotelomer alcohol 1H, 1H, 2H, 2H-perfluorooctanol (6:2 FTOH), each PFAS congener bound by human serum albumin was also bound by bovine, porcine, and rat serum albumin. The critical role of the charged functional headgroup in albumin binding was supported by the inability of albumin of each species tested to bind 6:2 FTOH. Significant interspecies differences in serum albumin binding affinities were identified for each of the bound PFAS congeners. Relative to human albumin, perfluoroalkyl carboxylic and sulfonic acids were bound with greater affinity by porcine and rat serum albumin, and the perfluoroalkyl ether acid congener bound with lower affinity to porcine and bovine serum albumin. These comparative affinity data for PFAS binding by serum albumin from human, experimental model, and livestock species reduce critical interspecies uncertainty and improve accuracy of predictive bioaccumulation and toxicity assessments for PFAS.
Collapse
Affiliation(s)
- Hannah M Starnes
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Thomas W Jackson
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Kylie D Rock
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Scott M Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607, USA
| |
Collapse
|
4
|
Mao X, Liu Y, Wei Y, Li X, Liu Y, Su G, Wang X, Jia J, Yan B. Threats of per- and poly-fluoroalkyl pollutants to susceptible populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171188. [PMID: 38395163 DOI: 10.1016/j.scitotenv.2024.171188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Environmental exposure to per- and poly-fluoroalkyl substances (PFAS) has raised significant global health concerns due to potential hazards in healthy adults. However, the impact of PFAS on susceptible populations, including pregnant individuals, newborns, the older people, and those with underlying health conditions, has been overlooked. These susceptible groups often have physiological changes that make them less resilient to the same exposures. Consequently, there is an urgent need for a comprehensive understanding of the health risks posed by PFAS exposure to these populations. In this review, we delve into the potential health risks of PFAS exposure in these susceptible populations. Equally important, we also examine and discuss the molecular mechanisms that underlie this susceptibility. These mechanisms include the induction of oxidative stress, disruption of the immune system, impairment of cellular metabolism, and alterations in gut microbiota, all of which contribute to the enhanced toxicity of PFAS in susceptible populations. Finally, we address the primary research challenges and unresolved issues that require further investigation. This discussion aims to foster research for a better understanding of how PFAS affect susceptible populations and to pave the way for strategies to minimize their adverse effects.
Collapse
Affiliation(s)
- Xuan Mao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yujiao Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yongyi Wei
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaodi Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
5
|
Ratier A, Casas M, Grazuleviciene R, Slama R, Småstuen Haug L, Thomsen C, Vafeiadi M, Wright J, Zeman FA, Vrijheid M, Brochot C. Estimating the dynamic early life exposure to PFOA and PFOS of the HELIX children: Emerging profiles via prenatal exposure, breastfeeding, and diet. ENVIRONMENT INTERNATIONAL 2024; 186:108621. [PMID: 38593693 DOI: 10.1016/j.envint.2024.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
In utero and children's exposure to per- and polyfluoroalkyl substances (PFAS) is a major concern in health risk assessment as early life exposures are suspected to induce adverse health effects. Our work aims to estimate children's exposure (from birth to 12 years old) to PFOA and PFOS, using a Physiologically-Based Pharmacokinetic (PBPK) modelling approach. A model for PFAS was updated to simulate the internal PFAS exposures during the in utero life and childhood, and including individual characteristics and exposure scenarios (e.g., duration of breastfeeding, weight at birth, etc.). Our approach was applied to the HELIX cohort, involving 1,239 mother-child pairs with measured PFOA and PFOS plasma concentrations at two sampling times: maternal and child plasma concentrations (6 to 12 y.o). Our model predicted an increase in plasma concentrations during fetal development and childhood until 2 y.o when the maximum concentrations were reached. Higher plasma concentrations of PFOA than PFOS were predicted until 2 y.o, and then PFOS concentrations gradually became higher than PFOA concentrations. From 2 to 8 y.o, mean concentrations decreased from 3.1 to 1.88 µg/L or ng/mL (PFOA) and from 4.77 to 3.56 µg/L (PFOS). The concentration-time profiles vary with the age and were mostly influenced by in utero exposure (on the first 4 months after birth), breastfeeding (from 5 months to 2 (PFOA) or 5 (PFOS) y.o of the children), and food intake (after 3 (PFOA) or 6 (PFOS) y.o of the children). Similar measured biomarker levels can correspond to large differences in the simulated internal exposures, highlighting the importance to investigate the children's exposure over the early life to improve exposure classification. Our approach demonstrates the possibility to simulate individual internal exposures using PBPK models when measured biomarkers are scarce, helping risk assessors in gaining insight into internal exposure during critical windows, such as early life.
Collapse
Affiliation(s)
- Aude Ratier
- INERIS, Unit of Experimental Toxicology and Modelling, Verneuil-en-Halatte, France; PériTox Laboratory, UMR-I 01 INERIS, Université de Picardie Jules Verne, Amiens, France.
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Remy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, CNRS, Grenoble, France
| | - Line Småstuen Haug
- Norwegian Institute of Public Health, Department of Food Safety, Oslo, Norway
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, Department of Food Safety, Oslo, Norway
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Florence A Zeman
- INERIS, Unit of Experimental Toxicology and Modelling, Verneuil-en-Halatte, France
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Céline Brochot
- INERIS, Unit of Experimental Toxicology and Modelling, Verneuil-en-Halatte, France; Certara UK Ltd, Simcyp Division, Sheffield, UK
| |
Collapse
|
6
|
Golosovskaia E, Örn S, Ahrens L, Chelcea I, Andersson PL. Studying mixture effects on uptake and tissue distribution of PFAS in zebrafish (Danio rerio) using physiologically based kinetic (PBK) modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168738. [PMID: 38030006 DOI: 10.1016/j.scitotenv.2023.168738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously distributed in the aquatic environment. They include persistent, mobile, bioaccumulative, and toxic chemicals and it is therefore critical to increase our understanding on their adsorption, distribution, metabolism, excretion (ADME). The current study focused on uptake of seven emerging PFAS in zebrafish (Danio rerio) and their potential maternal transfer. In addition, we aimed at increasing our understanding on mixture effects on ADME by developing a physiologically based kinetic (PBK) model capable of handling co-exposure scenarios of any number of chemicals. All studied chemicals were taken up in the fish to varying degrees, whereas only perfluorononanoate (PFNA) and perfluorooctanoate (PFOA) were quantified in all analysed tissues. Perfluorooctane sulfonamide (FOSA) was measured at concerningly high concentrations in the brain (Cmax over 15 μg/g) but also in the liver and ovaries. All studied PFAS were maternally transferred to the eggs, with FOSA and 6:2 perfluorooctane sulfonate (6,2 FTSA) showing significant (p < 0.02) signs of elimination from the embryos during the first 6 days of development, while perfluorobutane sulfonate (PFBS), PFNA, and perfluorohexane sulfonate (PFHxS) were not eliminated in embryos during this time-frame. The mixture PBK model resulted in >85 % of predictions within a 10-fold error and 60 % of predictions within a 3-fold error. At studied levels of PFAS exposure, competitive binding was not a critical factor for PFAS kinetics. Gill surface pH influenced uptake for some carboxylates but not the sulfonates. The developed PBK model provides an important tool in understanding kinetics under complex mixture scenarios and this use of New Approach Methodologies (NAMs) is critical in future risk assessment of chemicals and early warning systems.
Collapse
Affiliation(s)
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Ioana Chelcea
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
7
|
Starnes HM, Jackson TW, Rock KD, Belcher SM. Quantitative Cross-Species Comparison of Serum Albumin Binding of Per- and Polyfluoroalkyl Substances from Five Structural Classes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566613. [PMID: 38014292 PMCID: PMC10680784 DOI: 10.1101/2023.11.10.566613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of over 8,000 chemicals that are persistent, bioaccumulative, and toxic to humans, livestock, and wildlife. Serum protein binding affinity is instrumental in understanding PFAS toxicity, yet experimental binding data is limited to only a few PFAS congeners. Previously, we demonstrated the usefulness of a high-throughput, in vitro differential scanning fluorimetry assay for determination of relative binding affinities of human serum albumin for 24 PFAS congeners from 6 chemical classes. In the current study, we used this differential scanning fluorimetry assay to comparatively examine differences in human, bovine, porcine, and rat serum albumin binding of 8 structurally informative PFAS congeners from 5 chemical classes. With the exception of the fluorotelomer alcohol 1H,1H,2H,2H-perfluorooctanol (6:2 FTOH), each PFAS congener bound by human serum albumin was also bound by bovine, porcine, and rat serum albumin. The critical role of the charged functional headgroup in albumin binding was supported by the inability of serum albumin of each species tested to bind 6:2 FTOH. Significant interspecies differences in serum albumin binding affinities were identified for each of the bound PFAS congeners. Relative to human albumin, perfluoroalkyl carboxylic and sulfonic acids were bound with greater affinity by porcine and rat serum albumin, and perfluoroalkyl ether congeners bound with lower affinity to porcine and bovine serum albumin. These comparative affinity data for PFAS binding by serum albumin from human, experimental model and livestock species reduce critical interspecies uncertainty and improve accuracy of predictive toxicity assessments for PFAS.
Collapse
Affiliation(s)
- Hannah M. Starnes
- Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27607, USA
| | - Thomas W. Jackson
- Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27607, USA
- Current address: Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Kylie D. Rock
- Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27607, USA
- Current address: Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Scott M. Belcher
- Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27607, USA
| |
Collapse
|
8
|
Chou WC, Tell LA, Baynes RE, Davis JL, Cheng YH, Maunsell FP, Riviere JE, Lin Z. Development and application of an interactive generic physiologically based pharmacokinetic (igPBPK) model for adult beef cattle and lactating dairy cows to estimate tissue distribution and edible tissue and milk withdrawal intervals for per- and polyfluoroalkyl substances (PFAS). Food Chem Toxicol 2023; 181:114062. [PMID: 37769896 DOI: 10.1016/j.fct.2023.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Humans can be exposed to per- and polyfluoroalkyl substances (PFAS) through dietary intake from milk and edible tissues from food animals. This study developed a physiologically based pharmacokinetic (PBPK) model to predict tissue and milk residues and estimate withdrawal intervals (WDIs) for multiple PFAS including PFOA, PFOS and PFHxS in beef cattle and lactating dairy cows. Results showed that model predictions were mostly within a two-fold factor of experimental data for plasma, tissues, and milk with an estimated coefficient of determination (R2) of >0.95. The predicted muscle WDIs for beef cattle were <1 day for PFOA, 449 days for PFOS, and 69 days for PFHxS, while the predicted milk WDIs in dairy cows were <1 day for PFOA, 1345 days for PFOS, and zero day for PFHxS following a high environmental exposure scenario (e.g., 49.3, 193, and 161 ng/kg/day for PFOA, PFOS, and PFHxS, respectively, for beef cattle for 2 years). The model was converted to a web-based interactive generic PBPK (igPBPK) platform to provide a user-friendly dashboard for predictions of tissue and milk WDIs for PFAS in cattle. This model serves as a foundation for extrapolation to other PFAS compounds to improve safety assessment of cattle-derived food products.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA.
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA.
| | - Yi-Hsien Cheng
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, 66506, USA; Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| | - Fiona P Maunsell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA.
| | - Jim E Riviere
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA; 1Data Consortium, Kansas State University, Olathe, KS, 66061, USA.
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA.
| |
Collapse
|
9
|
Bharti K, Deepika D, Kumar M, Jha A, Manjit, Akhilesh, Tiwari V, Kumar V, Mishra B. Development and Evaluation of Amorphous Solid Dispersion of Riluzole with PBPK Model to Simulate the Pharmacokinetic Profile. AAPS PharmSciTech 2023; 24:219. [PMID: 37891363 DOI: 10.1208/s12249-023-02680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
In the current work, screening of polymers viz. polyacrylic acid (PAA), polyvinyl pyrrolidone vinyl acetate (PVP VA), and hydroxypropyl methyl cellulose acetate succinate (HPMC AS) based on drug-polymer interaction and wetting property was done for the production of a stable amorphous solid dispersion (ASD) of a poorly water-soluble drug Riluzole (RLZ). PAA showed maximum interaction and wetting property hence, was selected for further studies. Solid state characterization studies confirmed the formation of ASD with PAA. Saturation solubility, dissolution profile, and in vivo pharmacokinetic data of the ASD formulation were generated in rats against its marketed tablet Rilutor. The RLZ:PAA ASD showed exponential enhancement in the dissolution of RLZ. Predicted and observed pharmacokinetic data in rats showed enhanced area under curve (AUC) and Cmax in plasma and brain with respect to Rilutor. Furthermore, a physiologically based pharmacokinetic (PBPK) model of rats for Rilutor and RLZ ASD was developed and then extrapolated to humans where physiological parameters were changed along with a biochemical parameter. The partition coefficient was kept similar in both species. The model was used to predict different exposure scenarios, and the simulated data was compared with observed data points. The PBPK model simulated Cmax and AUC was within two times the experimental data for plasma and brain. The Cmax and AUC in the brain increased with ASD compared to Rilutor for humans showing its potential in improving its biopharmaceutical performance and hence enhanced therapeutic efficacy. The model can predict the RLZ concentration in multiple compartments including plasma and liver.
Collapse
Affiliation(s)
- Kanchan Bharti
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Deepika Deepika
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
- Pere Virgili Health Research Institute (IISPV), Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Catalonia, Spain
| | - Manish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Manjit
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Akhilesh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
- Pere Virgili Health Research Institute (IISPV), Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Catalonia, Spain
- German Federal Institute for Risk Assessment (BfR), Department of Pesticides Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
10
|
Sharma RP, Burgers EJ, Beltman JB. Development of a Physiologically Based Pharmacokinetic Model for Nitrofurantoin in Rabbits, Rats, and Humans. Pharmaceutics 2023; 15:2199. [PMID: 37765169 PMCID: PMC10535763 DOI: 10.3390/pharmaceutics15092199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Nitrofurantoin (NFT) is a commonly used antibiotic for the treatment of urinary tract infections that can cause liver toxicity. Despite reports of hepatic adverse events associated with NFT exposure, there is still limited understanding of the interplay between NFT exposure, its disposition, and the risk of developing liver toxicity. In this study, we aim to develop a physiologically based pharmacokinetic (PBPK) model for NFT in three different species (rabbits, rats, and humans) that can be used as a standard tool for predicting drug-induced liver injury (DILI). We created several versions of the PBPK model using previously published kinetics data from rabbits, and integrated enterohepatic recirculation (EHR) using rat data. Our model showed that active tubular secretion and reabsorption in the kidney are critical in explaining the non-linear renal clearance and urine kinetics of NFT. We subsequently extrapolated the PBPK model to humans. Adapting the physiology to humans led to predictions consistent with human kinetics data, considering a low amount of NFT to be excreted into bile. Model simulations predicted that the liver of individuals with a moderate-to-severe glomerular filtration rate (GFR) is exposed to two-to-three-fold higher concentrations of NFT than individuals with a normal GFR, which coincided with a substantial reduction in the NFT urinary concentration. In conclusion, people with renal insufficiency may be at a higher risk of developing DILI due to NFT exposure, while at the same time having a suboptimal therapeutic effect with a high risk of drug resistance. Our PBPK model can in the future be used to predict NFT kinetics in individual patients on the basis of characteristics like age and GFR.
Collapse
Affiliation(s)
| | | | - Joost B. Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (R.P.S.); (E.J.B.)
| |
Collapse
|
11
|
Niu S, Cao Y, Chen R, Bedi M, Sanders AP, Ducatman A, Ng C. A State-of-the-Science Review of Interactions of Per- and Polyfluoroalkyl Substances (PFAS) with Renal Transporters in Health and Disease: Implications for Population Variability in PFAS Toxicokinetics. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:76002. [PMID: 37418334 DOI: 10.1289/ehp11885] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and have been shown to cause various adverse health impacts. In animals, sex- and species-specific differences in PFAS elimination half-lives have been linked to the activity of kidney transporters. However, PFAS molecular interactions with kidney transporters are still not fully understood. Moreover, the impact of kidney disease on PFAS elimination remains unclear. OBJECTIVES This state-of-the-science review integrated current knowledge to assess how changes in kidney function and transporter expression from health to disease could affect PFAS toxicokinetics and identified priority research gaps that should be addressed to advance knowledge. METHODS We searched for studies that measured PFAS uptake by kidney transporters, quantified transporter-level changes associated with kidney disease status, and developed PFAS pharmacokinetic models. We then used two databases to identify untested kidney transporters that have the potential for PFAS transport based on their endogenous substrates. Finally, we used an existing pharmacokinetic model for perfluorooctanoic acid (PFOA) in male rats to explore the influence of transporter expression levels, glomerular filtration rate (GFR), and serum albumin on serum half-lives. RESULTS The literature search identified nine human and eight rat kidney transporters that were previously investigated for their ability to transport PFAS, as well as seven human and three rat transporters that were confirmed to transport specific PFAS. We proposed a candidate list of seven untested kidney transporters with the potential for PFAS transport. Model results indicated PFOA toxicokinetics were more influenced by changes in GFR than in transporter expression. DISCUSSION Studies on additional transporters, particularly efflux transporters, and on more PFAS, especially current-use PFAS, are needed to better cover the role of transporters across the PFAS class. Remaining research gaps in transporter expression changes in specific kidney disease states could limit the effectiveness of risk assessment and prevent identification of vulnerable populations. https://doi.org/10.1289/EHP11885.
Collapse
Affiliation(s)
- Shan Niu
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuexin Cao
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruiwen Chen
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Megha Bedi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison P Sanders
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan Ducatman
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Carla Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Deepika D, Sharma RP, Schuhmacher M, Kumar V. Development of a Rat Physiologically Based Kinetic Model (PBK) for three Organophosphate Flame Retardants (TDCIPP, TCIPP, TCEP). Toxicol Lett 2023:S0378-4274(23)00206-0. [PMID: 37356742 DOI: 10.1016/j.toxlet.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), Tris (1-chloro-2-propyl) phosphate (TCIPP) and tris (2-chloroethyl) phosphate (TCEP) are three widely used organophosphate flame retardants (OPFRs) being frequently detected in human body fluids. Although OPFRs are being detected in human beings, the toxicological effects of their exposure are not clearly understood due to limited data. For this, a physiologically based kinetic model (PBK) was developed in MCSIM integrated with R studio and validated in rats to understand the toxicokinetics of OPFRs for the first time. The model required the enterohepatic recirculation (EHR) mechanism which was included to explain the non-linear data. Model parameters were optimized using the Bayesian framework (Markov Chain Monte Carlo) along with a visual fitting to explain toxicokinetic data. Goodness-of-fit was calculated to evaluate model predictability power in Rstudio. The model can appropriately predict the concentration of OPFRs in several organs like plasma, urine, kidney, etc. within 1-2-fold of experimental data. Slow elimination of OPFRs was observed from adipose tissue and brain at late time points, showing their potential to accumulate upon daily exposure. The use of PBK was demonstrated by reconstructing the oral exposure equivalent to the in-vitro toxic dose to support neurotoxic risk assessment. This version of PBK can be extrapolated to human for toxicological risk assessment. Nonetheless, further investigation is required to understand whether these chemicals follow similar kinetics in humans, which could lead to a greater risk to human health. CODE AVAILABILITY: The model will be available to access through Rshiny using GIThub soon, InSilicoVida/Flame-Retardant-PBPK-Model: It contains organophosphate flame retardant (OPFRs) PBK for TDCIPP, TCIPP and TCEP (github.com).
Collapse
Affiliation(s)
- Deepika Deepika
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Raju Prasad Sharma
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
13
|
Deepika D, Kumar V. The Role of "Physiologically Based Pharmacokinetic Model (PBPK)" New Approach Methodology (NAM) in Pharmaceuticals and Environmental Chemical Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3473. [PMID: 36834167 PMCID: PMC9966583 DOI: 10.3390/ijerph20043473] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Physiologically Based Pharmacokinetic (PBPK) models are mechanistic tools generally employed in the pharmaceutical industry and environmental health risk assessment. These models are recognized by regulatory authorities for predicting organ concentration-time profiles, pharmacokinetics and daily intake dose of xenobiotics. The extension of PBPK models to capture sensitive populations such as pediatric, geriatric, pregnant females, fetus, etc., and diseased populations such as those with renal impairment, liver cirrhosis, etc., is a must. However, the current modelling practices and existing models are not mature enough to confidently predict the risk in these populations. A multidisciplinary collaboration between clinicians, experimental and modeler scientist is vital to improve the physiology and calculation of biochemical parameters for integrating knowledge and refining existing PBPK models. Specific PBPK covering compartments such as cerebrospinal fluid and the hippocampus are required to gain mechanistic understanding about xenobiotic disposition in these sub-parts. The PBPK model assists in building quantitative adverse outcome pathways (qAOPs) for several endpoints such as developmental neurotoxicity (DNT), hepatotoxicity and cardiotoxicity. Machine learning algorithms can predict physicochemical parameters required to develop in silico models where experimental data are unavailable. Integrating machine learning with PBPK carries the potential to revolutionize the field of drug discovery and development and environmental risk. Overall, this review tried to summarize the recent developments in the in-silico models, building of qAOPs and use of machine learning for improving existing models, along with a regulatory perspective. This review can act as a guide for toxicologists who wish to build their careers in kinetic modeling.
Collapse
Affiliation(s)
- Deepika Deepika
- Environmental Engineering Laboratory, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
- Pere Virgili Health Research Institute (IISPV), Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43204 Reus, Catalonia, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
- Pere Virgili Health Research Institute (IISPV), Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43204 Reus, Catalonia, Spain
| |
Collapse
|
14
|
Deepika D, Sharma RP, Schuhmacher M, Sakhi AK, Thomsen C, Chatzi L, Vafeiadi M, Quentin J, Slama R, Grazuleviciene R, Andrušaitytė S, Waiblinger D, Wright J, Yang TC, Urquiza J, Vrijheid M, Casas M, Domingo JL, Kumar V. Unravelling sex-specific BPA toxicokinetics in children using a pediatric PBPK model. ENVIRONMENTAL RESEARCH 2022; 215:114074. [PMID: 35995217 DOI: 10.1016/j.envres.2022.114074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a widely known endocrine disruptor (ED) found in many children's products such as toys, feeding utensils, and teething rings. Recent epidemiology association studies have shown postnatal BPA exposure resulted in developing various diseases such as diabetes, obesity, and neurodegeneration, etc., later in their lives. However, little is known about its sex-specific metabolism and consequently internal exposure. The aim of this study was to develop a sex-specific pediatric physiologically based pharmacokinetic model (PBPK) for BPA to compare their toxicokinetic differences. First, the published adult PBPK model was re-validated, and then this model was extended by interpolation to incorporate pediatric sex specific physiological and biochemical parameters. We used both the classical body weight and ontogeny-based scaling approach to interpolate the metabolic process. Then, the pharmacokinetic attributes of the models using the two-scaling approach mentioned above were compared with adult model. Further, a sex-specific PBPK model with an ontogeny scaling approach was preferred to evaluate the pharmacokinetic differences. Moreover, this model was used to reconstruct the BPA exposure from two cohorts (Helix and PBAT Cohort) from 7 EU countries. The half-life of BPA was found to be almost the same in boys and girls at the same exposure levels. Our model estimated BPA children's exposure to be about 1500 times higher than the tolerable daily intake (TDI) recently set by European Food Safety Authority (EFSA) i.e., 0.04 ng/kg BW/day. The model demonstrated feasibility of extending the adult PBPK to sex-specific pediatric, thus investigate a gender-specific health risk assessment.
Collapse
Affiliation(s)
- Deepika Deepika
- Environmental Engineering Laboratory, Departament D' Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Raju Prasad Sharma
- Environmental Engineering Laboratory, Departament D' Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament D' Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | | | | | - Leda Chatzi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Joane Quentin
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, CNRS, Grenoble, France
| | - Remy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, CNRS, Grenoble, France
| | | | - Sandra Andrušaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Dagmar Waiblinger
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Jose Urquiza
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Reus, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament D' Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
15
|
Deepika D, Rovira J, Sabuz Ó, Balaguer J, Schuhmacher M, Domingo JL, Kumar V. Framework for risk assessment of PFAS utilizing experimental studies and in-silico models. ENVIRONMENTAL RESEARCH 2022; 208:112722. [PMID: 35026182 DOI: 10.1016/j.envres.2022.112722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Perfluoroalkyl substances (PFAS), especially PFOS and PFOA, are two widely used synthetic chemicals that can impact human health based on evidence from animal and epidemiologic studies. In this paper, we have reviewed and summarized the influence of PFAS exposure on health, pointing the quality of evidence, and applied translational techniques to integrate evidence for PFAS policy making. This is the first review where highly referred articles on PFAS used for policymaking by several regulatory agencies were collected and evaluated based on the review guidelines developed by the US National Toxicology Program's Office of Health Assessment and Translation (OHAT) review guidelines. Several limitations were observed, including co-exposure to multiple chemicals and limited measurement of primary and secondary outcomes related to specific toxicity. However, data from all the studies provided a moderate to strong level of confidence for link between PFAS exposure and different adverse outcomes. Secondly, for translating the risk to humans, an in-silico model and scaling approach was utilized. Physiologically based pharmacokinetic model (PBPK) was used to calculate the human equivalent dose (HED) from two widely accepted studies and compared with tolerable daily intakes (TDIs) established by various regulatory agencies. Inter-species dose extrapolation was done to compare with human the relevance of dosing scenarios used in animals. Overall, a framework for translation of risk was proposed based on the conclusions of this review with the goal of improving policymaking. The current paper can improve the methodological protocols for PFAS experimental studies and encourage the utilization of in-silico models for translating risk.
Collapse
Affiliation(s)
- Deepika Deepika
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Óscar Sabuz
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Jordina Balaguer
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
16
|
Physiologically based pharmacokinetic (PBPK) modeling of perfluorohexane sulfonate (PFHxS) in humans. Regul Toxicol Pharmacol 2021; 129:105099. [PMID: 34933042 DOI: 10.1016/j.yrtph.2021.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/11/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent, man-made compounds prevalent in the environment and consistently identified in human biomonitoring samples. In particular, perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonic acid (PFHxS) have been identified at U.S. Air Force installations. The study of human toxicokinetics and physiologically based pharmacokinetic (PBPK) modeling of PFHxS has been less robust and has been limited in scope and application as compared to PFOS and PFOA. The primary goal of the current effort was to develop a PBPK model describing PFHxS disposition in humans that can be applied to retrospective, current, and future human health risk assessment of PFHxS. An existing model developed for PFOS and PFOA was modified and key parameter values for exposure and toxicokinetics were calibrated for PFHxS prediction based on human biomonitoring data, particularly general population serum levels from the U.S. Centers for Disease Prevention and Control (CDC) National Health and Nutrition Examination Survey (NHANES). Agreement between the model and the calibration and evaluation data was excellent and recapitulated observed trends across sex, age, and calendar years. Confidence in the model is greatest for application to adults in the 2000-2018 time frame and for shorter-term future projections.
Collapse
|