1
|
Huang HJ, Zhang X, Sun XW, Chen B, Li XT, Zhou N, Abdugheni R, Cheng QY, Zhang TJ, Liu Y, Jiang Y, Deng Y, Liu SJ, Jiang CY. Xiashengella succiniciproducens gen. nov., sp. nov., a succinate-producing bacterium isolated from an anaerobic digestion tank in the family Marinilabiliaceae of the order Bacteroidales. Arch Microbiol 2024; 206:141. [PMID: 38441685 DOI: 10.1007/s00203-024-03909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/26/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
A strictly anaerobic, motile bacterium, designated as strain Ai-910T, was isolated from the sludge of an anaerobic digestion tank in China. Cells were Gram-stain-negative rods. Optimal growth was observed at 38 °C (growth range 25-42 °C), pH 8.5 (growth range 5.5-10.5), and under a NaCl concentration of 0.06% (w/v) (range 0-2.0%). Major cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The respiratory quinone was MK-7. Using xylose as the growth substrate, succinate was produced as the fermentation product. Phylogenetic analysis based on the 16 S rRNA gene sequences indicated that strain Ai-910T formed a distinct phylogenetic lineage that reflects a new genus in the family Marinilabiliaceae, sharing high similarities to Alkaliflexus imshenetskii Z-7010T (92.78%), Alkalitalea saponilacus SC/BZ-SP2T (92.51%), and Geofilum rubicundum JAM-BA0501T (92.36%). Genomic similarity (average nucleotide identity and digital DNA-DNA hybridization) values between strain Ai-910T and its phylogenetic neighbors were below 65.27 and 16.90%, respectively, indicating that strain Ai-910T represented a novel species. The average amino acid identity between strain Ai-910T and other related members of the family Marinilabiliaceae were below 69.41%, supporting that strain Ai-910T was a member of a new genus within the family Marinilabiliaceae. Phylogenetic, genomic, and phenotypic analysis revealed that strain Ai-910T was distinguished from other phylogenetic relatives within the family Marinilabiliaceae. The genome size was 3.10 Mbp, and the DNA G + C content of the isolate was 42.8 mol%. Collectively, differences of the phenotypic and phylogenetic features of strain Ai-910T from its close relatives suggest that strain Ai-910T represented a novel species in a new genus of the family Marinilabiliaceae, for which the name Xiashengella succiniciproducens gen. nov., sp. nov. was proposed. The type strain of Xiashengella succiniciproducens is Ai-910T (= CGMCC 1.17893T = KCTC 25,304T).
Collapse
Affiliation(s)
- Hao-Jie Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China
| | - Xi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Wei Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China
| | - Biao Chen
- Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiu-Tong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rashidin Abdugheni
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu-Yin Cheng
- Beijing Drainage Group Co., Ltd, Beijing, 100044, China
| | - Tie-Jun Zhang
- Beijing Drainage Group Co., Ltd, Beijing, 100044, China
| | - Yao Liu
- Beijing Drainage Group Co., Ltd, Beijing, 100044, China
| | - Yong Jiang
- Beijing Drainage Group Co., Ltd, Beijing, 100044, China
| | - Ye Deng
- IMCAS-RCEES Joint Lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China.
- IMCAS-RCEES Joint Lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- IMCAS-RCEES Joint Lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
2
|
Gao X, Zhang J, Liu G, Kong Y, Li Y, Li G, Luo Y, Wang G, Yuan J. Enhancing the transformation of carbon and nitrogen organics to humus in composting: Biotic and abiotic synergy mediated by mineral material. BIORESOURCE TECHNOLOGY 2024; 393:130126. [PMID: 38036150 DOI: 10.1016/j.biortech.2023.130126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
To investigate the conversion of carbon and nitrogen organic matter to humus mediated by mineral material additives through biotic and abiotic pathways, three chicken manure composting experiments were conducted using calcium superphosphate (CS) and fly ash (FA). Results showed that CS and FA promoted carbon and nitrogen organic degradation and improved compost maturity. The ratio of humic acid-like to fulvic acid-like substances for FA (30) was significantly higher than for control (18) and CS (13). Excitation-emission-matrix spectra and parallel factor analysis identified a higher transformation of protein-like components into humic-like components in FA. Network analysis showed that CS improved compost maturity by promoting the rapid conversion of humus precursors to humus, while FA increased the richness and diversity of the microbial community, such as Chloroflexi, the unique phylum in FA. Overall, CS and FA facilitated the humification process through abiotic and biotic pathways, and FA had better humification performance.
Collapse
Affiliation(s)
- Xia Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Jing Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Guoliang Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Yun Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Yiming Luo
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China.
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| |
Collapse
|
3
|
Lu P, Bai R, Gao T, Chen J, Jiang K, Zhu Y, Lu Y, Zhang S, Xu F, Zhao H. Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production. Appl Microbiol Biotechnol 2024; 108:146. [PMID: 38240862 PMCID: PMC10798932 DOI: 10.1007/s00253-023-12911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 01/22/2024]
Abstract
2,3-Butanediol (2,3-BDO) is an important gateway molecule for many chemical derivatives. Currently, microbial production is gradually being recognized as a green and sustainable alternative to petrochemical synthesis, but the titer, yield, and productivity of microbial 2,3-BDO remain suboptimal. Here, we used systemic metabolic engineering strategies to debottleneck the 2,3-BDO production in Enterobacter aerogenes. Firstly, the pyruvate metabolic network was reconstructed by deleting genes for by-product synthesis to improve the flux toward 2,3-BDO synthesis, which resulted in a 90% increase of the product titer. Secondly, the 2,3-BDO productivity of the IAM1183-LPCT/D was increased by 55% due to the heterologous expression of DR1558 which boosted cell resistance to abiotic stress. Thirdly, carbon sources were optimized to further improve the yield of target products. The IAM1183-LPCT/D showed the highest titer of 2,3-BDO from sucrose, 20% higher than that from glucose, and the yield of 2,3-BDO reached 0.49 g/g. Finally, the titer of 2,3-BDO of IAM1183-LPCT/D in a 5-L fermenter reached 22.93 g/L, 85% higher than the wild-type strain, and the titer of by-products except ethanol was very low. KEY POINTS: Deletion of five key genes in E. aerogenes improved 2,3-BDO production The titer of 2,3-BDO was increased by 90% by regulating metabolic flux Response regulator DR1558 was expressed to increase 2,3-BDO productivity.
Collapse
Affiliation(s)
- Ping Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruoxuan Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ting Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiale Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ke Jiang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yalun Zhu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ye Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuting Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fangxu Xu
- Liaoning Province Key Laboratory of Cordyceps Militaris With Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Qin W, Xiao Q, Hong M, Yang J, Song Y, Ma J. Nano manganese dioxide coupling carbon source preloading granular activated carbon biofilter enhancing biofilm formation and pollutant removal. ENVIRONMENTAL RESEARCH 2024; 241:117606. [PMID: 37951378 DOI: 10.1016/j.envres.2023.117606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
The formation of stable and mature biofilms affects the efficient and stable removal of ammonium by biological activated carbon (BAC). In this study, the new granular activated carbon (GAC) was preloaded with the carbon source (glucose and sucrose) and nano manganese dioxide (nMnO2) before using. Then tests were performed to determine whether substrate preloading promoted ammonium removal. The ammonium removal treated by nMnO2 coupled with sucrose-loaded BAC reached 49.1 ± 2.5%, which was 1.7 times higher than that by the nonloaded BAC 28.2 ± 1.9%). The biomass on the substrate-loaded BAC reached 5.83 × 106-1.22 × 107 cells/g DW GAC on Day 7, which was 4.6-9.5 times higher than the value of the nonloaded BAC (1.28 × 106 cells/g DW GAC). The amount of extracellular polymer (i.e., protein) on nMnO2 coupled to sucrose-loaded BAC was promoted significantly. Flavobacterium (0.7%-11%), Burkholderiaceae (13%-20%) and Aquabacterium (30%-67%) were the dominant functional bacteria on the substrate-loaded BAC, which were conducive to the nitrification or denitrification process. The results indicated that loading nMnO2 and/or a carbon source accelerated the formation of biofilms on BAC and ammonium removal. Additionally, the ammonium removal treated by nMnO2 coupled with sucrose-loaded BAC was contributed by microbial degradation (56.0 ± 2.5%), biofilm adsorption (38.7 ± 2.1%) and GAC adsorption (5.3 ± 0.3%), suggesting a major role of microbial degradation.
Collapse
Affiliation(s)
- Wen Qin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qiurong Xiao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Miaoqing Hong
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jingru Yang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Zhao M, Li C, Zhang C, Zhao Y, Wang X, Cao B, Xu L, Zhang J, Wang J, Zuo Q, Chen Y, Zou G. Under flooding conditions, controlled-release fertiliser coated microplastics affect the growth and accumulation of cadmium in rice by increasing the fluidity of cadmium and interfering with metabolic pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166434. [PMID: 37598965 DOI: 10.1016/j.scitotenv.2023.166434] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The combined pollution of microplastics (MPs) and Cd can affect plant growth and development and Cd accumulation, with most studies focusing on dryland soil. However, the effects of polyurethane (PU) controlled-release fertiliser coated MPs (PU MPs), which widely exist in rice systems, coupled with Cd on plant growth and Cd accumulation under flooding conditions are still unknown. Therefore, in the present study, in situ techniques were used to systematically study the effects of PU MPs and Cd coupling on the physiological and biochemical performance, metabolomics characteristics, rhizosphere bacterial community, and Cd bioavailability of rice in different soil types (red soil/cinnamon soil). The results showed that the effects of PU MPs on rice growth and Cd accumulation were concentration-dependent, especially in red soil. High PU concentration (1 %) inhibited rice root growth significantly (44 %). The addition of PU MPs inhibited photosynthetically active radiation, net photosynthesis, and transpiration rate of rice, mainly with low concentration (0.1 %) in red soil and high concentration (1 %) in cinnamon soil. PU MPs can enhance the expression of Cd resistance genes (cadC and copA) in soil, enhance the mobility of Cd, and affect the metabolic pathways of metabolites in the rhizosphere soil (red soil: fatty acid metabolism; cinnamon soil: amino acid degradation, heterobiodegradation, and nucleotide metabolism) to promote Cd absorption in rice. Especially in red soil, Cd accumulation in the root and aboveground parts of rice after the addition of high concentration PU (1 %) was 1.7 times and 1.3 times, respectively, that of the control (p < 0.05). Simultaneously, microorganisms can affect rice growth and Cd bioavailability by affecting functional bacteria related to carbon, iron, sulfur, and manganese. The results of the present study provide novel insights into the potential effects of PU MPs coupled with Cd on plants, rhizosphere bacterial communities, and Cd bioavailability.
Collapse
Affiliation(s)
- Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Congping Li
- Qujing City Agricultural Environmental Protection Monitoring Station, Yunnan 655000, China
| | - Cheng Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yujie Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xuexia Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bing Cao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiajia Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiachen Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiang Zuo
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
6
|
Kostešić E, Mitrović M, Kajan K, Marković T, Hausmann B, Orlić S, Pjevac P. Microbial Diversity and Activity of Biofilms from Geothermal Springs in Croatia. MICROBIAL ECOLOGY 2023; 86:2305-2319. [PMID: 37209180 PMCID: PMC10640420 DOI: 10.1007/s00248-023-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Hot spring biofilms are stable, highly complex microbial structures. They form at dynamic redox and light gradients and are composed of microorganisms adapted to the extreme temperatures and fluctuating geochemical conditions of geothermal environments. In Croatia, a large number of poorly investigated geothermal springs host biofilm communities. Here, we investigated the microbial community composition of biofilms collected over several seasons at 12 geothermal springs and wells. We found biofilm microbial communities to be temporally stable and highly dominated by Cyanobacteria in all but one high-temperature sampling site (Bizovac well). Of the physiochemical parameters recorded, temperature had the strongest influence on biofilm microbial community composition. Besides Cyanobacteria, the biofilms were mainly inhabited by Chloroflexota, Gammaproteobacteria, and Bacteroidota. In a series of incubations with Cyanobacteria-dominated biofilms from Tuhelj spring and Chloroflexota- and Pseudomonadota-dominated biofilms from Bizovac well, we stimulated either chemoorganotrophic or chemolithotrophic community members, to determine the fraction of microorganisms dependent on organic carbon (in situ predominantly produced via photosynthesis) versus energy derived from geochemical redox gradients (here simulated by addition of thiosulfate). We found surprisingly similar levels of activity in response to all substrates in these two distinct biofilm communities, and observed microbial community composition and hot spring geochemistry to be poor predictors of microbial activity in the study systems.
Collapse
Affiliation(s)
- Ema Kostešić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maja Mitrović
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Katarina Kajan
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| | | | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Sandi Orlić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Wang B, Hu H, Huang S, Yuan H, Wang Y, Zhao T, Gong Z, Xu X. Simultaneous nitrate and sulfate biotransformation driven by different substrates: comparison of carbon sources and metabolic pathways at different C/N ratios. RSC Adv 2023; 13:19265-19275. [PMID: 37377876 PMCID: PMC10291280 DOI: 10.1039/d3ra02749j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
Nitrate (NO3-) and sulfate (SO42-) often coexist in organic wastewater. The effects of different substrates on NO3- and SO42- biotransformation pathways at various C/N ratios were investigated in this study. This study used an activated sludge process for simultaneous desulfurization and denitrification in an integrated sequencing batch bioreactor. The results revealed that the most complete removals of NO3- and SO42- were achieved at a C/N ratio of 5 in integrated simultaneous desulfurization and denitrification (ISDD). Reactor Rb (sodium succinate) displayed a higher SO42- removal efficiency (93.79%) with lower chemical oxygen demand (COD) consumption (85.72%) than reactor Ra (sodium acetate) on account of almost 100% removal of NO3- in both Ra and Rb. Ra produced more S2- (5.96 mg L-1) and H2S (25 mg L-1) than Rb, which regulated the biotransformation of NO3- from denitrification to dissimilatory nitrate reduction to ammonium (DNRA), whereas almost no H2S accumulated in Rb which can avoid secondary pollution. Sodium acetate-supported systems were found to favor the growth of DNRA bacteria (Desulfovibrio); although denitrifying bacteria (DNB) and sulfate-reducing bacteria (SRB) were found to co-exist in both systems, Rb has a greater keystone taxa diversity. Furthermore, the potential carbon metabolic pathways of the two carbon sources have been predicted. Both succinate and acetate could be generated in reactor Rb through the citrate cycle and the acetyl-CoA pathway. The high prevalence of four-carbon metabolism in Ra suggests that the carbon metabolism of sodium acetate is significantly improved at a C/N ratio of 5. This study has clarified the biotransformation mechanisms of NO3- and SO42- in the presence of different substrates and the potential carbon metabolism pathway, which is expected to provide new ideas for the simultaneous removal of NO3- and SO42- from different media.
Collapse
Affiliation(s)
| | - Heping Hu
- China Water Resources Pearl River Planning Surveying & Designing Co. Ltd China
| | | | | | | | | | - Zerui Gong
- South China University of Technology China
| | - Xinyue Xu
- South China University of Technology China
| |
Collapse
|
8
|
Liang Y, Li Z, Zhang B, Zhang Y, Ji S, Qiu G, Wu H, Wei C. Decryption for nitrogen removal in Anammox-based coupled systems: Nitrite-induced mechanisms. BIORESOURCE TECHNOLOGY 2023:129274. [PMID: 37290714 DOI: 10.1016/j.biortech.2023.129274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
This study investigated the effects of NO2- on synergetic interactions between Anammox bacteria (AnAOB) and sulfur-oxidizing bacteria (SOB) in an autotrophic denitrification-Anammox system. The presence of NO2- (0-75 mg-N/L) was shown to significantly enhance NH4+ and NO3- conversion rates, achieving intensified synergy between AnAOB and SOB. However, once NO2- exceed a threshold concentration (100 mg-N/L), both NH4+ and NO3- conversion rates decreased with increased NO2- consumption via autotrophic denitrification. The cooperation between AnAOB and SOB was decoupled due to the NO2- inhibition. Improved system reliability and nitrogen removal performance was achieved in a long-term reactor operation with NO2- in the influent; reverse transcription-quantitative polymerase chain reaction analysis showed elevated hydrazine synthase gene transcription levels (5.00-fold), comparing to these in the reactor without NO2-. This study elucidated the mechanism of NO2- induced synergetic interactions between AnAOB and SOB, providing theoretical guidance for engineering applications of Anammox-based coupled systems.
Collapse
Affiliation(s)
- Yitong Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Bin Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yushen Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Sijia Ji
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Wang Q, Li X, Liu W, Zhai S, Xu Q, Huan C, Nie S, Ouyang Q, Wang H, Wang A. Carbon source recovery from waste sludge reduces greenhouse gas emissions in a pilot-scale industrial wastewater treatment plant. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 14:100235. [PMID: 36660739 PMCID: PMC9843262 DOI: 10.1016/j.ese.2022.100235] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 05/13/2023]
Abstract
Carbon cycle regulation and greenhouse gas (GHG) emission abatement within wastewater treatment plants (WWTPs) can theoretically improve sustainability. Currently, however, large amounts of external carbon sources used for deep nitrogen removal and waste sludge disposal aggravate the carbon footprint of most WWTPs. In this pilot-scale study, considerable carbon was preliminarily recovered from primary sludge (PS) through short-term (five days) acidogenic fermentation and subsequently utilized on-site for denitrification in a wool processing industrial WWTP. The recovered sludge-derived carbon sources were excellent electron donors that could be used as additional carbon supplements for commercial glucose to enhance denitrification. Additionally, improvements in carbon and nitrogen flow further contributed to GHG emission abatement. Overall, a 9.1% reduction in sludge volatile solids was achieved from carbon recovery, which offset 57.4% of external carbon sources, and the indirect GHG emissions of the target industrial WWTP were reduced by 8.05%. This study demonstrates that optimizing the allocation of carbon mass flow within a WWTP has numerous benefits.
Collapse
Affiliation(s)
- Qiandi Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiqi Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wenzong Liu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
- Corresponding author.
| | - Siyuan Zhai
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Qiongying Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Chang'an Huan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Shichen Nie
- Shandong Shenshui Hynar Water Environmental Protection Co., Ltd., Shandong, 274000, PR China
| | - Qinghua Ouyang
- Shenshui Hynar Water Group Co., Ltd., Shenzhen, 518055, PR China
| | - Hongcheng Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Aijie Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
- Corresponding author. CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
10
|
Pan JJ, Tan LY, Fan QQ, Cao XY, Huang J, Gu YK, Chen TM. Effect of different carbon sources on sulfate reduction and microbial community structure in bioelectrochemical systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18312-18324. [PMID: 36207637 DOI: 10.1007/s11356-022-23487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Microbial electrolysis cells (MECs) have rapidly developed into a promising technology to treat sulfate-rich wastewater that lacks electron donors. Hence, a better understanding of the effect on the microbial community structure caused by different sources in bioelectrochemical systems is required. This study sought to investigate the effect of different carbon sources (NaHCO3, ethanol, and acetate were employed as sole carbon source respectively) on the performance of sulfate-reducing biocathodes. The sulfate reduction efficiency enhanced by the bioelectrochemical systems was 8.09 - 11.57% higher than that of open-circuit reference experiments. Furthermore, the optimum carbon source was ethanol with a maximum sulfate reduction rate of 170 mg L-1 d-1 in the bioelectrochemical systems. The different carbon sources induced significant differences in sulfate reduction efficiency as demonstrated by the application of a micro-electrical field. Microbial community structure and network analysis revealed that all three kinds of carbon source systems enriched large proportions of sulfate-reducing bacteria and electroactive bacteria but were significantly distinct in composition. The dominant sulfate-reducing bacteria that use NaHCO3 and acetate as carbon sources were Desulfobacter and Desulfobulbus, whereas those that use ethanol as carbon source were Desulfomicrobium and Desulfovibrio. Our results suggest that ethanol is a more suitable carbon source for sulfate reduction in bioelectrochemical systems.
Collapse
Affiliation(s)
- Jing-Jing Pan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 224051, China
| | - Lu-Yu Tan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 224051, China
| | - Qing-Qing Fan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 224051, China
| | - Xiang-Yang Cao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 224051, China
| | - Jun Huang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 224051, China
| | - Yu-Kang Gu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 224051, China
| | - Tian-Ming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 224051, China.
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
11
|
Liu C, Cheng K. Molasses fermentation to produce low-cost carbon source for denitrification. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2138781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Chang Liu
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, PR China
| | - Kai Cheng
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, PR China
| |
Collapse
|
12
|
Nguyen PM, Do PT, Pham YB, Doan TO, Nguyen XC, Lee WK, Nguyen DD, Vadiveloo A, Um MJ, Ngo HH. Roles, mechanism of action, and potential applications of sulfur-oxidizing bacteria for environmental bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158203. [PMID: 36044953 DOI: 10.1016/j.scitotenv.2022.158203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Sulfur (S) is a crucial component in the environment and living organisms. This work is the first attempt to provide an overview and critical discussion on the roles, mechanisms, and environmental applications of sulfur-oxidizing bacteria (SOB). The findings reveal that key enzymes of SOB embarked on oxidation of sulfide, sulfite, thiosulfate, and elemental S. Conversion of reduced S compounds was oxidatively catalyzed by various enzymes (e.g. sulfide: quinone oxidoreductase, flavocytochrome c-sulfide dehydrogenase, dissimilatory sulfite reductase, heterodisulfide reductase-like proteins). Environmental applications of SOB discussed include detoxifying hydrogen sulfide, soil bioremediation, and wastewater treatment. SOB producing S0 engaged in biological S soil amendments (e.g. saline-alkali soil remediation, the oxidation of sulfide-bearing minerals). Biotreatment of H2S using SOB occurred under both aerobic and anaerobic conditions. Sulfide, nitrate, and sulfamethoxazole were removed through SOB suspension cultures and S0-based carriers. Finally, this work presented future perspectives on SOB development, including S0 recovery, SOB enrichment, field measurement and identification of sulfur compounds, and the development of mathematical simulation.
Collapse
Affiliation(s)
- Phuong Minh Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Phuc Thi Do
- Faculty of Biology, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam; Key Laboratory of Enzyme and Protein Technology (KLEPT), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Yen Bao Pham
- Key Laboratory of Enzyme and Protein Technology (KLEPT), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Thi Oanh Doan
- Faculty of Environment, Ha Noi University of Natural Resources and Environment, No 41A, Phu Dien Street, Bac Tu Liem, Ha Noi, Vietnam
| | - Xuan Cuong Nguyen
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam.
| | - Woo Kul Lee
- Department of Chemical Engineering, Dankook University, 152 Jukjeonro, Yongin 16890, South Korea
| | - D Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City, 755414, Vietnam; Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Ashiwin Vadiveloo
- Algae R & D Centre, Environmental and Conservation Sciences, College of Science, Health, Engineering and Education, 90 South Street, Murdoch, WA 6150, Australia
| | - Myoung-Jin Um
- Department of Civil Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| |
Collapse
|
13
|
Zhang C, Li M, Sun J, Zhang S, Huang J. The mechanism of C-N-S interconnection degradation in organic-rich sediments by Ca(NO 3) 2 - CaO 2 synergistic remediation. ENVIRONMENTAL RESEARCH 2022; 214:113992. [PMID: 35921905 DOI: 10.1016/j.envres.2022.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The rebound of black-odorous occurred in organic-rich sediments has become a critical issue due to its great harm to the ecological environment. Elements such as S, C, and N play a crucial role in the biogeochemical cycle of black-odorous rivers. As electronic acceptors, Ca(NO3)2 and CaO2 can effectively remove acidified volatile sulfide (AVS) and organic matter to control the black-odorous rebound. However, the remediation mechanisms in organic-rich sediments by Ca(NO3)2 and CaO2 are unclear. The present study explored the mechanism of C-N-S interconnection degradation in organic-rich urban river sediments by adding different ratios and sequences of Ca(NO3)2 and CaO2. The results showed that Ca(NO3)2 remediation followed by CaO2 and the accepted electron ratio 1:1 of Ca(NO3)2 to CaO2 is an effective method for controlling the rebound of black-odorous and reducing the accumulation NO2--N. Mainly attributed to that, CaO2 enhanced the degradation of organic matter by stimulating enzymatic activities in the sediments, which is also the main reason for controlling the rebound of black-odorous. Since CaO2 releases O2 and •OH, which inhibit nosZgenes, NO2--N accumulates when remedied simultaneously with Ca(NO3)2 and CaO2. Co-occurrence network analysis illustrated that sulfur-driven autotrophic denitrification bacteria, heterotrophic denitrifying bacteria, and sulfate-reducing bacteria interact strongly inside one module, clarifying a solid interaction of C-N-S substances among these bacteria. Our results reveal the C-N-S interconnection degradation mechanism and provide a new perspective on applying biochemical remediation in organic-rich urban river sediments.
Collapse
Affiliation(s)
- Chao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Meng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China; North China Municipal Engineering Design & Research Institute Co, LTD, Tianjin, 300074, China
| | - Jingmei Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Shiwei Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Jianjun Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
14
|
Wang J, Chen P, Li S, Zheng X, Zhang C, Zhao W. Mutagenesis of high-efficiency heterotrophic nitrifying-aerobic denitrifying bacterium Rhodococcus sp. strain CPZ 24. BIORESOURCE TECHNOLOGY 2022; 361:127692. [PMID: 35905881 DOI: 10.1016/j.biortech.2022.127692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Breeding high-efficiency heterotrophic nitrifying-aerobic denitrifying (SND) bacteria is important for the removal of biological nitrogen in wastewater treatment. In this study, a high-efficiency SND mutant strain, ΔRhodococcus sp. CPZ 24, was obtained by ultraviolet-diethyl sulfate compound mutagenesis. The maximum nitrification and denitrification rates were 3.77 and 1.37 mg·L-1·h-1, respectively 30.30 % and 17.10 % higher than those of wild bacteria. Biolog technology and network model analysis revealed that ΔCPZ 24 significantly improved the utilisation ability and metabolic activity of organic carbon sources. Furthermore, the expression levels of the nitrogen removal function genes nxrA, nosZ, amoA, and norB in strain ΔCPZ 24 increased significantly. In actual sewage, mutant bacteria ΔCPZ 24 have a 95.05 % ammonia-nitrogen degradation rate and a 96.67 % nitrate-nitrogen degradation rate. These results suggested that UV-DES compound mutation was a successful strategy to improve the nitrogen removal performance of SND bacteria in wastewater treatment.
Collapse
Affiliation(s)
- Jingli Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Huazhong Agricultural University, Wuhan 430070, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Shaopeng Li
- Tianjin Agricultural University, Tianjin 300392, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wenjie Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
15
|
Wang J, Huang JJ, Zhou Y, Liao Y, Li S, Zhang B, Feng S. Synchronous N and P Removal in Carbon-Coated Nanoscale Zerovalent Iron Autotrophic Denitrification─The Synergy of the Carbon Shell and P Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13314-13326. [PMID: 36041071 DOI: 10.1021/acs.est.2c02376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fe0 is a promising electron donor for autotrophic denitrification in the simultaneous removal of nitrate and phosphorus in low C/N wastewater. However, P removal may inevitably inhibit bio-denitrification. It has not been well recognized and led to an overdose of iron materials. This study employed carbon-coated zerovalent iron (Fe0@C) to support autotrophic denitrification to mitigate the inhibition effects of P removal and enhance both N and P removal. The critical role of the carbon shell in Fe0@C was to block the direct contact between Fe0 and P and NO3--N, to maintain the Fe0 activity. Besides, P inhibited the chemical reduction of NO3--N by competing for Fe0 active sites. This indirectly boosted H2 generation and promoted bio-denitrification. P removal displayed negligible effects on microbial species but indirectly enhanced the nitrogen metabolic activities because of promoted H2 in Fe0@C-based autotrophic denitrification. Bio-denitrification, in turn, strengthened Fe-P co-precipitation by promoting the formation of ferric hydroxide as a secondary adsorbent for P removal. This study demonstrated an efficient method for simultaneous N and P removal in autotrophic denitrification and revealed the synergistic interactions among N and P removal processes.
Collapse
Affiliation(s)
- Jingshu Wang
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Jinhui Jeanne Huang
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Song Li
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Beichen Zhang
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Shiteng Feng
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| |
Collapse
|
16
|
Lu P, Gao T, Bai R, Yang J, Xu Y, Chu W, Jiang K, Zhang J, Xu F, Zhao H. Regulation of carbon flux and NADH/NAD + supply to enhance 2,3-butanediol production in Enterobacter aerogenes. J Biotechnol 2022; 358:67-75. [PMID: 36087783 DOI: 10.1016/j.jbiotec.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
As a valuable platform chemical, 2,3-Butanediol (2,3-BDO) has a variety of industrial applications, and its microbial production is particularly attractive as an alternative to petroleum-based production. In this study, the regulation of intracellular carbon flux and NADH/NAD+ was used to increase the 2,3-BDO production of Enterobacter aerogenes. The genes encoding lactate dehydrogenase (ldh) and pyruvate formate lyase (pfl) were disrupted using the λ-Red recombination method and CRISPR-Cas9 to reduce the production of several byproducts and the consumption of NADH. Knockout of ldh or pfl increased intracellular NADH/NAD+ by 111 % and 113 %, respectively. Moreover, two important genes in the 2,3-BDO biosynthesis pathway, acetolactate synthase (budB) and acetoin reductase (budC), were overexpressed in E. aerogenes to further amply the metabolic flux toward 2,3-BDO production. And the overexpression of budB or budC increased intracellular NADH/NAD+ by 46 % and 57 %, respectively. In shake-flask cultivation with sucrose as carbon source, the 2,3-BDO titer of the IAM1183-LPBC was 3.55 times that of the wild type. In the 5-L fermenter, the maximal 2,3-BDO production produced by the IAM1183-LPBC was 2.88 times that of the original strain. This work offers new ideas for promoting the biosynthesis of 2,3-BDO for industrial applications.
Collapse
Affiliation(s)
- Ping Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruoxuan Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiayao Yang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yudong Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wanying Chu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ke Jiang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jingya Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fangxu Xu
- Liaoning Province Key Laboratory of Cordyceps Militaris with Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang 110034, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
17
|
Qin C, Yao D, Cheng C, Xie H, Hu Z, Zhang J. Influence of iron species on the simultaneous nitrate and sulfate removal in constructed wetlands under low/high COD concentrations. ENVIRONMENTAL RESEARCH 2022; 212:113453. [PMID: 35537498 DOI: 10.1016/j.envres.2022.113453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Nitrate and sulfate are crucial factors of eutrophication and black and odorous water in the surface water and thus have raised increasing environmental concerns. Constructed wetlands (CWs) are the last ecological barrier before effluent enters the natural water body. To explore the simultaneous removal of nitrate and sulfate, the CW microcosms of CW-Con (with quartz sand), CW-ZVI (quartz sand and zero-valent iron), CW-Mag (quartz sand and magnetite), CW-ZVI + Mag (quartz sand, ZVI and magnetite) groups were set up under the low (100 mg/L)/high (300 mg/L) chemical oxygen demand (COD) concentration. Under the high COD condition, CW-ZVI group showed the best performance in nitrate (97.1%) and sulfate (96.9%) removal. Under the low COD concentration, the removal content of nitrate and sulfate in CW-ZVI group was better than CW-Mag group. The reason for this result was that zero-valent iron (ZVI) could be the electron donor for nitrate and sulfate reduction. Meanwhile, ZVI promoted chemical denitrification under high COD concentration according to PCA analysis. In addition, the produced sulfides inhibited the relative abundance of denitrifying bacteria, resulting in the lowest nitrate removal rate in CW-Mag group with sufficient electron donors. This study provided an alternative method to enhance simultaneous sulfate and nitrate removal in CWs.
Collapse
Affiliation(s)
- Congli Qin
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Dongdong Yao
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Cheng Cheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| |
Collapse
|
18
|
Xue X, Wang L, Wang D, Yi X, Yang F, Li Y. Biocathode regulates enrofloxacin degradation by coupling with different co-metabolism conditions. ENVIRONMENTAL RESEARCH 2022; 212:113254. [PMID: 35395237 DOI: 10.1016/j.envres.2022.113254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/26/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
In this study, biocathode system coupled with different co-metabolism conditions (NaAc, glucose and NaHCO3) were developed to degrade quinolones enrofloxacin (ENR) due to its poorly metabolization, easily accumulation and potential toxicity. Simultaneously, ENR reduction kinetic rate constant in NaAc-fed, glucose-fed and NaHCO3-fed biocathodes, and sole biocathode were increased by 343.62%, 320.46%, 189.19% and 130.88% when compared with that of abiotic cathode when the operational time and ENR concentration were set to 48 h and 25 mg/L. In addition, transformation pathways of ENR revealed pathway II were dominantly occurred in NaAc- and glucose-fed biocathode while pathway IV acting as key metabolic process were shown in NaHCO3-fed biocathode. Moreover, 16S rRNA high-throughput sequencing analysis indicated that biocathodic communities were sensitive to switch-over of carbon source, namely Delftia and Bosea as organohalide-respiring bacteria (OHRB) were abundant in NaAc- and glucose-fed biocathodes while Mesotoga and Syntrophorhabdus that responsible for benzoyl-CoA metabolic process were enriched in NaHCO3-fed biocathode. Overall, this study could unravel the underlying relationship between biocathode degradation pattern of ENR and different co-metabolism conditions, and further offer valuable scientific information on treating refractory quinolones antibiotics via green bioelectrochemical method.
Collapse
Affiliation(s)
- Xiaofang Xue
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Linli Wang
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Dexin Wang
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Xuesong Yi
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Fei Yang
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Yangyang Li
- Operation Services Division of Hospital Wastewater Treatment, General Affairs Department, Sanya Central Hospital (Hainan Third People's Hospital), Sanya, 572000, China.
| |
Collapse
|
19
|
Gong L, Tong Y, Yang H, Feng S. Simultaneously pollutant removal and S 0 recovery from composite wastewater containing Cr(VI)-S 2- based on biofilm enhancement. BIORESOURCE TECHNOLOGY 2022; 351:127017. [PMID: 35306135 DOI: 10.1016/j.biortech.2022.127017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Bioaugmentation of extracellular polymeric substances-producing bacteria was applied in pollutant removal and S0 recovery from composite wastewater in a mixotrophic denitrification system. In the presence of 200 mg·L-1 S2- and 50 mg·L-1 Cr(VI), the removal efficiencies of chemical oxygen demand, NO3-, S2- and Cr(VI) were 86.38%, 91.82%, 95.75%, and 100.00% respectively, while S0 recovery efficiency reached 79.17%. Increased contents of protein and polysaccharide, especially the high ratio of protein/polysaccharide verified the structural stability of biofilm was promoted by biofilm enhancement. The widespread distribution of bacteria/extracellular polymeric substance (EPS) revealed the more obvious biofilms formation in biofilm-enhanced group. High-throughput sequencing analysis showed that EPS-producing bacteria (Flavobacterium, Thauera, Thiobacillus and Simplicispira) were dominant bacteria in the biofilm-enhanced group. Moreover, by comprehensive considering of redundancy analysis, the colonization of selected bacteria improved the robustness of the reactor and treatment performance to wastewater contained toxic pollutions.
Collapse
Affiliation(s)
- Liangqi Gong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China.
| |
Collapse
|
20
|
Xu XJ, Wu YN, Xiao QY, Xie P, Ren NQ, Yuan YX, Lee DJ, Chen C. Simultaneous removal of NO X and SO 2 from flue gas in an integrated FGD-CABR system by sulfur cycling-mediated Fe(II)EDTA regeneration. ENVIRONMENTAL RESEARCH 2022; 205:112541. [PMID: 34915032 DOI: 10.1016/j.envres.2021.112541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Chemical absorption-biological reduction (CABR) process is an attractive method for NOX removal and Fe(II)EDTA regeneration is important to sustain high NOX removal. In this study a sustainable and eco-friendly sulfur cycling-mediated Fe(II)EDTA regeneration method was incorporated in the integrated biological flue gas desulfurization (FGD)-CABR system. Here, we investigated the NOX and SO2 removal efficiency of the system under three different flue gas flows (100 mL/min, 500 mL/min, and 1000 mL/min) and evaluated the feasibility of chemical Fe(III)EDTA reduction by sulfide in series of batch tests. Our results showed that complete SO2 removal was achieved at all the tested scenarios with sulfide, thiosulfate and S0 accumulation in the solution. Meanwhile, the total removal efficiency of NOX achieved ∼100% in the system, of which 3.2%-23.3% was removed in spray scrubber and 76.7%-96.5% in EGSB reactor along with no N2O emission. The optimal pH and S2-/Fe(III)EDTA for Fe(II)EDTA regeneration and S0 recovery was 8.0 and 1:2. The microbial community analysis results showed that the cooperation of heterotrophic denitrifier (Saprospiraceae_uncultured and Dechloromonas) and iron-reducing bacteria (Klebsiella and Petrimonas) in EGSB reactor and sulfide-oxidizing, nitrate-reducing bacteria (Azoarcus and Pseudarcobacter) in spray scrubber contributed to the efficient removal of NOX in flue gas.
Collapse
Affiliation(s)
- Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Yi-Ning Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| | - Qing-Yang Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Yi-Xing Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|