1
|
Santos JEK, Tavella RA, de Lima Brum R, Ramires PF, da Silva LDS, Filho WLFC, Nadaleti WC, Correa EK, da Silva Júnior FMR. PM 2.5/PM 10 ratios in southernmost Brazilian cities and its relation with economic contexts and meteorological factors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:191. [PMID: 39853429 DOI: 10.1007/s10661-025-13651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
The PM2.5/PM10 ratio is a metric used to distinguish the primary sources of particulate matter (PM) within a given environment. Higher ratios often indicate significant contributions from anthropogenic sources, while smaller ratios suggest a substantial influence from natural origins. However, various contextual factors can influence this ratio. Our study aimed to investigate the PM2.5/PM10 ratio in four distinct Brazilian cities, each characterized by varying levels of urbanization and primary economic activities. Additionally, we explored meteorological variables that may influence PM behavior across the years and different seasons. Our main finding reveals an association between the spatial distribution of PM and the primary economic activities in the investigated cities, with the highest PM2.5/PM10 ratio observed in the city engaged in coal activities, even though it did not exhibit the highest levels of PM. Conversely, coastal cities showed the lowest ratios. Furthermore, we observed that meteorological conditions also play a significant role in influencing PM behavior, with wind speed and the UV index emerging as the most influential meteorological parameters affecting this ratio. A subtle increase in PM2.5/PM10 ratios was noted in the fourth and fifth years of investigation across all cities, suggesting a potential impact from the restriction measures and the subsequent resumption of activities related to the COVID-19 pandemic in the region. However, these ratios stabilized in the post-pandemic years, returning to patterns similar to those observed pre-pandemic. Moreover, winter consistently exhibited the highest PM2.5/PM10 ratio across all cities, also being the season with the highest levels of both PM10 and PM2.5. Beyond providing important information about PM behavior in the evaluated scenarios, our findings emphasize the necessity of considering meteorological and economic factors in studies of this nature.
Collapse
Affiliation(s)
- Jéssica El Koury Santos
- Programa de Pós Graduação Em Ciências Ambientais, Centro de Engenharias, Universidade Federal de Pelotas, Rua Benjamin Constant, 989, Porto, Pelotas, RS, 96010020, Brazil
| | - Ronan Adler Tavella
- Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, No. 740 Vila Clementino, São Paulo, CEP, 04023-062, Brazil
- Antimicrobial Resistance Institute of São Paulo (ARIES Project), São Paulo, Brazil
| | - Rodrigo de Lima Brum
- Universidade Federal Do Rio Grande (FURG), Rio Grande Do Sul, Avenida Itália, Km 8 Campus Carreiros, Rio Grande, CEP, 96203-900, Brazil
| | - Paula Florencio Ramires
- Universidade Federal Do Rio Grande (FURG), Rio Grande Do Sul, Avenida Itália, Km 8 Campus Carreiros, Rio Grande, CEP, 96203-900, Brazil
| | - Leopoldo Dos Santos da Silva
- Programa de Pós Graduação Em Ciências Ambientais, Centro de Engenharias, Universidade Federal de Pelotas, Rua Benjamin Constant, 989, Porto, Pelotas, RS, 96010020, Brazil
| | | | - Willian Cézar Nadaleti
- Programa de Pós Graduação Em Ciências Ambientais, Centro de Engenharias, Universidade Federal de Pelotas, Rua Benjamin Constant, 989, Porto, Pelotas, RS, 96010020, Brazil
| | - Erico Kunde Correa
- Programa de Pós Graduação Em Ciências Ambientais, Centro de Engenharias, Universidade Federal de Pelotas, Rua Benjamin Constant, 989, Porto, Pelotas, RS, 96010020, Brazil
| | - Flavio Manoel Rodrigues da Silva Júnior
- Programa de Pós Graduação Em Ciências Ambientais, Centro de Engenharias, Universidade Federal de Pelotas, Rua Benjamin Constant, 989, Porto, Pelotas, RS, 96010020, Brazil.
- Universidade Federal Do Rio Grande (FURG), Rio Grande Do Sul, Avenida Itália, Km 8 Campus Carreiros, Rio Grande, CEP, 96203-900, Brazil.
| |
Collapse
|
2
|
Saxena P, Kumar A, Muzammil M, Bojjagani S, Patel DK, Kumari A, Khan AH, Kisku GC. Spatio-temporal distribution and source contributions of the ambient pollutants in Lucknow city, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:693. [PMID: 38963455 DOI: 10.1007/s10661-024-12832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
Clean air is imperative to the survival of all life forms on the planet. However, recent times have witnessed enormous escalation in urban pollution levels. It is therefore, incumbent upon us to decipher measures to deal with it. In perspective, the present study was carried out to assess PM10 and PM2.5 loading, metallic constituents, gaseous pollutants, source contributions, health impact and noise level of nine-locations, grouped as residential, commercial, and industrial in Lucknow city for 2019-21. Mean concentrations during pre-monsoon for PM10, PM2.5, SO2 and NO2 were: 138.2 ± 35.2, 69.1 ± 13.6, 8.5 ± 3.3 and 32.3 ± 7.4 µg/m3, respectively, whereas post-monsoon concentrations were 143.0 ± 33.3, 74.6 ± 14.5, 12.5 ± 2.1, and 35.5 ± 6.3 µg/m3, respectively. Exceedance percentage of pre-monsoon PM10 over National Ambient Air Quality Standards (NAAQS) was 38.2% while that for post-monsoon was 43.0%; whereas corresponding values for PM2.5 were 15.2% and 24.3%. Post-monsoon season showed higher particulate loading owing to wintertime inversion and high humidity conditions. Order of elements associated with PM2.5 is Co < Cd < Cr < Ni < V < Be < Mo < Mn < Ti < Cu < Pb < Se < Sr < Li < B < As < Ba < Mg < Al < Zn < Ca < Fe < K < Na and that with PM10 is Co < Cd < Ni < Cr < V < Ti < Be < Mo < Cu < Pb < Se < Sr < Li < B < As < Mn < Ba < Mg < Al < Fe < Zn < K < Na < Ca. WHO AIRQ + ascertained 1654, 144 and 1100 attributable cases per 0.1 million of population to PM10 exposure in 2019-21. Source apportionment was carried out using USEPA-PMF and resolved 6 sources with highest percent contributions including road dust re-entrainment, biomass burning and vehicular emission. It is observed that residents of Lucknow city regularly face exposure to particulate pollutants and associated constituents making it imperative to develop pollution abetment strategies.
Collapse
Affiliation(s)
- Priya Saxena
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Ankit Kumar
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Muzammil
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sreekanth Bojjagani
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Division, ASSIST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Alka Kumari
- Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Altaf Husain Khan
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ganesh Chandra Kisku
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Hou Z, Li Y, Zhang L, Song C, Lin J, Zhou C, Wang Y, Qu Y, Yao X, Gao P. The COVID-19 lockdown: a unique perspective into heterogeneous impacts of transboundary pollution on snow and ice darkening across the Himalayas. PNAS NEXUS 2023; 2:pgad172. [PMID: 37383022 PMCID: PMC10299077 DOI: 10.1093/pnasnexus/pgad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023]
Abstract
The Tibetan Plateau holds the largest mass of snow and ice outside of the polar regions. The deposition of light-absorbing particles (LAPs) including mineral dust, black carbon and organic carbon and the resulting positive radiative forcing on snow (RFSLAPs) substantially contributes to glacier retreat. Yet how anthropogenic pollutant emissions affect Himalayan RFSLAPs through transboundary transport is currently not well known. The COVID-19 lockdown, resulting in a dramatic decline in human activities, offers a unique test to understand the transboundary mechanisms of RFSLAPs. This study employs multiple satellite data from the moderate resolution imaging spectroradiometer and ozone monitoring instrument, as well as a coupled atmosphere-chemistry-snow model, to reveal the high spatial heterogeneities in anthropogenic emissions-induced RFSLAPs across the Himalaya during the Indian lockdown in 2020. Our results show that the reduced anthropogenic pollutant emissions during the Indian lockdown were responsible for 71.6% of the reduction in RFSLAPs on the Himalaya in April 2020 compared to the same period in 2019. The contributions of the Indian lockdown-induced human emission reduction to the RFSLAPs decrease in the western, central, and eastern Himalayas were 46.8%, 81.1%, and 110.5%, respectively. The reduced RFSLAPs might have led to 27 Mt reduction in ice and snow melt over the Himalaya in April 2020. Our findings allude to the potential for mitigating rapid glacial threats by reducing anthropogenic pollutant emissions from economic activities.
Collapse
Affiliation(s)
| | | | | | - Changqing Song
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Jintai Lin
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Chenghu Zhou
- State Key Laboratory of Resources and Environment Information System, Institute of Geographical Science and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuebin Wang
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Ying Qu
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xin Yao
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | | |
Collapse
|
4
|
Wu H, Lu Z, Wei J, Zhang B, Liu X, Zhao M, Liu W, Guo X, Xi B. Effects of the COVID-19 Lockdown on Air Pollutant Levels and Associated Reductions in Ischemic Stroke Incidence in Shandong Province, China. Front Public Health 2022; 10:876615. [PMID: 35719628 PMCID: PMC9197688 DOI: 10.3389/fpubh.2022.876615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Background Local governments in China took restrictive measures after the outbreak of COVID-19 to control its spread, which unintentionally resulted in reduced anthropogenic emission sources of air pollutants. In this study, we intended to examine the effects of the COVID-19 lockdown policy on the concentration levels of particulate matter with aerodynamic diameters of ≤1 μm (PM1), ≤2.5 μm (PM2.5), and ≤10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO) and the potential subsequent reductions in the incidence of ischemic and hemorrhagic stroke in Shandong Province, China. Methods A difference-in-difference model combining the daily incidence data for ischemic and hemorrhagic stroke and air pollutant data in 126 counties was used to estimate the effect of the COVID-19 lockdown on the air pollutant levels and ischemic and hemorrhagic stroke incident counts. The avoided ischemic stroke cases related to the changes in air pollutant exposure levels were further estimated using concentration-response functions from previous studies. Results The PM1, PM2.5, PM10, NO2, and CO levels significantly decreased by −30.2, −20.9, −13.5, −46.3, and −13.1%, respectively. The O3 level increased by 11.5% during the lockdown compared with that in the counterfactual lockdown phase of the past 2 years. There was a significant reduction in population-weighted ischemic stroke cases (−15,315, 95% confidence interval [CI]: −27,689, −2,942), representing a reduction of 27.6% (95% CI: −49.9%, −5.3%). The change in the number of hemorrhagic stroke cases was not statistically significant. The total avoided PM1-, PM2.5-, PM10-, NO2-, and CO–related ischemic stroke cases were 739 (95% CI: 641, 833), 509 (95% CI: 440, 575), 355 (95% CI: 304, 405), 1,132 (95% CI: 1,024, 1,240), and 289 (95% CI: 236, 340), respectively. Conclusion The COVID-19 lockdown indirectly reduced the concentration levels of PM1, PM2.5, PM10, NO2, and CO and subsequently reduced the associated ischemic stroke incidence. The health benefits due to the lockdown are temporary, and long-term measures should be implemented to increase air quality and related health benefits in the post-COVID-19 period.
Collapse
Affiliation(s)
- Han Wu
- Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zilong Lu
- Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, China
| | - Xue Liu
- Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhui Liu
- Information and Data Analysis Lab, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, China
- Xiaolei Guo
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Bo Xi
| |
Collapse
|
5
|
Jakob A, Hasibuan S, Fiantis D. Empirical evidence shows that air quality changes during COVID-19 pandemic lockdown in Jakarta, Indonesia are due to seasonal variation, not restricted movements. ENVIRONMENTAL RESEARCH 2022; 208:112391. [PMID: 34800535 PMCID: PMC8595973 DOI: 10.1016/j.envres.2021.112391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/30/2021] [Accepted: 11/12/2021] [Indexed: 05/16/2023]
Abstract
Implementing a lockdown or activity restriction to reduce the spread of COVID-19 cases is assumed to improve air quality in highly populated cities. The effect of lockdown on air quality is often quantified by comparing pre- and during-lockdown air quality parameters without considering confounding meteorological factors. We demonstrated that rainfall can explain changes in PM10 and PM2.5 parameters in the city of Jakarta during lockdown. This article shows that comparing air quality pre- and during lockdown is misleading. Variables affecting air quality such as meteorological variables should be taken into account. The air quality in Jakarta as measured by PM10 and PM2.5 did not change significantly during the lockdown period after removing the seasonal effect.
Collapse
Affiliation(s)
- Alana Jakob
- BioEnvirometrics Research, Suite 110, Jl. Pangeran Jayakarta No. 70, Jakarta Pusat, Daerah Khusus Ibukota Jakarta, 11110, Indonesia.
| | - Saberina Hasibuan
- Environmental Quality Laboratory Department of Aquaculture Faculty of Fisheries and Marine Sciences, University of Riau, Pekanbaru, Indonesia
| | - Dian Fiantis
- Department of Soil Science, Faculty of Agriculture, Andalas University, Kampus Limau Manis, Padang, 25163, Indonesia
| |
Collapse
|