1
|
Yan YY, Ye F, Ho MH, Yeung KCY, Lee JJ. Biomarkers of Waterpipe Tobacco Smoke Exposure: A Systematic Review and Meta-Analysis. Nicotine Tob Res 2024; 26:655-662. [PMID: 38157415 DOI: 10.1093/ntr/ntad262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/01/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION The prevalence of waterpipe tobacco smoking is increasing globally. Biomarkers of waterpipe tobacco smoke (WTS) exposure are less studied. AIMS AND METHODS To identify the types of biomarkers of WTS exposure and estimate changes in biomarker concentrations pre- to post-WTS exposure. PubMed, Embase, Web of Science, CINAHL Plus, PsycINFO, and Cochrane Library were searched for studies up to April 24, 2023. The types of biomarkers were identified. Random-effects models were used to estimate changes in biomarker concentrations pre- to post-WTS exposure. RESULTS Seventy-three studies involving 3755 participants exposed to WTS (49% male, mean age: 24.8 years) and 11 types of biomarkers of WTS exposure were identified. The biomarkers included tobacco alkaloids, expired carbon monoxide (eCO), carboxyhemoglobin (COHb), tobacco-specific nitrosamines, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), heavy metals, unmetabolized VOCs, unmetabolized PAHs, furan metabolites, and heterocyclic aromatic amines. Compared with pre-WTS exposure, eCO (breath; mean difference [MD] 27.00 ppm; 95% confidence interval [CI]: 20.91 to 33.08), COHb (blood; MD 4.30%; 95%CI: 2.57 to 6.03), COHb (breath; MD 7.14%; 95%CI: 4.96 to 9.31), nicotine (blood; MD 8.23 ng/mL; 95%CI: 6.27 to 10.19), and cotinine (urine; MD 110.40 ng/mL; 95%CI: 46.26 to 174.54) significantly increased post-WTS exposure. CONCLUSIONS Biomarkers of WTS exposure were systematically identified. The similarity between the biomarkers of WTS exposure and those of cigarette smoke and higher concentrations of some biomarkers post-WTS exposure underscore the need for further research on applying biomarkers in surveillance, interventions, and regulations to mitigate the harms of waterpipe tobacco smoking. IMPLICATIONS This study provides the first comprehensive overview of biomarkers investigated and available for assessing WTS exposure and their concentration changes in the human body. Researchers can use biomarkers such as eCO, COHb, nicotine, and cotinine to measure the health risks associated with WTS exposure and objectively evaluate the effectiveness of public health interventions aimed at reducing waterpipe tobacco smoking. Public health policymaking can also be informed through increased biomarker concentrations following WTS exposure, to implement regulations and public health education campaigns on limiting or preventing waterpipe tobacco smoking.
Collapse
Affiliation(s)
- Yong Yang Yan
- LKS Faculty of Medicine, School of Nursing, University of Hong Kong, Hong Kong SAR, China
| | - Fen Ye
- LKS Faculty of Medicine, School of Nursing, University of Hong Kong, Hong Kong SAR, China
| | - Mu-Hsing Ho
- LKS Faculty of Medicine, School of Nursing, University of Hong Kong, Hong Kong SAR, China
| | | | - Jung Jae Lee
- LKS Faculty of Medicine, School of Nursing, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Assenhöj M, Almstrand AC, Kokelj S, Ljunggren SA, Olin AC, Karlsson H. Occupational exposure and health surveys at metal additive manufacturing facilities. Front Public Health 2023; 11:1292420. [PMID: 38054074 PMCID: PMC10694287 DOI: 10.3389/fpubh.2023.1292420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Additive manufacturing is a novel state-of-the art technology with significant economic and practical advantages, including the ability to produce complex structures on demand while reducing the need of stocking materials and products. Additive manufacturing is a technology that is here to stay; however, new technologies bring new challenges, not only technical but also from an occupational health and safety perspective. Herein, leading Swedish companies using metal additive manufacturing were studied with the aim of investigating occupational exposure and the utility of chosen exposure- and clinical markers as predictors of potential exposure-related health risks. Methods Exposure levels were investigated by analysis of airborne dust and metals, alongside particle counting instruments measuring airborne particles in the range of 10 nm-10 μm to identify dusty work tasks. Health examinations were performed on a total of 48 additive manufacturing workers and 39 controls. All participants completed a questionnaire, underwent spirometry, and blood and urine sampling. A subset underwent further lung function tests. Results Exposure to inhalable dust and metals were low, but particle counting instruments identified specific work tasks with high particle emissions. Examined health parameters were well within reference values on a group level. However, statistical analysis implied an impact on workers kidney function and possible airway inflammation. Conclusion The methodology was successful for investigating exposure-related health risks in additive manufacturing. However, most participants have been working <5 years. Therefore, long-term studies are needed before we can conclusively accept or reject the observed effects on health.
Collapse
Affiliation(s)
- Maria Assenhöj
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Ann-Charlotte Almstrand
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Spela Kokelj
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefan A. Ljunggren
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Masjedi MR, Torkshavand Z, Arfaeinia H, Dobaradaran S, Soleimani F, Farhadi A, Rashidi R, Novotny TE, Dadipoor S, Schmidt TC. First report on BTEX leaching from waterpipe tobacco wastes (WTWs) into aquatic environment. Heliyon 2023; 9:e21946. [PMID: 38034754 PMCID: PMC10682136 DOI: 10.1016/j.heliyon.2023.e21946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Waterpipe tobacco wastes (WTWs) may contain considerable levels of hazardous contaminants such as BTEX (benzene, toluene, ethylbenzene, o-xylene, and m/p-xylene). However, no research has been carried out on BTEX levels in WTWs and the release of these pollutants into the water environment. This research examined the levels of BTEX in WTWs of flavored/local tobacco and also the release rate of these toxins into three kinds of water, including seawater (SW), tap water (TW), and distilled water (DW) with different leaching times (15, 30 min, 1.2, 4, 8 h, and 1, 2, and 4 days). The mean contents of BTEX in WTW samples of Al-Mahmoud, Al-Fakher, Mazaya, Al-Ayan brands, and local tobacco samples were 17.0 ± 4.14, 19.1 ± 4.65, 19.6 ± 4.19, 18.8 ± 4.14, and 3.16 ± 0.63 μg/kg, respectively. The mean BTEX levels in flavored tobacco samples were considerably greater than that of local tobacco (p < 0.05). The WTWs leaching experiments showed that the levels of BTEX ranged from 5.26 to 6.12, 5.02-5.60, and 3.83-5.46 μg/L in DW, TW, and SW, respectively. All target compounds were found for all exposure times in DW, TW, and SW samples. After adding sodium azide as an antibacterial agent to water samples (simulating biodegradation processes), higher levels of BTEX compounds were detected in SW. Further research is needed to address the potential environmental hazards due to WTWs leaching into aquatic environments.
Collapse
Affiliation(s)
- Mohammad Reza Masjedi
- Tobacco Control Research Center (TCRC), Iranian Anti-Tobacco Association, Tehran, Iran
| | - Zahra Torkshavand
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, Germany
| | - Farshid Soleimani
- Tobacco and Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Akram Farhadi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Roshana Rashidi
- Department of Civil Engineering, School of Engineering, Persian Gulf University, Bushehr, Iran
| | - Thomas E. Novotny
- School of Public Health, San Diego State University, San Diego, CA 92182, United States
- San Diego State University Research Foundation, San Diego, CA 92182, United States
| | - Sara Dadipoor
- Tobacco and Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Torsten C. Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, Germany
| |
Collapse
|
4
|
Masjedi MR, Arfaeinia H, Dobaradaran S, Keshtkar M, Soleimani F, Novotny TE, Torkshavand Z. Post-consumption waterpipe tobacco waste as an unrecognized source of toxic metal(loid)s leachates into aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163207. [PMID: 37011674 DOI: 10.1016/j.scitotenv.2023.163207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Waterpipe is a common form of tobacco smoking, and recently, its use has been increasing globally. Therefore, concern arises regarding the large quantity of post-consumption waterpipe tobacco waste produced and released into the environment and which can contain high levels of dangerous pollutants such as toxic meta(loid)s. This study reports the concentrations of meta(loid)s in waste from fruit-flavoured and traditional tobacco smoking as well as the release rate of these pollutants from waterpipe tobacco waste into three types of water. These include distilled water, tap water, and seawater and contact times ranging from 15 min to 70 days. The mean concentration levels of Ʃmetal(loid)s in waste samples of Al-mahmoud, Al-Fakher, Mazaya, Al-Ayan brands and traditional tobacco brands were 212 ± 92.8, 198 ± 94.4, 197 ± 75.7, 214 ± 85.8 and 40.6 ± 16.1 μg/g, respectively. The concentration levels of Ʃmetal(loid)s in fruit-flavoured tobacco samples were significantly higher than for traditional tobacco samples (p < 0.05). It was found that waterpipe tobacco wastes leached toxic metal(loid)s into different water samples with similar trends. In addition distribution coefficients showed that most metal(loid)s are highly likely to enter the liquid phase. The concentration levels of these pollutants (except Ni and As) in deionized water and tap water exceeded the surface fresh water standards for sustaining aquatic life during long contact time (up to 70 days). In seawater, concentration levels of Cu and Zn exceeded the recommended standards for maintaining aquatic life in the sea. Therefore, due to the possibility of contamination by soluble metal(loid)s through disposal of waterpipe tobacco waste in wastewater, there is concern that these toxic chemicals might enter the human food chain. Appropriate regulatory measures for disposal of waterpipe tobacco waste are necessary to prevent environmental pollution due to discarded wastes into aquatic ecosystems.
Collapse
Affiliation(s)
- Mohammad Reza Masjedi
- Tobacco Control Research Center (TCRC), Iranian Anti-Tobacco Association, Tehran, Iran
| | - Hossein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universit¨atsstr. 5, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany.
| | - Mozhgan Keshtkar
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farshid Soleimani
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Thomas E Novotny
- School of Public Health, San Diego State University, San Diego, CA 92182, United States
| | - Zahra Torkshavand
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Mahmoodi M, Arfaeinia H, Fazlzadeh M, Soleimani F, Samaei MR, Arfaeinia L, Hosseini SF, Omidvar M, Baghmollaie MM. Urinary levels of potentially toxic elements (PTEs) in female beauticians and their association with urinary biomarkers of oxidative stress/inflammation and kidney injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163099. [PMID: 36996979 DOI: 10.1016/j.scitotenv.2023.163099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
The present research was aimed to assess the urinary levels of potentially toxic elements (PTEs) in female beauticians and its correlation with oxidative stress/inflammation and kidney injury. To this end, the urine samples were collected from 50 female beauticians from beauty salons (exposed group) and 35 housewives (control group), and then, the level of PTEs was determined. The mean levels of the sum of urinary PTEs (∑PTEs) biomarkers in before and after exposure and control group were 83.55, 114.27 and 13.61 μg/L, respectively. Results also showed that the urinary level of PTEs biomarkers is significantly higher in women occupationally exposed to cosmetics compared to control group. The urinary levels of arsenic (As), cadmium (Cd), lead (Pb), and chromium (Cr) biomarkers have high correlation coefficients with early oxidative stress effects such as 8-Hydroxyguanosine (8-OHdG), 8-isoprostane and Malondialdehyde (MDA). Moreover, As and Cd biomarker levels were positively and significantly associated with kidney damages such as urinary kidney injury molecule-1 (uKIM-1) and tissue inhibitor matrix metalloproteinase 1 (uTIMP-1) (P < 0.01). Therefore, women who working in beauty salons can probably be categorized as high - exposure and high-risk workers in terms of DNA oxidative and kidney damages.
Collapse
Affiliation(s)
- Marzieh Mahmoodi
- Department of Biostatistics and Epidemiology, School of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mehdi Fazlzadeh
- Department of Environmental Health Engineering, Faculty of Health, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farshid Soleimani
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Samaei
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Science, Shiraz, Iran
| | - Leila Arfaeinia
- Department of Natural Resources, Faculty of Engineering, Islamic Azad University-Bushehr Branch, Bushehr, Iran
| | - Seyedeh Fatemeh Hosseini
- Health and treatment network of Dashtestan City, Vice-Chancellery of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Omidvar
- Department of Health, Safety, and Environment (HSE), Faculty of HSEEM, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Masoud Mohamadi Baghmollaie
- Department of Public Health, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
6
|
Masjedi MR, Dobaradaran S, Arfaeinia H, Samaei MR, Novotny TE, Rashidi N. Polycyclic aromatic hydrocarbon (PAH) leachates from post-consumption waterpipe tobacco waste (PWTW) into aquatic environment- a primary study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121500. [PMID: 36963456 DOI: 10.1016/j.envpol.2023.121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Post-consumption waterpipe tobacco waste (PWTW) is an unrecognized type of hazardous waste that is produced and released in large quantities into the aquatic environment. It may contain high amounts of various pollutants including PAH, and to date, there has been no research on the potential for contamination by PAH from PWTW leaching into aquatic environments. In this study, the concentrations of PAH via PWTW of fruit-flavored and traditional tobacco leachate into three water types, including distilled water (DW), tap water (TW) and sea water (SW) at different contact times were evaluated. There were significantly higher concentration levels of ƩPAH in waters with leachates from fruit-flavored PWTW than traditional tobacco (P-value<0.05). The concentration levels of ƩPAH in DW, TW and SW at a total contact time of two months ranged from 0.13 to 3.51, 0.12 to 3.63 and 0.11-3.64 μg/L, respectively. Lower molecular weight PAH such as naphthalene (Naph), acenaphthylene (Acen) and fluorine (Flu) were detected in leachates immediately after a short contact time of 15 min. Higher molecular weight PAH including benzo [a]anthracene (BaA), benzo [b]fluoranthene (BbF), benzo [k]fluoranthene (BkF), chrysene (Chr), and benzo [a]pyrene (BaP) were detected after one month contact time, while indeno [1,2,3-cd] pyrene (Indp), benzo [ghi]perylene (BghiP) and dibenz [a,h]anthracene (DahA) were only observed at the contact time measurement of two months. By adding sodium azide as an antimicrobial agent and chemical preservative to SW samples, higher concentrations of PAH including IP, DahA and BghiP were observed. The concentration levels of PAH in water samples after two months contact time were higher than water quality standards provided by the World Health Organization (WHO) and other international organizations.
Collapse
Affiliation(s)
- Mohammad Reza Masjedi
- Tobacco Control Research Center (TCRC), Iranian Anti-Tobacco Association, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, Germany
| | - Hossein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mohammad Reza Samaei
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Science, Shiraz, Iran
| | - Thomas E Novotny
- School of Public Health, San Diego State University, San Diego, CA, 92182, United States; San Diego State University Research Foundation, San Diego, CA, 92182, United States
| | - Nima Rashidi
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
7
|
Ghoma WEO, Sevik H, Isinkaralar K. Comparison of the rate of certain trace metals accumulation in indoor plants for smoking and non-smoking areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27790-9. [PMID: 37225952 DOI: 10.1007/s11356-023-27790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Tobacco smoke causes to release severe toxic metals into the environment. It is recognized as the most significant issue in indoor air quality. Pollution and toxic substances in smoke quickly spread and penetrate the indoor environment. Environmental tobacco smoke is responsible for lowering indoor air quality. There is much evidence that poor air quality occurs with inadequate ventilation conditions in indoor environments. The plants have been observed to absorb the smoke in the environment into their own body like a sponge. The plant species in this study can be used easily in almost every office, home, or other indoor areas. Using indoor plants is very beneficial in biomonitoring and absorbing these trace metals. Some indoor plants have shown successful performance as biomonitors for health-damaging pollutants. The study aims to determine the concentration of three trace metals (Cu, Co, and Ni) using five indoor ornamentals frequently used in smoking areas, namely D. amoena, D. marginata, F. elastica, S. wallisii, and Y. massengena. The Ni uptake and its accumulation in S. wallisii, and Y. massengena increased in correlation with smoke areas. However, the rate of accumulation of Co and Cu was found to be independent due to consideration of the environmental emissions. Consequently, our results suggest that F. elastica is more resistant to smoking, whereas S. wallisii would be a better choice as a biomonitoring plant of tobacco smoke.
Collapse
Affiliation(s)
- Wasem Esmael Omer Ghoma
- Institute of Science, Department of Material Science and Engineering, Kastamonu University, 37150, Kastamonu, Türkiye
| | - Hakan Sevik
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye
| | - Kaan Isinkaralar
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye.
| |
Collapse
|
8
|
Chen H, Zhang Y, Zhang L, Liu J, Jin L, Ren A, Li Z. Indoor air pollution from coal combustion and tobacco smoke during the periconceptional period and risk for neural tube defects in offspring in five rural counties of Shanxi Province, China, 2010-2016. ENVIRONMENT INTERNATIONAL 2023; 171:107728. [PMID: 36610357 DOI: 10.1016/j.envint.2023.107728] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/12/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Indoor air pollution may increase the risk for neural tube defects (NTDs) in Chinese rural populations. However, this association remains a subject of debate. We conducted a population-based case-control study of 222 NTD and 517 control mothers recruited between 2010 and 2016 in five rural areas in northern China. An indoor air pollution exposure evaluation index (IAPEEI) was used to evaluate mothers' exposure to tobacco-sourced and coal-sourced indoor air pollution. Essential characteristics were collected using structured questionnaires within 10 days of delivery. We found that exposure to indoor air pollution (IAPEEI ≥ 1) can lead to 3.41 times the risk of conceiving NTD fetuses compared with the no-exposure group (IAPEEI = 0) (adjusted odds ratio and 95 % confidence interval: 3.41 [2.34-5.02]). The risk increased with increasing IAPEEI score, indicating a clear dose-response trend (P < 0.001). Using a coal stove for heating (especially in the bedroom) and passive smoking are significantly associated with an increased likelihood of NTD occurrence. Exposure to indoor air pollution is a daily reality for rural women in China, and its impact on reproductive health deserves extensive attention.
Collapse
Affiliation(s)
- Huiting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University School of Public Health, Beijing, China
| | - Yali Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University School of Public Health, Beijing, China
| | - Le Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University School of Public Health, Beijing, China
| | - Jufen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University School of Public Health, Beijing, China
| | - Lei Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University School of Public Health, Beijing, China
| | - Aiguo Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University School of Public Health, Beijing, China
| | - Zhiwen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University School of Public Health, Beijing, China.
| |
Collapse
|