1
|
Zhuang X, Vo V, Moshi MA, Dhede K, Ghani N, Akbar S, Chang CL, Young AK, Buttery E, Bendik W, Zhang H, Afzal S, Moser D, Cordes D, Lockett C, Gerrity D, Kan HY, Oh EC. Early Detection of Novel SARS-CoV-2 Variants from Urban and Rural Wastewater through Genome Sequencing and Machine Learning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.18.24306052. [PMID: 38699326 PMCID: PMC11065002 DOI: 10.1101/2024.04.18.24306052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Genome sequencing from wastewater has emerged as an accurate and cost-effective tool for identifying SARS-CoV-2 variants. However, existing methods for analyzing wastewater sequencing data are not designed to detect novel variants that have not been characterized in humans. Here, we present an unsupervised learning approach that clusters co-varying and time-evolving mutation patterns leading to the identification of SARS-CoV-2 variants. To build our model, we sequenced 3,659 wastewater samples collected over a span of more than two years from urban and rural locations in Southern Nevada. We then developed a multivariate independent component analysis (ICA)-based pipeline to transform mutation frequencies into independent sources with co-varying and time-evolving patterns and compared variant predictions to >5,000 SARS-CoV-2 clinical genomes isolated from Nevadans. Using the source patterns as data-driven reference "barcodes", we demonstrated the model's accuracy by successfully detecting the Delta variant in late 2021, Omicron variants in 2022, and emerging recombinant XBB variants in 2023. Our approach revealed the spatial and temporal dynamics of variants in both urban and rural regions; achieved earlier detection of most variants compared to other computational tools; and uncovered unique co-varying mutation patterns not associated with any known variant. The multivariate nature of our pipeline boosts statistical power and can support accurate and early detection of SARS-CoV-2 variants. This feature offers a unique opportunity for novel variant and pathogen detection, even in the absence of clinical testing.
Collapse
|
2
|
Holm RH, Rempala GA, Choi B, Brick JM, Amraotkar AR, Keith RJ, Rouchka EC, Chariker JH, Palmer KE, Smith T, Bhatnagar A. Dynamic SARS-CoV-2 surveillance model combining seroprevalence and wastewater concentrations for post-vaccine disease burden estimates. COMMUNICATIONS MEDICINE 2024; 4:70. [PMID: 38594350 PMCID: PMC11004132 DOI: 10.1038/s43856-024-00494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Despite wide scale assessments, it remains unclear how large-scale severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination affected the wastewater concentration of the virus or the overall disease burden as measured by hospitalization rates. METHODS We used weekly SARS-CoV-2 wastewater concentration with a stratified random sampling of seroprevalence, and linked vaccination and hospitalization data, from April 2021-August 2021 in Jefferson County, Kentucky (USA). Our susceptible ( S ), vaccinated ( V ), variant-specific infected (I 1 andI 2 ), recovered ( R ), and seropositive ( T ) model ( S V I 2 R T ) tracked prevalence longitudinally. This was related to wastewater concentration. RESULTS Here we show the 64% county vaccination rate translate into about a 61% decrease in SARS-CoV-2 incidence. The estimated effect of SARS-CoV-2 Delta variant emergence is a 24-fold increase of infection counts, which correspond to an over 9-fold increase in wastewater concentration. Hospitalization burden and wastewater concentration have the strongest correlation (r = 0.95) at 1 week lag. CONCLUSIONS Our study underscores the importance of continuing environmental surveillance post-vaccine and provides a proof-of-concept for environmental epidemiology monitoring of infectious disease for future pandemic preparedness.
Collapse
Grants
- P20 GM103436 NIGMS NIH HHS
- P30 ES030283 NIEHS NIH HHS
- This study was supported by Centers for Disease Control and Prevention (75D30121C10273), Louisville Metro Government, James Graham Brown Foundation, Owsley Brown II Family Foundation, Welch Family, Jewish Heritage Fund for Excellence, the National Institutes of Health, (P20GM103436), the Rockefeller Foundation, the National Sciences Foundation (DMS-2027001), and the Basic Science Research Program National Research Foundation of Korea (NRF) (RS-2023-00245056).
Collapse
Affiliation(s)
- Rochelle H Holm
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Grzegorz A Rempala
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Boseung Choi
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
- Division of Big Data Science, Korea University, Sejong, South Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon, South Korea
| | | | - Alok R Amraotkar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Rachel J Keith
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Julia H Chariker
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Kenneth E Palmer
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Ted Smith
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
3
|
Majumdar R, Taye B, Bjornberg C, Giljork M, Lynch D, Farah F, Abdullah I, Osiecki K, Yousaf I, Luckstein A, Turri W, Sampathkumar P, Moyer AM, Kipp BR, Cattaneo R, Sussman CR, Navaratnarajah CK. From pandemic to endemic: Divergence of COVID-19 positive-tests and hospitalization numbers from SARS-CoV-2 RNA levels in wastewater of Rochester, Minnesota. Heliyon 2024; 10:e27974. [PMID: 38515669 PMCID: PMC10955309 DOI: 10.1016/j.heliyon.2024.e27974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Traditionally, public health surveillance relied on individual-level data but recently wastewater-based epidemiology (WBE) for the detection of infectious diseases including COVID-19 became a valuable tool in the public health arsenal. Here, we use WBE to follow the course of the COVID-19 pandemic in Rochester, Minnesota (population 121,395 at the 2020 census), from February 2021 to December 2022. We monitored the impact of SARS-CoV-2 infections on public health by comparing three sets of data: quantitative measurements of viral RNA in wastewater as an unbiased reporter of virus level in the community, positive results of viral RNA or antigen tests from nasal swabs reflecting community reporting, and hospitalization data. From February 2021 to August 2022 viral RNA levels in wastewater were closely correlated with the oscillating course of COVID-19 case and hospitalization numbers. However, from September 2022 cases remained low and hospitalization numbers dropped, whereas viral RNA levels in wastewater continued to oscillate. The low reported cases may reflect virulence reduction combined with abated inclination to report, and the divergence of virus levels in wastewater from reported cases may reflect COVID-19 shifting from pandemic to endemic. WBE, which also detects asymptomatic infections, can provide an early warning of impending cases, and offers crucial insights during pandemic waves and in the transition to the endemic phase.
Collapse
Affiliation(s)
| | - Biruhalem Taye
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | - Iris Yousaf
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Priya Sampathkumar
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ann M. Moyer
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin R. Kipp
- Advanced Diagnostics Laboratory, Mayo Clinic, Rochester, MN, USA
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Caroline R. Sussman
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
4
|
Carducci A, Federigi I, Lauretani G, Muzio S, Pagani A, Atomsa NT, Verani M. Critical Needs for Integrated Surveillance: Wastewater-Based and Clinical Epidemiology in Evolving Scenarios with Lessons Learned from SARS-CoV-2. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:38-49. [PMID: 38168848 DOI: 10.1007/s12560-023-09573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
During the COVID-19 pandemic, wastewater-based epidemiology (WBE) and clinical surveillance have been used as tools for analyzing the circulation of SARS-CoV-2 in the community, but both approaches can be strongly influenced by some sources of variability. From the challenging perspective of integrating environmental and clinical data, we performed a correlation analysis between SARS-CoV-2 concentrations in raw sewage and incident COVID-19 cases in areas served by medium-size wastewater treatment plants (WWTPs) from 2021 to 2023. To this aim, both datasets were adjusted for several sources of variability: WBE data were adjusted for factors including the analytical protocol, sewage flow, and population size, while clinical data adjustments considered the demographic composition of the served population. Then, we addressed the impact on the correlation of differences among sewerage networks and variations in the frequency and type of swab tests due to changes in political and regulatory scenarios. Wastewater and clinical data were significantly correlated when restrictive containment measures and limited movements were in effect (ρ = 0.50) and when COVID-19 cases were confirmed exclusively through molecular testing (ρ = 0.49). Moreover, a positive (although weak) correlation arose for WWTPs located in densely populated areas (ρ = 0.37) and with shorter sewerage lengths (ρ = 0.28). This study provides methodological approaches for interpreting WBE and clinical surveillance data, which could also be useful for other infections. Data adjustments and evaluation of possible sources of bias need to be carefully considered from the perspective of integrated environmental and clinical surveillance of infections.
Collapse
Affiliation(s)
- Annalaura Carducci
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy
| | - Ileana Federigi
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy.
| | - Giulia Lauretani
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy
| | - Sara Muzio
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy
| | - Alessandra Pagani
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy
| | - Nebiyu Tariku Atomsa
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy
| | - Marco Verani
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy
| |
Collapse
|
5
|
Dostálková A, Zdeňková K, Bartáčková J, Čermáková E, Kapisheva M, Lopez Marin MA, Kouba V, Sýkora P, Chmel M, Bartoš O, Dresler J, Demnerová K, Rumlová M, Bartáček J. Prevalence of SARS-CoV-2 variants in Prague wastewater determined by nanopore-based sequencing. CHEMOSPHERE 2024; 351:141162. [PMID: 38218235 DOI: 10.1016/j.chemosphere.2024.141162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The early detection of upcoming disease outbreaks is essential to avoid both health and economic damage. The last four years of COVID-19 pandemic have proven wastewater-based epidemiology is a reliable system for monitoring the spread of SARS-CoV-2, a causative agent of COVID-19, in an urban population. As this monitoring enables the identification of the prevalence of spreading variants of SARS-CoV-2, it could provide a critical tool in the fight against this viral disease. In this study, we evaluated the presence of variants and subvariants of SARS-CoV-2 in Prague wastewater using nanopore-based sequencing. During August 2021, the data clearly showed that the number of identified SARS-CoV-2 RNA copies increased in the wastewater earlier than in clinical samples indicating the upcoming wave of the Delta variant. New SARS-CoV-2 variants consistently prevailed in wastewater samples around a month after they already prevailed in clinical samples. We also analyzed wastewater samples from smaller sub-sewersheds of Prague and detected significant differences in SARS-CoV-2 lineage progression dynamics among individual localities studied, e.g., suggesting faster prevalence of new variants among the sites with highest population density and mobility.
Collapse
Affiliation(s)
- Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology Prague, Czech Republic; National Institute of Virology and Bacteriology, University of Chemistry and Technology Prague, Czech Republic
| | - Kamila Zdeňková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czech Republic.
| | - Jana Bartáčková
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Eliška Čermáková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czech Republic
| | - Marina Kapisheva
- National Institute of Virology and Bacteriology, University of Chemistry and Technology Prague, Czech Republic
| | - Marco A Lopez Marin
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czech Republic
| | - Vojtěch Kouba
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Petr Sýkora
- PVK a.s., Prague Water Supply and Sewerage Company, Czech Republic
| | - Martin Chmel
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czech Republic; Military Health Institute, Military Medical Agency, Czech Republic
| | - Oldřich Bartoš
- Military Health Institute, Military Medical Agency, Czech Republic
| | - Jiří Dresler
- Military Health Institute, Military Medical Agency, Czech Republic
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, Czech Republic; National Institute of Virology and Bacteriology, University of Chemistry and Technology Prague, Czech Republic
| | - Jan Bartáček
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| |
Collapse
|
6
|
Holm RH, Rempala G, Choi B, Brick JM, Amraotkar A, Keith R, Rouchka EC, Chariker JH, Palmer K, Smith TR, Bhatnagar A. Wastewater and seroprevalence for pandemic preparedness: variant analysis, vaccination effect, and hospitalization forecasting for SARS-CoV-2, in Jefferson County, Kentucky. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.06.23284260. [PMID: 36656780 PMCID: PMC9844017 DOI: 10.1101/2023.01.06.23284260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite wide scale assessments, it remains unclear how large-scale SARS-CoV-2 vaccination affected the wastewater concentration of the virus or the overall disease burden as measured by hospitalization rates. We used weekly SARS-CoV-2 wastewater concentration with a stratified random sampling of seroprevalence, and linked vaccination and hospitalization data, from April 2021-August 2021 in Jefferson County, Kentucky (USA). Our susceptible (S), vaccinated (V), variant-specific infected (I_1 and I_2), recovered (R), and seropositive (T) model (SVI_2 RT) tracked prevalence longitudinally. This was related to wastewater concentration. The 64% county vaccination rate translated into about 61% decrease in SARS-CoV-2 incidence. The estimated effect of SARS-CoV-2 Delta variant emergence was a 24-fold increase of infection counts, which corresponded to an over 9-fold increase in wastewater concentration. Hospitalization burden and wastewater concentration had the strongest correlation (r = 0.95) at 1 week lag. Our study underscores the importance of continued environmental surveillance post-vaccine and provides a proof-of-concept for environmental epidemiology monitoring of infectious disease for future pandemic preparedness.
Collapse
|
7
|
Bertels X, Hanoteaux S, Janssens R, Maloux H, Verhaegen B, Delputte P, Boogaerts T, van Nuijs ALN, Brogna D, Linard C, Marescaux J, Didy C, Pype R, Roosens NHC, Van Hoorde K, Lesenfants M, Lahousse L. Time series modelling for wastewater-based epidemiology of COVID-19: A nationwide study in 40 wastewater treatment plants of Belgium, February 2021 to June 2022. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165603. [PMID: 37474075 DOI: 10.1016/j.scitotenv.2023.165603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Wastewater-based epidemiology (WBE) has been implemented to monitor surges of COVID-19. Yet, multiple factors impede the usefulness of WBE and quantitative adjustment may be required. AIM We aimed to model the relationship between WBE data and incident COVID-19 cases, while adjusting for confounders and autocorrelation. METHODS This nationwide WBE study includes data from 40 wastewater treatment plants (WWTPs) in Belgium (02/2021-06/2022). We applied ARIMA-based modelling to assess the effect of daily flow rate, pepper mild mottle virus (PMMoV) concentration, a measure of human faeces in wastewater, and variants (alpha, delta, and omicron strains) on SARS-CoV-2 RNA levels in wastewater. Secondly, adjusted WBE metrics at different lag times were used to predict incident COVID-19 cases. Model selection was based on AICc minimization. RESULTS In 33/40 WWTPs, RNA levels were best explained by incident cases, flow rate, and PMMoV. Flow rate and PMMoV were associated with -13.0 % (95 % prediction interval: -26.1 to +0.2 %) and +13.0 % (95 % prediction interval: +5.1 to +21.0 %) change in RNA levels per SD increase, respectively. In 38/40 WWTPs, variants did not explain variability in RNA levels independent of cases. Furthermore, our study shows that RNA levels can lead incident cases by at least one week in 15/40 WWTPs. The median population size of leading WWTPs was 85.1 % larger than that of non‑leading WWTPs. In 17/40 WWTPs, however, RNA levels did not lead or explain incident cases in addition to autocorrelation. CONCLUSION This study provides quantitative insights into key determinants of WBE, including the effects of wastewater flow rate, PMMoV, and variants. Substantial inter-WWTP variability was observed in terms of explaining incident cases. These findings are of practical importance to WBE practitioners and show that the early-warning potential of WBE is WWTP-specific and needs validation.
Collapse
Affiliation(s)
- Xander Bertels
- Department of Bioanalysis, Ghent University, 9000 Ghent, Belgium
| | - Sven Hanoteaux
- Epidemiology and Public Health, Epidemiology of Infectious Diseases, Sciensano, 1050 Brussels, Belgium
| | - Raphael Janssens
- Epidemiology and Public Health, Epidemiology of Infectious Diseases, Sciensano, 1050 Brussels, Belgium
| | - Hadrien Maloux
- Epidemiology and Public Health, Epidemiology of Infectious Diseases, Sciensano, 1050 Brussels, Belgium
| | - Bavo Verhaegen
- Infectious Diseases in Humans, Foodborne Pathogens, Sciensano, 1050 Brussels, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tim Boogaerts
- Toxicological Centre, University of Antwerp, 2610 Antwerp, Belgium
| | | | - Delphine Brogna
- Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - Catherine Linard
- Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - Jonathan Marescaux
- Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium; E-BIOM SA, 5000 Namur, Belgium
| | - Christian Didy
- Société Publique de Gestion de l'Eau, 4800 Verviers, Belgium
| | - Rosalie Pype
- Société Publique de Gestion de l'Eau, 4800 Verviers, Belgium
| | - Nancy H C Roosens
- Biological Health Risks, Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
| | - Koenraad Van Hoorde
- Infectious Diseases in Humans, Foodborne Pathogens, Sciensano, 1050 Brussels, Belgium
| | - Marie Lesenfants
- Epidemiology and Public Health, Epidemiology of Infectious Diseases, Sciensano, 1050 Brussels, Belgium
| | - Lies Lahousse
- Department of Bioanalysis, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
Nahian A, Huber VC, McFadden LM. Unique SARS-CoV-2 Variants, Tourism Metrics, and B.1.2 Emergence in Early COVID-19 Pandemic: A Correlation Analysis in South Dakota. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6748. [PMID: 37754608 PMCID: PMC10531005 DOI: 10.3390/ijerph20186748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which is the source of the coronavirus disease 2019 (COVID-19), was declared a pandemic in the March of 2020. Travel and tourism were severely impacted as restrictions were imposed to help slow the disease spread, but some states took alternative approaches to travel restrictions. This study investigated the spread of COVID-19 in South Dakota during the early pandemic period to better understand how tourism affected the movement of the virus within the region. Sequences from the fall of 2020 were retrieved from public sources. CDC and other sources were used to determine infections, deaths, and tourism metrics during this time. The data were analyzed using correlation and logistic regression. This study found that the number of unique variants per month was positively correlated with hotel occupancy, but not with the number of cases or deaths. Interestingly, the emergence of the B.1.2 variant in South Dakota was positively correlated with increased case numbers and deaths. Data show that states with a shelter-in-place order were associated with a slower emergence of the B.1.2 variant compared to states without such an order, including South Dakota. Findings suggest complex relationships between tourism, SARS-CoV-2 infections, and mitigation strategies. The unique approach that South Dakota adopted provided insights into the spread of the disease in areas without state-wide restrictions. Our results suggest both positive and negative aspects of this approach. Finally, our data highlight the need for future surveillance efforts, including efforts focused on identifying variants with known increased transmission potential to produce effective population health management.
Collapse
Affiliation(s)
| | | | - Lisa M. McFadden
- Division of Basic Biomedical Sciences, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| |
Collapse
|
9
|
Flood MT, Sharp J, Bruggink J, Cormier M, Gomes B, Oldani I, Zimmy L, Rose JB. Understanding the efficacy of wastewater surveillance for SARS-CoV-2 in two diverse communities. PLoS One 2023; 18:e0289343. [PMID: 37535602 PMCID: PMC10399835 DOI: 10.1371/journal.pone.0289343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
During the COVID-19 pandemic, wastewater-based surveillance has been shown to be a useful tool for monitoring the spread of disease in communities and the emergence of new viral variants of concern. As the pandemic enters its fourth year and clinical testing has declined, wastewater offers a consistent non-intrusive way to monitor community health in the long term. This study sought to understand how accurately wastewater monitoring represented the actual burden of disease between communities. Two communities varying in size and demographics in Michigan were monitored for SARS-CoV-2 in wastewater between March of 2020 and February of 2022. Additionally, each community was monitored for SARS-CoV-2 variants of concern from December 2020 to February 2022. Wastewater results were compared with zipcode and county level COVID-19 case data to determine which scope of clinical surveillance was most correlated with wastewater loading. Pearson r correlations were highest in the smaller of the two communities (population of 25,000) for N1 GC/person/day with zipcode level case data, and date of the onset of symptoms (r = 0.81). A clear difference was seen with more cases and virus signals in the wastewater of the larger community (population 110,000) when examined based on vaccine status, which reached only 50%. While wastewater levels of SARS-CoV-2 had a lower correlation to cases in the larger community, the information was still seen as valuable in supporting public health actions and further data including vaccination status should be examined in the future.
Collapse
Affiliation(s)
- Matthew T. Flood
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Josh Sharp
- Department of Biology, Northern Michigan University, Marquette, Michigan, United States of America
| | - Jennifer Bruggink
- Department of Biology, Northern Michigan University, Marquette, Michigan, United States of America
| | - Molly Cormier
- Department of Biology, Northern Michigan University, Marquette, Michigan, United States of America
| | - Bailey Gomes
- Department of Biology, Northern Michigan University, Marquette, Michigan, United States of America
| | - Isabella Oldani
- Department of Biology, Northern Michigan University, Marquette, Michigan, United States of America
| | - Lauren Zimmy
- Department of Biology, Northern Michigan University, Marquette, Michigan, United States of America
| | - Joan B. Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
10
|
Ong'era EM, Mohammed KS, Makori TO, Bejon P, Ocholla-Oyier LI, Nokes DJ, Agoti CN, Githinji G. High-throughput sequencing approaches applied to SARS-CoV-2. Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.18701.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
High-throughput sequencing is crucial for surveillance and control of viral outbreaks. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, advances in the high-throughput sequencing technology resources have enhanced diagnosis, surveillance, and vaccine discovery. From the onset of the pandemic in December 2019, several genome-sequencing approaches have been developed and supported across the major sequencing platforms such as Illumina, Oxford Nanopore, PacBio, MGI DNBSEQTM and Ion Torrent. Here, we share insights from the sequencing approaches developed for sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between December 2019 and October 2022.
Collapse
|
11
|
Tiwari A, Adhikari S, Zhang S, Solomon TB, Lipponen A, Islam MA, Thakali O, Sangkham S, Shaheen MNF, Jiang G, Haramoto E, Mazumder P, Malla B, Kumar M, Pitkänen T, Sherchan SP. Tracing COVID-19 Trails in Wastewater: A Systematic Review of SARS-CoV-2 Surveillance with Viral Variants. WATER 2023; 15:1018. [DOI: 10.3390/w15061018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The emergence of new variants of SARS-CoV-2 associated with varying infectivity, pathogenicity, diagnosis, and effectiveness against treatments challenged the overall management of the COVID-19 pandemic. Wastewater surveillance (WWS), i.e., monitoring COVID-19 infections in communities through detecting viruses in wastewater, was applied to track the emergence and spread of SARS-CoV-2 variants globally. However, there is a lack of comprehensive understanding of the use and effectiveness of WWS for new SARS-CoV-2 variants. Here we systematically reviewed published articles reporting monitoring of different SARS-CoV-2 variants in wastewater by following the PRISMA guidelines and provided the current state of the art of this study area. A total of 80 WWS studies were found that reported different monitoring variants of SARS-CoV-2 until November 2022. Most of these studies (66 out of the total 80, 82.5%) were conducted in Europe and North America, i.e., resource-rich countries. There was a high variation in WWS sampling strategy around the world, with composite sampling (50/66 total studies, 76%) as the primary method in resource-rich countries. In contrast, grab sampling was more common (8/14 total studies, 57%) in resource-limited countries. Among detection methods, the reverse transcriptase polymerase chain reaction (RT-PCR)-based sequencing method and quantitative RT-PCR method were commonly used for monitoring SARS-CoV-2 variants in wastewater. Among different variants, the B1.1.7 (Alpha) variant that appeared earlier in the pandemic was the most reported (48/80 total studies), followed by B.1.617.2 (Delta), B.1.351 (Beta), P.1 (Gamma), and others in wastewater. All variants reported in WWS studies followed the same pattern as the clinical reporting within the same timeline, demonstrating that WWS tracked all variants in a timely way when the variants emerged. Thus, wastewater monitoring may be utilized to identify the presence or absence of SARS-CoV-2 and follow the development and transmission of existing and emerging variants. Routine wastewater monitoring is a powerful infectious disease surveillance tool when implemented globally.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | | | - Shuxin Zhang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
| | | | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Md. Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj 2310, Bangladesh
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao 56000, Thailand
| | - Mohamed N. F. Shaheen
- Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, Giza 2310, Egypt
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong 2522, Australia
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Payal Mazumder
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | - Tarja Pitkänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Samendra P. Sherchan
- Department of Biology, Morgan State University, Baltimore, MD 11428, USA
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
12
|
Rainey AL, Buschang K, O’Connor A, Love D, Wormington AM, Messcher RL, Loeb JC, Robinson SE, Ponder H, Waldo S, Williams R, Shapiro J, McAlister EB, Lauzardo M, Lednicky JA, Maurelli AT, Sabo-Attwood T, Bisesi J. Retrospective Analysis of Wastewater-Based Epidemiology of SARS-CoV-2 in Residences on a Large College Campus: Relationships between Wastewater Outcomes and COVID-19 Cases across Two Semesters with Different COVID-19 Mitigation Policies. ACS ES&T WATER 2023; 3:16-29. [PMID: 37552720 PMCID: PMC9762499 DOI: 10.1021/acsestwater.2c00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Wastewater-based epidemiology (WBE) has been utilized for outbreak monitoring and response efforts in university settings during the coronavirus disease 2019 (COVID-19) pandemic. However, few studies examined the impact of university policies on the effectiveness of WBE to identify cases and mitigate transmission. The objective of this study was to retrospectively assess relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater outcomes and COVID-19 cases in residential buildings of a large university campus across two academic semesters (August 2020-May 2021) under different COVID-19 mitigation policies. Clinical case surveillance data of student residents were obtained from the university COVID-19 response program. We collected and processed building-level wastewater for detection and quantification of SARS-CoV-2 RNA by RT-qPCR. The odds of obtaining a positive wastewater sample increased with COVID-19 clinical cases in the fall semester (OR = 1.50, P value = 0.02), with higher odds in the spring semester (OR = 2.63, P value < 0.0001). We observed linear associations between SARS-CoV-2 wastewater concentrations and COVID-19 clinical cases (parameter estimate = 1.2, P value = 0.006). Our study demonstrated the effectiveness of WBE in the university setting, though it may be limited under different COVID-19 mitigation policies. As a complementary surveillance tool, WBE should be accompanied by robust administrative and clinical testing efforts for the COVID-19 pandemic response.
Collapse
Affiliation(s)
- Andrew L. Rainey
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Katherine Buschang
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Amber O’Connor
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Deirdre Love
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Alexis M. Wormington
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Rebeccah L. Messcher
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Julia C. Loeb
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Sarah E. Robinson
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Hunter Ponder
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Sarah Waldo
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Roy Williams
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Jerne Shapiro
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
- Department of Epidemiology, College of Public
Health and Health Professions and College of Medicine, Gainesville,
Florida32611, United States
| | | | - Michael Lauzardo
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Department of Medicine, College of Medicine,
University of Florida, Gainesville, Florida32611,
United States
| | - John A. Lednicky
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Anthony T. Maurelli
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Joseph
H. Bisesi
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| |
Collapse
|
13
|
McKune SL, Acosta D, Fujii Y, Joyce-Beaulieu D, Sayeed MA, Cato E, Flaherty KE, Creasy-Marrazzo A, Pu R, Kariyawasam S, Arukha A, Cummings DAT, Long MT, Maurelli AT, Nelson EJ. The infected and the affected: A longitudinal study of the impact of the COVID-19 pandemic on schoolchildren in Florida. Front Public Health 2023; 11:1003923. [PMID: 36969651 PMCID: PMC10030597 DOI: 10.3389/fpubh.2023.1003923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023] Open
Abstract
Objectives To identify risk factors associated with symptoms of anxiety, depression, and obsessive-compulsive disorder (OCD) among children during the 1st year of the COVID-19 pandemic. Methods A longitudinal study with three cross-sectional timepoints [April 2020 (n = 273), October 2020 (n = 180), and April 2021 (n = 116)] was conducted at a K-12 public school in Florida. Infection and sero-positivity for SARS-CoV-2 was determined by molecular and serologic approaches. Adjusted odds ratios using mixed effect logistic regression models for symptom-derived indicators of anxiety, depression, and OCD in children in April 2021 are presented; past infection and seropositivity were included in the models. Results The prevalence of anxiety, depression, or OCD moved from 47.1, to 57.2, to 42.2% across the three timepoints during the study. By endline of the study, in April 2021, non-white children were at higher risk for depression and OCD. Risk for anxiety, depression, and OCD was associated with students who lost a family member due to COVID-19 and who were identified as at-risk in previous timepoints. Rates of SARS-CoV-2 infection and seropositivity were low and not statistically associated with assessed outcomes. Conclusions In situations like the COVID-19 pandemic, targeted mental health interventions and screenings are needed in children and adolescents, especially among minority children.
Collapse
Affiliation(s)
- Sarah L. McKune
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
- *Correspondence: Sarah L. McKune
| | - Daniel Acosta
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Yui Fujii
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Diana Joyce-Beaulieu
- Department of Special Education, School Psychology, and Early Childhood Studies, College of Education, University of Florida, Gainesville, FL, United States
| | - Md Abu Sayeed
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Emilee Cato
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Katelyn E. Flaherty
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Ashton Creasy-Marrazzo
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Ruiyu Pu
- Department of Comparative Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Subhashinie Kariyawasam
- Department of Comparative Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Anantha Arukha
- Department of Comparative Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Derek A. T. Cummings
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Maureen T. Long
- Department of Comparative Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Anthony T. Maurelli
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Eric J. Nelson
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Rainey AL, Loeb JC, Robinson SE, Davis P, Liang S, Lednicky JA, Coker ES, Sabo-Attwood T, Bisesi JH, Maurelli AT. Assessment of a mass balance equation for estimating community-level prevalence of COVID-19 using wastewater-based epidemiology in a mid-sized city. Sci Rep 2022; 12:19085. [PMID: 36352013 PMCID: PMC9645338 DOI: 10.1038/s41598-022-21354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
Wastewater-based epidemiology (WBE) has emerged as a valuable epidemiologic tool to detect the presence of pathogens and track disease trends within a community. WBE overcomes some limitations of traditional clinical disease surveillance as it uses pooled samples from the entire community, irrespective of health-seeking behaviors and symptomatic status of infected individuals. WBE has the potential to estimate the number of infections within a community by using a mass balance equation, however, it has yet to be assessed for accuracy. We hypothesized that the mass balance equation-based approach using measured SARS-CoV-2 wastewater concentrations can generate accurate prevalence estimates of COVID-19 within a community. This study encompassed wastewater sampling over a 53-week period during the COVID-19 pandemic in Gainesville, Florida, to assess the ability of the mass balance equation to generate accurate COVID-19 prevalence estimates. The SARS-CoV-2 wastewater concentration showed a significant linear association (Parameter estimate = 39.43, P value < 0.0001) with clinically reported COVID-19 cases. Overall, the mass balance equation produced accurate COVID-19 prevalence estimates with a median absolute error of 1.28%, as compared to the clinical reference group. Therefore, the mass balance equation applied to WBE is an effective tool for generating accurate community-level prevalence estimates of COVID-19 to improve community surveillance.
Collapse
Affiliation(s)
- Andrew L Rainey
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - Julia C Loeb
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Road, PO Box 110885, Gainesville, FL, 32611, USA
| | - Paul Davis
- Gainesville Regional Utilities, Gainesville, FL, 32614, USA
| | - Song Liang
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - Eric S Coker
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Road, PO Box 110885, Gainesville, FL, 32611, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA.
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA.
- Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Road, PO Box 110885, Gainesville, FL, 32611, USA.
| | - Anthony T Maurelli
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA.
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA.
| |
Collapse
|
15
|
Lu Z, Brunton AE, Mohebnasab M, Deloney A, Williamson KJ, Layton BA, Mansell S, Brawley-Chesworth A, Abrams P, Wilcox KA, Franklin FA, McWeeney SK, Streblow DN, Fan G, Hansel DE. Community-Based SARS-CoV-2 Testing Using Saliva or Nasopharyngeal Swabs to Compare the Performance of Weekly COVID-19 Screening to Wastewater SARS-CoV-2 Signals. ACS ES&T WATER 2022; 2:1667-1677. [PMID: 37552730 PMCID: PMC9528017 DOI: 10.1021/acsestwater.2c00177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 08/10/2023]
Abstract
Multiple studies worldwide have confirmed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA can be detected in wastewater. However, there is a lack of data directly comparing the wastewater SARS-CoV-2 RNA concentration with the prevalence of coronavirus disease 2019 (COVID-19) in individuals living in sewershed areas. Here, we correlate wastewater SARS-CoV-2 signals with SARS-CoV-2 positivity rates in symptomatic and asymptomatic individuals and compare positivity rates in two underserved communities in Portland, Oregon to those reported in greater Multnomah County. 403 individuals were recruited via two COVID-19 testing sites over a period of 16 weeks. The weekly SARS-CoV-2 positivity rate in our cohort ranged from 0 to 21.7% and trended higher than symptomatic positivity rates reported by Multnomah County (1.9-8.7%). Among the 362 individuals who reported symptom status, 76 were symptomatic and 286 were asymptomatic. COVID-19 was detected in 35 participants: 24 symptomatic, 9 asymptomatic, and 2 of unknown symptomatology. Wastewater testing yielded 0.33-149.9 viral RNA genomic copies/L/person and paralleled community COVID-19 positive test rates. In conclusion, wastewater sampling accurately identified increased SARS-CoV-2 within a community. Importantly, the rate of SARS-CoV-2 positivity in underserved areas is higher than positivity rates within the County as a whole, suggesting a disproportionate burden of SARS-CoV-2 in these communities.
Collapse
Affiliation(s)
- Zhengchun Lu
- Department of Pathology & Laboratory Medicine,
Oregon Health & Science University, Portland,
Oregon97239, United States
| | - Amanda E. Brunton
- School of Public Health, Oregon Health
& Science University—Portland State University, Portland,
Oregon97239, United States
| | - Maedeh Mohebnasab
- Department of Pathology & Laboratory Medicine,
Oregon Health & Science University, Portland,
Oregon97239, United States
| | - Anthony Deloney
- Self Enhancement, Inc.,
Portland, Oregon97227, United States
| | - Kenneth J. Williamson
- Department of Research and Innovation,
Clean Water Services, Hillsboro, Oregon97123, United
States
| | - Blythe A. Layton
- Department of Research and Innovation,
Clean Water Services, Hillsboro, Oregon97123, United
States
| | - Scott Mansell
- Department of Research and Innovation,
Clean Water Services, Hillsboro, Oregon97123, United
States
| | | | - Peter Abrams
- City of Portland Bureau of Environmental
Services, Portland, Oregon97204, United States
| | - Kimberly A. Wilcox
- Department of Pathology & Laboratory Medicine,
Oregon Health & Science University, Portland,
Oregon97239, United States
| | - F. Abron Franklin
- School of Public Health, Epidemiology Division,
Oregon Health & Science University—Portland State
University, Portland, Oregon97239, United States
- Departments of Community Health and Preventive Medicine
and Graduate Education in Public Health, Morehouse School of
Medicine, Atlanta, Georgia30310, United States
| | - Shannon K. McWeeney
- Knight Cancer Institute, Oregon Health
and Science University, Portland, Oregon97239, United
States
- Division of Bioinformatics and Computational Biology,
Department of Medical Informatics and Clinical Epidemiology, Oregon Health
and Science University, Portland, Oregon97239, United
States
| | - Daniel N. Streblow
- Vaccine & Gene Therapy Institute,
Oregon Health & Science University, Beaverton,
Oregon97006United States
- Division of Pathobiology and Immunology,
Oregon National Primate Research Center, Beaverton,
Oregon97006, United States
| | - Guang Fan
- Department of Pathology & Laboratory Medicine,
Oregon Health & Science University, Portland,
Oregon97239, United States
| | - Donna E. Hansel
- Department of Pathology & Laboratory Medicine,
Oregon Health & Science University, Portland,
Oregon97239, United States
| |
Collapse
|
16
|
Vass WB, Lednicky JA, Shankar SN, Fan ZH, Eiguren-Fernandez A, Wu CY. Viable SARS-CoV-2 Delta variant detected in aerosols in a residential setting with a self-isolating college student with COVID-19. JOURNAL OF AEROSOL SCIENCE 2022; 165:106038. [PMID: 35774447 PMCID: PMC9217630 DOI: 10.1016/j.jaerosci.2022.106038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 05/08/2023]
Abstract
The B.1.617.2 (Delta) variant of SARS-CoV-2 emerged in India in October of 2020 and spread widely to over 145 countries, comprising over 99% of genome sequence-confirmed virus in COVID-19 cases of the United States (US) by September 2021. The rise in COVID-19 cases due to the Delta variant coincided with a return to in-person school attendance, straining COVID-19 mitigation plans implemented by educational institutions. Some plans required sick students to self-isolate off-campus, resulting in an unintended consequence: exposure of co-inhabitants of dwellings used by the sick person during isolation. We assessed air and surface samples collected from the bedroom of a self-isolating university student with mild COVID-19 for the presence of SARS-CoV-2. That virus' RNA was detected by real-time reverse-transcription quantitative polymerase chain reaction (rRT-qPCR) in air samples from both an isolation bedroom and a distal, non-isolation room of the same dwelling. SARS-CoV-2 was detected and viable virus was isolated in cell cultures from aerosol samples as well as from the surface of a mobile phone. Genomic sequencing revealed that the virus was a Delta variant SARS-CoV-2 strain. Taken together, the results of this work confirm the presence of viable SARS-CoV-2 within a residential living space of a person with COVID-19 and show potential for transportation of virus-laden aerosols beyond a designated isolation suite to other areas of a single-family home.
Collapse
Affiliation(s)
- William B Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - John A Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Z Hugh Fan
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
- Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | | | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|