1
|
Sun M, Qu Y, Jiao L, Bian H, Xu T, Wang S, Yang W, Dai H. Unlocking high-efficiency charge storage: Co-assembled nanoparticles of lignin and polyaniline molecules. J Colloid Interface Sci 2025; 678:40-49. [PMID: 39236353 DOI: 10.1016/j.jcis.2024.08.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Redox-active lignin rich in phenolic hydroxyl groups is an ingenious charge storage material. However, its insulating nature limits the storage/release of electrons and requires the construction of electron transfer channels within it. Herein, nanoparticles (PANI/DKL-NPs) are prepared by co-assembly via π-π interactions between conducting polyaniline (PANI) and demethylated Kraft lignin (DKL) molecules for the first time, and rapid electron transfer inside DKL is achieved. The co-assembled PANI/DKL-NPs consist of interpenetrating structures of PANI and DKL at the molecular scale, and the content of PANI molecules interspersed within them is controllable. Meanwhile, the extensive and abundant mesoporous structure in nanoscale PANI/DKL-NPs facilitates ion transport and electron storage. Based on this favorable microstructure, the specific capacitance of PANI/DKL-NPs at 1 A·g-1 is as high as 532 F·g-1, which is 780 % and 90.68 % higher compared to DKL-NPs and PANI-NPs, respectively. Meanwhile, the rate performance of PANI/DKL-NPs is significantly enhanced than that of DKL-NPs (33.11 %) and comparable to that of PANI-NPs (more than 69 %). Furthermore, the symmetric supercapacitor (PANI/DKL-NPs//PANI/DKL-NPs) assembled from it achieves a high energy density of 27.49 Wh·kg-1 at 400 W·kg-1 power density, and superb flexibility and mechanical stability. Therefore, the co-assembly of DKL and PANI will effectively stimulate the energy storage potential of lignin, providing a practical pathway to promote the development of biopolymers in energy storage.
Collapse
Affiliation(s)
- Mengya Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yifei Qu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Liang Jiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210093
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Tingting Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shumei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Weisheng Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Cui C, Qiao W, Li D, Wang LJ. Dual cross-linked magnetic gelatin/carboxymethyl cellulose cryogels for enhanced Congo red adsorption: Experimental studies and machine learning modelling. J Colloid Interface Sci 2025; 678:619-635. [PMID: 39305629 DOI: 10.1016/j.jcis.2024.09.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/27/2024]
Abstract
To achieve highly efficient and environmentally degradable adsorbents for Congo red (CR) removal, we synthesized a dual-network nanocomposite cryogel composed of gelatin/carboxymethyl cellulose, loaded with Fe3O4 nanoparticles. Gelatin and sodium carboxymethylcellulose were cross-linked using transglutaminase and calcium chloride, respectively. The cross-linking process enhanced the thermal stability of the composite cryogels. The CR adsorption process exhibited a better fit to the pseudo-second-order model and Langmuir model, with maximum adsorption capacity of 698.19 mg/g at pH of 7, temperature of 318 K, and initial CR concentration of 500 mg/L. Thermodynamic results indicated that the CR adsorption process was both spontaneous and endothermic. The performance of machine learning model showed that the Extreme Gradient Boosting model had the highest test determination coefficient (R2 = 0.9862) and the lowest root mean square error (RMSE = 10.3901 mg/g) among the 6 models. Feature importance analysis using SHapley Additive exPlanations (SHAP) revealed that the initial concentration had the greatest influence on the model's prediction of adsorption capacity. Density functional theory calculations indicated that there were active sites on the CR molecule that can undergo electrostatic interactions with the adsorbent. Thus, the synthesized cryogels demonstrate promising potential as adsorbents for dye removal from wastewater.
Collapse
Affiliation(s)
- Congli Cui
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China
| | - Weixu Qiao
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Shah LA, Subhan H, Alam S, Ye D, Ullah M. Bentonite clay reinforced alginate grafted composite hydrogel with remarkable sorptive performance toward removal of methylene green. Int J Biol Macromol 2024; 279:135600. [PMID: 39276899 DOI: 10.1016/j.ijbiomac.2024.135600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/25/2023] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The rapid industrial progress in today's world has led to an alarming increase in water pollution caused by various contaminants such as synthetic dyes. To address this issue, a new hydrogel sorbent, BC-r-Na-Alg-g-p(NIPAm-co-AAc), was developed by combining bentonite clay, sodium alginate, and poly(N-isopropyl acrylamide-co-acrylic acid) through one-pot free radical polymerization at 60 °C. The developed sorbent was characterized using several analytical techniques including SEM, FTIR, TGA, UTM, and swelling studies. The swelling capacity of the sorbent was observed to increase remarkably with an increase in pH, reaching a maximum of 9664 % at pH 11. In batch mode sorption experiments, the sorbent's performance toward methylene green (MG) was investigated by analysing the effects of contact time, pH, temperature, and concentration. The experimental data were fitted to pseudo-second-order kinetic and Langmuir isotherm models, indicating chemisorption as the dominant interaction mode between the anionic sorbent and cationic MG. However, physisorption may also occur to a lesser extent, indicated by the significant R2 of the pseudo-first-order kinetic and Freundlich isotherm models. Additionally, the sorbent exhibited very little decrease (approximately 5 %) in sorptive performance for six sorption-desorption cycles. Overall, the facile fabrication, excellent swelling (9664 %), promising sorption performance (2573 mg.g-1), and good recyclability (6 cycles) make the developed sorbent a potential candidate for various industrial applications.
Collapse
Affiliation(s)
- Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, 25120, Pakistan.
| | - Hanif Subhan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, 25120, Pakistan; Department of Chemistry, University of Malakand, KPK, Pakistan
| | - Sultan Alam
- Department of Chemistry, University of Malakand, KPK, Pakistan
| | - Daixin Ye
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mohib Ullah
- Department of Chemistry, Balochistan university of Information Technology Engineering and Management Sciences (BUITEMS), Takatu Campus, Quetta 87300, Pakistan
| |
Collapse
|
4
|
Liu ZW, Wang XL, Xian HJ, Zhong JH, Ye XG, Yang YX, Hu Y, Chen Y, Li DM, Huang C. Highly efficient malachite green adsorption by bacterial cellulose and bacterial cellulose/locust bean gum composite. Int J Biol Macromol 2024; 279:134991. [PMID: 39197602 DOI: 10.1016/j.ijbiomac.2024.134991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
In this study, bacterial cellulose (BC) and BC/locust bean gum (LBG) composite produced from banana hydrolysate were both used as the adsorbent for various organic dyes adsorption especially for malachite green (MG) adsorption for the first time. The BC/LBG(2%) composite exhibited significantly enhanced swelling rate and textural characteristics while maintained the basic structure of BC as depicted by XRD, FT-IR, and NMR, providing a foundation for its application as an excellent adsorbent. The composite exhibited a high adsorption rate and adsorption capacity for MG (exceeding 95 % and 2000 mg/g), and had a good selectivity for MG adsorption in the solution containing crystal violet (CV), rhodamine B (RB), and methyl orange (MO). The MG adsorption process conformed to multiple models including Langmuir and pseudo-first-order models. And the adsorption mechanism mainly comprised chemical adsorption (hydrogen bonding and electrostatic interactions) and physical adsorption. The reusability of BC/LBG(2%) composite was attractive for industrial application that the MG adsorption rate reduced merely a little (still higher than 88 %) after the 5th regeneration process. Overall, considering its adsorption capacity, selectivity, and reusability, BC/LBG(2%) composite prepared by in-situ fermentation with LBG addition was a competent adsorbent for MG adsorption and MG containing wastewater treatment.
Collapse
Affiliation(s)
- Zhuo-Wei Liu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Xiao-Lin Wang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Hui-Jun Xian
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Jun-Hang Zhong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Xi-Guang Ye
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yong-Xia Yang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Dong-Mei Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| |
Collapse
|
5
|
Chen X, Zhang G, Hou F, Zhu J. Highly effective removal of basic fuchsin dye using carboxymethyl konjac glucomannan grafted acrylic acid-acrylamide/montmorillonite composite hydrogel. Int J Biol Macromol 2024; 277:134163. [PMID: 39059536 DOI: 10.1016/j.ijbiomac.2024.134163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
This study developed a nanocomposite hydrogel, CAM4-MMT, for efficiently removing basic fuchsin dye from water. The hydrogel was prepared by grafting a copolymer of acrylic acid (AA) and acrylamide (AM) onto carboxymethyl konjac glucomannan (CMKGM), and doped with montmorillonite (MMT), exhibited excellent thermal stability, a porous inner structure, large specific surface area (1.407 m2/g), and high swelling capacity (107.3 g/g). The hydrogel achieved a maximum adsorption capacity of 694.1 mg/g and a removal rate of 99.5 %. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption process. Regeneration and reuse tests confirmed that the hydrogel has excellent recyclability. In conclusion, the CAM4-MMT composite hydrogel efficiently removed basic fuchsin from water solutions, offering a new scheme for eliminating basic fuchsin using natural polysaccharides with promising applications.
Collapse
Affiliation(s)
- Xing Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Guanghua Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Feifan Hou
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Junfeng Zhu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| |
Collapse
|
6
|
Davantès A, Nigen M, Sanchez C, Renard D. Adsorption of Acacia Gum on Self-Assembled Monolayer Surfaces: A Comprehensive Study Using QCM-D and MP-SPR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19032-19042. [PMID: 39206803 DOI: 10.1021/acs.langmuir.4c02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The interfacial structuring of Acacia gum at various pH values on self-assembled monolayer (SAM) surfaces was investigated in order to evaluate the respective importance of surface versus biopolymer hydration in the adsorption process of the gum. To this end, SAMs with four different ending chemical functionalities (-CH3, -OH, -COOH, and -NH2) were used on gold surfaces, and the gum adsorption was monitored using multiparametric surface plasmon resonance (MP-SPR) and quartz crystal microbalance with dissipation. Surface modification with alkanethiol and the subsequent adsorption of Acacia gum were also characterized by contact angle measurements using both sessile drop and captive bubble methods. According to MP-SPR results, this study demonstrated that gum adsorbed on all surfaces and that adsorption is the most favorable at both acid pH and hydrophobic environments, i.e., when both the surface and the biopolymer are weakly hydrated and more prone to interfacial dehydration. These results reinforce our recent proposal of interfacial dehydration-induced structuring of biopolymers. Increasing the pH logically decreased the adsorption capacity, especially on a hydrophilic surface, enhancing the hydration rate of the layer. A hydrophilic surface is unfavorable to Acacia gum adsorption except if the surface presents a negative surface charge. In this case, interfacial charge dehydration was promoted by attractive electrostatic interactions between the surface and biopolymers. In the aggregate, the water percentage and the viscoelastic properties were closely related to the properties of the surface function: the negative charge and hydrophobicity significantly increased the hydration rate and viscoelastic properties with the pH, while the positive charge induced a rigid and more dehydrated layer.
Collapse
Affiliation(s)
| | - Michaël Nigen
- UMR IATE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | - Christian Sanchez
- UMR IATE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | | |
Collapse
|
7
|
Sundaresan R, Mariyappan V, Chen SM, Ramachandran B, Paulsamy R, Rasu R. Construction of an electrochemical sensor towards environmental hazardous 4-nitrophenol based on Nd(OH) 3-embedded VSe 2 nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46470-46483. [PMID: 36781666 DOI: 10.1007/s11356-023-25688-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The toxicity of 4-nitrophenol (4-NP) is one of the most common threats to the environment; therefore, developing a simple and sensitive analytical method to detect 4-NP is crucial. In this study, we prepared the Nd(OH)3/VSe2 nanocomposite using the simple hydrothermally assisted ultrasonication method and it was used to detect the 4-NP. Different characterization techniques were used to investigate the morphological and chemical compositions of Nd(OH)3/VSe2 nanocomposite. All of these investigations revealed that Nd(OH)3 nanoparticles were finely dispersed on the surface of the VSe2 nanosheet. The electrical conductivity of our prepared samples was evaluated by the electrochemical impedance spectroscopic technique. The CV and DPV methods were used to explore the electrochemical activity of 4-NP at the Nd(OH)3/VSe2/GCE sensor which exhibited a wide linear range (0.001 to 640 µM), low limit of detection (0.008 µM), and good sensitivity (0.41 µA µM-1 cm-2), respectively. Additionally, Nd(OH)3/VSe2/GCE sensor was tested in water samples for the detection of 4-NP, which exhibited good recovery results. The Nd(OH)3/VSe2 electrode material is a novel one for the electrochemical sensor field, and the obtained overall results also proved that our proposed material is an active material for sensor applications.
Collapse
Affiliation(s)
- Ruspika Sundaresan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Vinitha Mariyappan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Balaji Ramachandran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Raja Paulsamy
- Department of Chemistry, Vivekananda College of Arts and Science, Agastheeswaram, Kanyakumari, 629 004, Tamil Nadu, India
| | - Ramachandran Rasu
- Department of Chemistry, The Madura College, Tamil Nadu, Vidya Nagar, Madurai, 625 011, India
| |
Collapse
|
8
|
Emil-Kaya E, Uysal E, Dikmetas DN, Karbancioğlu-Güler F, Gürmen S, Friedrich B. Development of a Near-Zero-Waste Valorization Concept for Waste NdFeB Magnets: Production of Antimicrobial Fe Alginate Beads via Adsorption and Recovery of High-Purity Rare-Earth Elements. ACS OMEGA 2024; 9:6442-6454. [PMID: 38371772 PMCID: PMC10870350 DOI: 10.1021/acsomega.3c06178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
Nowadays, with the evolution of technology, rare earths are raw materials for a multitude of products, especially in high technological applications. A high amount of REEs is used in the production of permanent magnets, particularly NdFeB. The demand for some of the REEs, including neodymium, praseodymium, and dysprosium, is expected to increase in the coming years. REEs are defined as critical materials due to their high supply risk and economic importance. Recycling secondary raw materials for supplying REEs in the future is one promising option, and one of the best candidates is NdFeB magnets. NdFeB magnets include approximately 30% REEs and 66% of iron. For the near-zero-waste concept, the recovered iron from NdFeB must be evaluated in other applications. In this study, the near-zero-waste valorization concept for EoL-NdFeB magnets is developed, and high-purity REEs are achieved with a two-step process, including leaching and adsorption using alginate beads. Moreover, antimicrobial Fe alginate beads are produced in the leach liquor via adsorption. The antimicrobial activity of the produced Fe alginate beads is evaluated with disc diffusion and broth dilution methods against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The most effective antibacterial Fe alginate beads are against E. coli and S. aureus with inhibitions of 87.21 and 56.25%, respectively.
Collapse
Affiliation(s)
- Elif Emil-Kaya
- Department
of Materials Science and Engineering, Norwegian
University of Science and Technology, Trondheim 7491, Norway
| | - Emircan Uysal
- Department
of Metallurgical & Materials Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Dilara Nur Dikmetas
- Department
of Food Engineering, Istanbul Technical
University, Istanbul 34469, Turkey
| | | | - Sebahattin Gürmen
- Department
of Metallurgical & Materials Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Bernd Friedrich
- IME
Process Metallurgy and Metal Recycling, RWTH Aachen University, Aachen 52062, Germany
| |
Collapse
|
9
|
Malabanan JWT, Alcantara KP, Jantaratana P, Pan Y, Nalinratana N, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Enhancing Physicochemical Properties and Biocompatibility of Hollow Porous Iron Oxide Nanoparticles through Polymer-Based Surface Modifications. ACS APPLIED BIO MATERIALS 2023; 6:5426-5441. [PMID: 37956113 DOI: 10.1021/acsabm.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In this study, we synthesized hollow porous iron oxide nanoparticles (HPIONPs) with surface modifications using polymers, specifically chitosan (Chi), polyethylene glycol (PEG), and alginate (Alg), to improve colloidal stability and biocompatibility. For colloidal stability, Alg-coated HPIONPs maintained size stability up to 24 h, with only an 18% increase, while Chi, PEG, and uncoated HPIONPs showed larger size increases ranging from 64 to 140%. The biocompatibility of polymer-coated HPIONPs was evaluated by assessing their cell viability, genotoxicity, and hemocompatibility. Across tested concentrations from 6.25 to 100 μg/mL, both uncoated and polymer-coated HPIONPs showed minimal cytotoxicity against three normal cell lines: RAW264.7, 3T3-L1, and MCF10A, with cell viability exceeding 80% at the highest concentration. Notably, polymer-coated HPIONPs exhibited nongenotoxicity based on the micronucleus assay and showed hemocompatibility, with only 2-3% hemolysis in mouse blood, in contrast to uncoated HPIONPs which exhibited 4-5%. Furthermore, we evaluated the cytotoxicity of HPIONPs on MDA-MB-231 breast cancer cells after a 2 h exposure to a stationary magnetic field, and the results showed the highest cell death of 38 and 29% when treated with uncoated and polymer-coated HPIONPs at 100 μg/mL, respectively. This phenomenon is attributed to iron catalyzing the Fenton and Haber-Weiss reactions, leading to reactive oxygen species (ROS)-dependent cell death (r ≥ 0.98). In conclusion, the hydrothermal synthesis and subsequent surface modification of HPIONPs with polymers showed improved colloidal stability, nongenotoxicity, and hemocompatibility compared to uncoated HPIONPs while maintaining closely similar levels of cytotoxicity against both normal and cancer cells. This research has paved the way for further exploration of polymer coatings to enhance the overall performance and safety profile of magnetic nanoparticles in delivering anticancer drugs.
Collapse
Affiliation(s)
- John Wilfred T Malabanan
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongsakorn Jantaratana
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Al-Kazragi MAUR, Al-Heetimi DTA, Wilson LD. Adsorption of methyl orange on low-cost adsorbent natural materials and modified natural materials: a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:639-668. [PMID: 37846031 DOI: 10.1080/15226514.2023.2259989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Recently a large number of extensive studies have amassed that describe the removal of dyes from water and wastewater using natural adsorbents and modified materials. Methyl orange dye is found in wastewater streams from various industries that include textiles, plastics, printing and paper among other sources. This article reviews methyl orange adsorption onto natural and modified materials. Despite many techniques available, adsorption stands out for efficient water and wastewater treatment for its ease of operation, flexibility and large-scale removal of colorants. It also has a significant potential for regeneration recovery and recycling of adsorbents in comparison to other water treatment methods. The adsorbents described herein were classified into five categories based on their chemical composition: bio-sorbents, activated carbon, biochar, clays and minerals, and composites. In this review article, we want to demonstrate the capacity of natural and modified materials for dye adsorption which can yield significant improvements to the adsorption capacity of dyes such as methyl orange. In addition, the effect of critical variables including contact time, initial methyl orange concentration, dosage of adsorbent, pH, temperature and mechanism on the adsorption efficiency will be covered as part of this literature review.
Collapse
Affiliation(s)
| | - Dhafir T A Al-Heetimi
- Department of Chemistry, College of Education for Pure Science Ibn-Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Lee D Wilson
- Department of Chemistry, College of Art and Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
11
|
Wu Y, Parandoust A, Sheibani R, Kargaran F, Khorsandi Z, Liang Y, Xia C, Van Le Q. Advances in gum-based hydrogels and their environmental applications. Carbohydr Polym 2023; 318:121102. [PMID: 37479451 DOI: 10.1016/j.carbpol.2023.121102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/23/2023]
Abstract
Gum-based hydrogels (GBHs) have been widely employed in diverse water purification processes due to their environmental properties, and high absorption capacity. More desired properties of GBHs such as biodegradability, biocompatibility, material cost, simplicity of manufacture, and wide range of uses have converted them into promising materials in water treatment processes. In this review, we explored the application of GBHs to remove pollutants from contaminated waters. Water resources are constantly being contaminated by a variety of harmful effluents such as heavy metals, dyes, and other dangerous substances. A practical way to remove chemical waste from water as a vital component is surface adsorption. Currently, hydrogels, three-dimensional polymeric networks, are quite popular for adsorption. They have more extensive uses in several industries, including biomedicine, water purification, agriculture, sanitary products, and biosensors. This review will help the researcher to understand the research gaps and drawbacks in this field, which will lead to further developments in the future.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ahmad Parandoust
- Farabi Educational Institute, Moghadas Ardebili St., Mahmoodiye St., No 13, 1986743413 Tehran, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran.
| | - Farshad Kargaran
- Department of Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Zahra Khorsandi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran
| | - Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Elmanfaloty R, Shoueir KR, Yousif B. Intriguing and Facile Preparation Approach of CdO Nanorod-Based Abundant Chitosan for Symmetric Supercapacitors. ACS OMEGA 2023; 8:35682-35692. [PMID: 37810675 PMCID: PMC10552095 DOI: 10.1021/acsomega.3c02261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
Abundant chitosan was rationally used for the green fabrication of cadmium oxide nanorods (CdO nanorods) owing to its environmentally benign characteristics, bioavailability, low cost, etc. However, the primary unsubstituted amino group of chitosan interacts with the surface of Cd salt at higher temperatures, resulting in CdO nanorod formation. A one-step hydrothermal technique was adopted in the presence of chitosan. Optical, structural, and morphology techniques characterized CdO nanorods. According to X-ray diffraction crystallography, CdO is well crystallized in the face-centered cubic lattice with an Fm-3m (225) space group. The AC@CdO nanoelectrode demonstrated an outstanding gravimetric capacitance of 320 F g-1 at a current density of 0.5 A g-1, nearly three-fold that of ordinary AC electrodes. The AC electrode and the AC@CdO nanoelectrode retain 90 and 93% of their initial specific capacitance after 10,000 galvanostatic charge discharge cycles. The AC@CdO nanoelectrode has a lower equivalent series resistance value than the AC electrode. Moreover, AC@CdO symmetric supercapacitor devices achieve excellent results in terms of specific energy, specific power, and capacitance retention.
Collapse
Affiliation(s)
- Rania
A. Elmanfaloty
- Department
of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
- Department
of Electronics and Communications Engineering, Alexandria Higher Institute of Engineering and Technology, Alexandria 21311, Egypt
| | - Kamel R. Shoueir
- Institute
of Nanoscience & Nanotechnology, Kafrelsheikh
University, Kafrelsheikh 33516, Egypt
| | - Bedir Yousif
- Electrical
Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Electrical
Engineering Department, Faculty of Engineering and Information Technology, Onaizah Colleges, Onaizah, Al Qassim 51911, Saudi Arabia
| |
Collapse
|
13
|
Azarpira H, Rasolevandi T, Mahvi AH. Diazinon and MCPA photo-reduction with sulfite excitation under UV irradiation and reducing agents' generation. Heliyon 2023; 9:e20880. [PMID: 37876429 PMCID: PMC10590789 DOI: 10.1016/j.heliyon.2023.e20880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Diazinon (DIZ) and 4-Chloro-2-methylphenoxyacetic acid (MCPA) herbicide and widely used in agricultural lands. Present study investigates diazinon and 4-chloro-2-methylphenoxyacetic acid photo-reduction via UV/Sulfite (US) in as Advanced Reduction Processes (ARP). The ideal pH was Molar ratio of sulfite: DIZ or MCPA 1:1 and, 20 min reaction time, and pH 9, in which about 100 % reduction of DIZ and MCPA with a concentration of 10 mg L-1 was achieved and the optimal conditions were considered. Kinetic investigation increasing DIZ and MCPA concentration from 5 to 20 mgL-1, kobs increase about from 0.151 to 0.234 for DIZ and from 0.231 to 0.589 min-1. Also, reaction rate (robs) increases about from 0.755 to 4.68 for DIZ and from 1.155 to 11.78 mg L-1.min. The amount of energy consumption in DIZ solution increased from 5 to 20, respectively, from 0.73 to 2.37, and in the reduction of MCPA from 0.47 to 1.49 kWh per cubic meter. According to experiments performed in 30 min with the US process, COD levels were reduced by about 46 % of both pollutants. It is important to note that the BOD/COD ratio rose from about 0.20 to 0.48 after 30 min. Since the index of biodegradability has grown high, it can be concluded that non-biodegradable COD (NBDCOD) convert to biodegradable COD (BDCOD) and toxicity is lower than of before of treatment. This study has been very suggesting that the UV/sulfite method produces effluent with a non-toxic and ecologically beneficial manner by biological treatment or discharge directly in environment.
Collapse
Affiliation(s)
- Hossein Azarpira
- Department of Environmental Health Engineering, Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Tayebeh Rasolevandi
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research (CSWR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Saddique Z, Imran M, Javaid A, Latif S, Kim TH, Janczarek M, Bilal M, Jesionowski T. Bio-fabricated bismuth-based materials for removal of emerging environmental contaminants from wastewater. ENVIRONMENTAL RESEARCH 2023; 229:115861. [PMID: 37062477 DOI: 10.1016/j.envres.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023]
Abstract
Although rapid industrialization has made life easier for humans, several associated issues are emerging and harming the environment. Wastewater is regarded as one of the key problems of the 21st century due to its massive production every year and requires immediate attention from all stakeholders to protect the environment. Since the introduction of nanotechnology, bismuth-based nanomaterials have been used in variety of applications. Various techniques, such as hydrothermal, solvo-thermal and biosynthesis, have been reported for synthesizing these materials, etc. Among these, biosynthesis is eco-friendly, cost-effective, and less toxic than conventional chemical methods. The prime focuses of this review are to elaborate biosynthesis of bismuth-based nanomaterials via bio-synthetic agents such as plant, bacteria and fungi and their application in wastewater treatment as anti-pathogen/photocatalyst for pollutant degradation. Besides this, future perspectives have been presented for the upcoming research in this field, along with concluding remarks.
Collapse
Affiliation(s)
- Zohaib Saddique
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan.
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Marcin Janczarek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
15
|
Beigi P, Ganjali F, Hassanzadeh-Afruzi F, Salehi MM, Maleki A. Enhancement of adsorption efficiency of crystal violet and chlorpyrifos onto pectin hydrogel@Fe 3O 4-bentonite as a versatile nanoadsorbent. Sci Rep 2023; 13:10764. [PMID: 37402768 DOI: 10.1038/s41598-023-38005-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
The magnetic mesoporous hydrogel-based nanoadsornet was prepared by adding the ex situ prepared Fe3O4 magnetic nanoparticles (MNPs) and bentonite clay into the three-dimentional (3D) cross-linked pectin hydrogel substrate for the adsorption of organophosphorus chlorpyrifos (CPF) pesticide and crystal violet (CV) organic dye. Different analytical methods were utilized to confirm the structural features. Based on the obtained data, the zeta potential of the nanoadsorbent in deionized water with a pH of 7 was - 34.1 mV, and the surface area was measured to be 68.90 m2/g. The prepared hydrogel nanoadsorbent novelty owes to possessing a reactive functional group containing a heteroatom, a porous and cross-linked structure that aids convenient contaminants molecules diffusion and interactions between the nanoadsorbent and contaminants, viz., CPF and CV. The main driving forces in the adsorption by the Pectin hydrogel@Fe3O4-bentonite adsorbent are electrostatic and hydrogen-bond interactions, which resulted in a great adsorption capacity. To determine optimum adsorption conditions, effective factors on the adsorption capacity of the CV and CPF, including solution pH, adsorbent dosage, contact time, and initial concentration of pollutants, have been experimentally investigated. Thus, in optimum conditions, i.e., contact time (20 and 15 min), pH 7 and 8, adsorbent dosage (0.005 g), initial concentration (50 mg/L), T (298 K) for CPF and CV, respectively, the CPF and CV adsorption capacity were 833.333 mg/g and 909.091 mg/g. The prepared pectin hydrogel@Fe3O4-bentonite magnetic nanoadsorbent presented high porosity, enhanced surface area, and numerous reactive sites and was prepared using inexpensive and available materials. Moreover, the Freundlich isotherm has described the adsorption procedure, and the pseudo-second-order model explained the adsorption kinetics. The prepared novel nanoadsorbent was magnetically isolated and reused for three successive adsorption-desorption runs without a specific reduction in the adsorption efficiency. Therefore, the pectin hydrogel@Fe3O4-bentonite magnetic nanoadsorbent is a promising adsorption system for eliminating organophosphorus pesticides and organic dyes due to its remarkable adsorption capacity amounts.
Collapse
Affiliation(s)
- Paria Beigi
- Department of Physics, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
16
|
Sulejmanović J, Skopak E, Šehović E, Karadža A, Zahirović A, Smječanin N, Mahmutović O, Ansar S, Sher F. Surface engineered functional biomaterials for hazardous pollutants removal from aqueous environment. CHEMOSPHERE 2023:139205. [PMID: 37315864 DOI: 10.1016/j.chemosphere.2023.139205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
The issue of water contamination by heavy metal ions as highly persistent pollutants with harmful influence primarily on biological systems, even in trace levels, has become a great environmental concern globally. Therefore, there is a need for the use of highly sensitive techniques or preconcentration methods for the removal of heavy metal ions at trace levels. Thus, this research investigates a novel approach by examining the possibility of using pomegranate (Punica granatum) peel layered material for the simultaneous preconcentration of seven heavy metal ions; Cd(II), Co(II), Cr(III), Cu(II), Mn(II), Ni(II) and Pb(II) from aqueous solution and three river water samples. The quantification of the heavy metals was performed by the means of FAAS technique. The characterization of biomaterial was performed by SEM/EDS, FTIR analysis and pHpzc determination before and after the remediation process. The reusability study, as well as the influence of interfering ions (Ca, K, Mg, Na and Zn) were evaluated. The conditions of preconcentration by the column method included the optimization of solution pH (5); flow rate (1.5 mL/min), a dose of biosorbent (200 mg), type of the eluent (1 mol/L HNO3), sample volume (100 mL) and sorbent fraction (<0.25 mm). The biosorbent capacity ranged from 4.45 to 57.70 μmol/g for the investigated heavy metals. The practical relevance of this study is further extended by novel data regarding adsorbent cost analysis (17.49 $/mol). The Punica granatum sorbent represents a highly effective and economical biosorbent for the preconcentration of heavy metal ions for possible application in industrial sectors.
Collapse
Affiliation(s)
- Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Ena Skopak
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Amar Karadža
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Adnan Zahirović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Narcisa Smječanin
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Omer Mahmutović
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Educational Sciences, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
17
|
Yuan W, Wang F, Qu X, Wang S, Lei B, Shao J, Wang Q, Lin J, Wang W, Dong X. In situ rapid synthesis of hydrogels based on a redox initiator and persistent free radicals. NANOSCALE ADVANCES 2023; 5:1999-2009. [PMID: 36998656 PMCID: PMC10044294 DOI: 10.1039/d3na00038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
The development of fast and economical hydrogel manufacturing methods is crucial for expanding the application of hydrogels. However, the commonly used rapid initiation system is not conducive to the performance of hydrogels. Therefore, the research focuses on how to improve the preparation speed of hydrogels and avoid affecting the properties of hydrogels. Herein, a redox initiation system with nanoparticle-stabilized persistent free radicals was introduced to rapidly synthesize high-performance hydrogels at room temperature. A redox initiator composed of vitamin C and ammonium persulfate rapidly provides hydroxyl radicals at room temperature. Simultaneously, three-dimensional nanoparticles can stabilize free radicals and prolong their lifetime, thereby increasing the free radical concentration and accelerating the polymerization rate. And casein enabled the hydrogel to achieve impressive mechanical properties, adhesion, and electrical conductivity. This method greatly facilitates the rapid and economical synthesis of high-performance hydrogels and presents broad application prospects in the field of flexible electronics.
Collapse
Affiliation(s)
- Wei Yuan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Fangfang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Xinyu Qu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Siying Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Bing Lei
- School of Physical Science and Information Technology, Liaocheng University Liaocheng 252059 China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Qian Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Jianjian Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University Liaocheng 252059 China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 China
| |
Collapse
|
18
|
Altintig E, Özcelik TÖ, Aydemir Z, Bozdag D, Kilic E, Yılmaz Yalçıner A. Modeling of methylene blue removal on Fe 3O 4 modified activated carbon with artificial neural network (ANN). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1714-1732. [PMID: 36927305 DOI: 10.1080/15226514.2023.2188424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, AC/Fe3O4 adsorbent was first synthesized by modifying activated carbon with Fe3O4. The structure of the adsorbent was then characterized using analysis techniques specific surface area (BET), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), and Fourier Transform Infrared Spectroscopy (FTIR). Equilibrium, thermodynamic and kinetic studies were carried out on the removal of methylene blue (MB) dyestuff from aqueous solutions AC/Fe3O4 adsorbent. The Langmuir maximum adsorption capacity of AC/Fe3O4 was 312.8 mg g-1, and the best fitness was observed with the pseudo-second-order kinetics model, with an endothermic adsorption process. In the final stage of the study, the adsorption process of MB on AC/Fe3O4 was modeled using artificial neural network modeling (ANN). Considering the smallest mean square error (MSE), The backpropagation neural network was configured as a three-layer ANN with a tangent sigmoid transfer function (Tansig) at the hidden layer with 10 neurons, linear transfer function (Purelin) the at output layer and Levenberg-Marquardt backpropagation training algorithm (LMA). Input parameters included initial solution pH (2.0-9.0), amount (0.05-0.5 g L-1), temperature (298-318 K), contact time (5-180 min), and concentration (50-500 mg L-1). The effect of each parameter on the removal and adsorption percentages was evaluated. The performance of the ANN model was adjusted by changing parameters such as the number of neurons in the middle layer, the number of inputs, and the learning coefficient. The mean absolute percentage error (MAPE) was used to evaluate the model's accuracy for the removal and adsorption percentage output parameters. The absolute fraction of variance (R2) values were 99.83, 99.36, and 98.26% for the dyestuff training, validation, and test sets, respectively.
Collapse
Affiliation(s)
- Esra Altintig
- Pamukova Vocational School, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Tijen Över Özcelik
- Industrial Engineering Department, Engineering Faculty, Sakarya University, Sakarya, Turkey
| | | | - Dilay Bozdag
- Industrial Engineering Department, Engineering Faculty, Sakarya University, Sakarya, Turkey
- Akcoat Advanced Chemical Coating Materials Industry and Trade Joint Stock Company, Sakarya, Turkey
| | - Eren Kilic
- Ser Durable Consumer Goods Domestic and Foreign Trade Industry Inc., Kayseri, Turkey
| | - Ayten Yılmaz Yalçıner
- Industrial Engineering Department, Engineering Faculty, Sakarya University, Sakarya, Turkey
| |
Collapse
|
19
|
Ozdemir S, Dündar A, Dizge N, Kılınç E, Balakrishnan D, Prasad KS, Senthilkumar N. Preconcentrations of Pb(II), Ni(II) and Zn(II) by solid phase bio-extractor using thermophilic Bacillus subtilis loaded multiwalled carbon nanotube biosorbent. CHEMOSPHERE 2023; 317:137840. [PMID: 36640976 DOI: 10.1016/j.chemosphere.2023.137840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/13/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
An alternative biotechnological solid phase bio-extraction (SPE) method was developed. Bacillus subtilis loaded multiwalled carbon nanotube was designed and used as biosorbent for the preconcentrations of Pb(II), Ni(II), and Zn(II). The experimental parameters such as sample flow rate, pH of sample solution, amounts of Bacillus subtilis and multiwalled carbon nanotube, volume of sample solution and reusability of column which affects the analytical characteristics of the SPE method were investigated in details. Surface structures were examined by using FTIR, SEM. The best pH was determined as 5.0 and the percentages recoveries of Zn(II), Ni(II), and Pb(II) were determined as 99.1%, 98.7%, and 96.2%, respectively, at a flow rate of 3 mL/min. In this study, in which the profitable sample volume was determined as 400 mL and the amount of multiwalled carbon nanotube (MWCNT) as 50 mg. It was also observed that the column had a significant potential to preconcentrate Zn(II), Ni(II), and Pb(II) even after 25 reuses. The biosorption capacities for Zn(II), Ni(II) and Pb(II) were calculated as 39.67 mg/g, 45.98 mg/g and 51.34 mg/g respectively. The LOD values were calculated as 0.024 ng/mL for Pb(II), 0.029 ng/mL for Ni(II), and 0.019 ng/mL for Zn(II). The linear range was detected as 0.25-25 ng/mL. The concentrations of Pb(II), Ni(II), and Zn(II) in a variety of real food samples were determined by using developed method after application of certified reference sample.
Collapse
Affiliation(s)
- Sadin Ozdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey
| | - Abdurrahman Dündar
- Department of Medical Services and Techniques, Vocational School of Health Services, Mardin Artuklu University, 47420, Mardin, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, 33343, Mersin, Turkey
| | - Ersin Kılınç
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Dicle University, 21280, Diyarbakır, Turkey.
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Kashi Sai Prasad
- Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad, Telangana, 500043, India.
| | - Natarajan Senthilkumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| |
Collapse
|
20
|
Muniappan A, Tirth V, Almujibah H, Alshahri AH, Koppula N. Deep convolutional neural network with sine cosine algorithm based wastewater treatment systems. ENVIRONMENTAL RESEARCH 2023; 219:114910. [PMID: 36493808 DOI: 10.1016/j.envres.2022.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Wastewater treatment systems are essential in today's business to meet the ever-increasing requirements of environmental regulations while also limiting the environmental impact of the sector's discharges. A new control and management information system is needed to handle the residual fluids. This study advises that Wastewater Treatment System (WWTS) operators use intelligent technologies that analyze data and forecast the future behaviour of processes. This method incorporates industrial data into the wastewater treatment model. Deep Convolutional Neural Network (DCNN) and Since Cosine Algorithm (SCA), two powerful artificial neural networks, were used to predict these properties over time. Remediation actions can be taken to ensure procedures are carried out in accordance with the specifications. Water treatment facilities can benefit from this technology because of its sophisticated process that changes feature dynamically and inconsistently. The ultimate goal is to improve the precision with which wastewater treatment models create their predictions. Using DCNN and SCA techniques, the Chemical Oxygen Demand (COD) in wastewater treatment system input and effluent is estimated in this study. Finally, the DCNN-SCA model is applied for the optimization, and it assists in improving the predictive performance. The experimental validation of the DCNN-SCA model is tested and the outcomes are investigated under various prospects. The DCNN-SCA model has achieved a maximum accuracy performance and proving that it outperforms compare with the prevailing techniques over recent approaches. The DCNN-SCA-WWTS model has shown maximum performance Under 600 data, DCNN-SCA-WWTS has a precision of 97.63%, a recall of 96.37%, a F score of 95.31%, an accuracy of 96.27%, an RMSE of 27.55%, and a MAPE of 20.97%.
Collapse
Affiliation(s)
- Appusamy Muniappan
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Asir, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, P.O. Box 9004, Abha, 61413, Asir, Saudi Arabia
| | - Hamad Almujibah
- Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdullah H Alshahri
- Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Neeraja Koppula
- Department of Computer Science and Engineering, Geethanjali College of Engineering and Technology, Hyderabad, India.
| |
Collapse
|
21
|
Isik Z, Bouchareb R, Arslan H, Özdemir S, Gonca S, Dizge N, Balakrishnan D, Prasad SVS. Green synthesis of iron oxide nanoparticles derived from water and methanol extract of Centaurea solstitialis leaves and tested for antimicrobial activity and dye decolorization capability. ENVIRONMENTAL RESEARCH 2023; 219:115072. [PMID: 36529334 DOI: 10.1016/j.envres.2022.115072] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In this research, nanoparticles derived from water extract of Centaurea solstitialis leaves were used as green adsorbent in Fenton reaction for Reactive Red 180 (RR180) and Basic Red 18 (BR18) dyes removal. At optimum operating conditions, nanoparticles proved high performance in the tested dyes removal with more than 98% of removal elimination. The free-radical scavenging, DNA nuclease, biofilm inhibition capability, antimicrobial activity, microbial cell viability, and antimicrobial photodynamic therapy activities of the iron oxide nanoparticles (FeO-NPs) derived from water and methanol extract of plant were investigated. Each of the following analysis: SEM-EDX, XRD, and Zeta potential was implemented for the prepared NPs characterization and to describe their morphology, composition and its behavior in an aqueous solution, respectively. It was found that, the DPPH scavenging activities increased when the amount of nanoparticles increased. The highest radical scavenging activity achieved with FeO-NPs derived from water extract of plant as 97.41% at 200 mg/L. The new green synthesized FeO-NPs demonstrated good DNA cleavage activity. FeO-NPs showed good in vitro antimicrobial activities against human pathogens. The results showed that both synthesized FeO-NPs displayed 100% antimicrobial photodynamic therapy activity after LED irradiation. The water extract of FeO-NPs and methanol extract of FeO-NPs also showed a significant biofilm inhibition.
Collapse
Affiliation(s)
- Zelal Isik
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Raouf Bouchareb
- Department of Environmental Engineering, Process Engineering Faculty, Saleh Boubnider University, Constantine, 25000, Algeria
| | - Hudaverdi Arslan
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin, 33343, Turkey
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, 33343, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey.
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - Sista Venkata Surya Prasad
- Department of Electronics and Communication Engineering, MLR Institute of Technology, Hyderabad, 500043, India.
| |
Collapse
|
22
|
Uptake of BF Dye from the Aqueous Phase by CaO-g-C3N4 Nanosorbent: Construction, Descriptions, and Recyclability. INORGANICS 2023. [DOI: 10.3390/inorganics11010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Removing organic dyes from contaminated wastewater resulting from industrial effluents with a cost-effective approach addresses a major global challenge. The adsorption technique onto carbon-based materials and metal oxide is one of the most effective dye removal procedures. The current work aimed to evaluate the application of calcium oxide-doped carbon nitride nanostructures (CaO-g-C3N4) to eliminate basic fuchsine dyes (BF) from wastewater. CaO-g-C3N4 nanosorbent were obtained via ultrasonication and characterized by scanning electron microscopy, X-ray diffraction, TEM, and BET. The TEM analysis reveals 2D nanosheet-like nanoparticle architectures with a high specific surface area (37.31 m2/g) for the as-fabricated CaO-g-C3N4 nanosorbent. The adsorption results demonstrated that the variation of the dye concentration impacted the elimination of BF by CaO-C3N4 while no effect of pH on the removal of BF was observed. Freundlich isotherm and Pseudo-First-order adsorption kinetics models best fitted BF adsorption onto CaO-g-C3N4. The highest adsorption capacity of CaO-g-C3N4 for BF was determined to be 813 mg. g−1. The adsorption mechanism of BF is related to the π-π stacking bridging and hydrogen bond, as demonstrated by the FTIR study. CaO-g-C3N4 nanostructures may be easily recovered from solution and were effectively employed for BF elimination in at least four continuous cycles. The fabricated CaO-g-C3N4 adsorbent display excellent BF adsorption capacity and can be used as a potential sorbent in wastewater purification.
Collapse
|
23
|
Pandey S, Makhado E, Kim S, Kang M. Recent developments of polysaccharide based superabsorbent nanocomposite for organic dye contamination removal from wastewater - A review. ENVIRONMENTAL RESEARCH 2023; 217:114909. [PMID: 36455632 DOI: 10.1016/j.envres.2022.114909] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
One of the main problems with water pollution is dye contamination of rivers, industrial effluents, and water sources. It has endangered the world's sources of drinking water. Several remediation strategies have been carefully developed and tested to minimize this ominous picture. Due to their appealing practical and financial benefits, adsorption methods in particular are often listed as one of the most popular solutions to remediate dye-contaminated water. Biopolymer-based hydrogel nanocomposites are a cutting-edge class of materials with a wide range of applications that are effective in removing organic dyes from the environment. Since the incorporation of various materials into hydrogel matrices generated composite materials with distinct characteristics, these unique materials were often alluded to as ideal adsorbents. The fundamental emphasis of the conceptual and critical review of the literature in this research is the significant potential of hydrogel nanocomposites (HNCs) to remediate dye-contaminated water (especially for articles from the previous five years). The review also provides knowledge for the development of biopolymer-based HNCs, prospects, and opportunities for future research. It is also focused on optimum conditions for dye adsorption processes along with their adsorption kinetics and isotherm models. In summary, the information gained in this review research may contribute to a strengthened scientific rationale for the practical and efficient application of these novel adsorbent materials.
Collapse
Affiliation(s)
- Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Sovenga, 0727, Polokwane, South Africa
| | - Sujeong Kim
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
24
|
Singh A, Varma A, Prasad R, Porwal S. Bioprospecting uncultivable microbial diversity in tannery effluent contaminated soil using shotgun sequencing and bio-reduction of chromium by indigenous chromate reductase genes. ENVIRONMENTAL RESEARCH 2022; 215:114338. [PMID: 36116499 DOI: 10.1016/j.envres.2022.114338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
The tannery industry generates a consequential threat to the environment by producing a large amount of potentially toxic metal-containing waste. Bioremediation has been a promising approach for treating potentially toxic metals, but the efficiency of remediation in microbes is one of the factors limiting their application in tanneries waste treatment. The motivation behind the present work was to explore the microbial diversity and chromate reductase genes present in the tannery effluent-contaminated soil using metagenomics approach. The use of shotgun sequencing enabled the identification of operational parameters that influence microbiome composition and their ability to reduce Chromium (Cr) concentration. The Cr concentration in Kanpur tannery effluent contaminated soil sample was 700 ppm which is many folds than the approved permissible limit by World Health Organisation (WHO) for Cr is 100 ppm. Metagenomic Deoxyribo Nucleic Acid (DNA) was extracted to explore taxonomic community structure, phylogenetic linkages, and functional profile. With a Guanine-Cytosine (GC) abundance of 54%, total of 45,163,604 high-quality filtered reads were obtained. Bacteria (83%), Archaebacteria (14%), and Viruses (3%) were discovered in the structural biodiversity. Bacteria were classified to phylum level, with Proteobacteria (52%) being the dominant population, followed by Bacteriodetes (15%), Chloroflexi (15%), Spirochaetes (7%), Thermotogae (5%), Actinobacteria (4%), and Firmicutes (1%). The OXR genes were cloned and checked for their efficiency to reduce Cr concentration. Insitu validation of OXR8 gene showed a reduction of Cr concentration from 700 ppm to 24 ppm in 72 h (96.51% reduction). The results of this study suggests that there is a huge reservoir of microbes and chromate reductase genes which are unexplored yet.
Collapse
Affiliation(s)
- Ayushi Singh
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201301, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201301, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari-845401, Bihar, India.
| | - Shalini Porwal
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201301, India.
| |
Collapse
|
25
|
Bilal M, Ikram M, Shujah T, Haider A, Naz S, Ul-Hamid A, Naz M, Haider J, Shahzadi I, Nabgan W. Chitosan-Grafted Polyacrylic Acid-Doped Copper Oxide Nanoflakes Used as a Potential Dye Degrader and Antibacterial Agent: In Silico Molecular Docking Analysis. ACS OMEGA 2022; 7:41614-41626. [PMID: 36406528 PMCID: PMC9670908 DOI: 10.1021/acsomega.2c05625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
This study examined the catalytic and bactericidal properties of polymer-doped copper oxide (CuO). For this purpose, a facile co-precipitation method was used to synthesize CuO nanostructures doped with CS-g-PAA. Various concentrations (2, 4, and 6%) of dopants were systematically incorporated into a fixed amount of CuO. The prepared samples were analyzed by different optical, structural, and morphological characterizations. Field emission scanning electron microscopy and transmission electron microscopy micrographs indicated that doping transformed CuO's agglomerated rod-like surface morphology to form nanoflakes. UV-vis spectroscopy revealed that the optical spectra of the samples exhibit a redshift after doping, leading to a decrease in band gap energy from 3.3 to 2.5 eV. The purpose of the study was to test the catalytic activity of pristine and CS-g-PAA doped CuO for the degradation of methylene blue in acidic, basic, and neutral conditions using NaBH4 as a reducing agent in an aqueous medium. Furthermore, antibacterial activity was evaluated against Gram-positive and Gram-negative bacteria, namely, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Overall, enhanced bactericidal performance was observed upon doping CS-g-PAA into CuO, i.e., 4.25-6.15 and 4.40-8.15 mm against S. aureus and 1.35-4.20 and 2.25-5.25 mm against E. coli at the lowest and highest doses, respectively. The relevant catalytic and bactericidal action mechanisms of samples are also proposed in the study. Moreover, in silico molecular docking studies illustrated the role of these prepared nanomaterials as possible inhibitors of FabH and FabI enzymes of the fatty acid biosynthetic pathway.
Collapse
Affiliation(s)
- Muhammad Bilal
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Punjab, Pakistan
| | - Tahira Shujah
- Department
of Physics, University of Central Punjab, Lahore54000, Punjab, Pakistan
| | - Ali Haider
- Department
of Clinical Medicine, Faculty of Veterinary and Animal Sciences, Muhammad
Nawaz Shareef, University of Agriculture, 66000Multan, Punjab, Pakistan
| | - Sadia Naz
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin300308, China
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran31261, Saudi Arabia
| | - Misbah Naz
- Department
of Chemistry, University of the Education, 54000Lahore, Pakistan
| | - Junaid Haider
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin300308, China
| | - Iram Shahzadi
- Punjab
University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore54000, Pakistan
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, 43007Tarragona, Spain
| |
Collapse
|
26
|
Thiacalix[4]arene-functionalized magnetic xanthan gum (TC4As-XG@FeO) as a hydrogel adsorbent for removal of dye and pesticide. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Yin T, Zhang X, Shao S, Xiang T, Zhou S. Covalently crosslinked sodium alginate/poly(sodium p-styrenesulfonate) cryogels for selective removal of methylene blue. Carbohydr Polym 2022; 301:120356. [DOI: 10.1016/j.carbpol.2022.120356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
28
|
Guaya D, Cobos H, Valderrama C, Cortina JL. Effect of Mn 2+/Zn 2+/Fe 3+ Oxy(Hydroxide) Nanoparticles Doping onto Mg-Al-LDH on the Phosphate Removal Capacity from Simulated Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203680. [PMID: 36296870 PMCID: PMC9609385 DOI: 10.3390/nano12203680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 05/13/2023]
Abstract
A parent Mg-Al-LDH was upgraded in its adsorption properties due to the incorporation of tri-metal species oxy(hydroxide) nanoparticles obtaining Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite for the phosphate recovery from simulated urban treated wastewater. The physicochemical properties of the synthesized Mn2+/Zn2+/Fe3+/Mg-Al-LDH make promising for real application without being environmentally harmful. The performance of Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite was evaluated through batch adsorption assays. The support of iron, manganese, and zinc (oxy)hydroxide nanoparticles onto the parent Mg-Al-LDH structure was performed by precipitation, isomorphic substitution, and complexation reactions. The main improvement of the Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite was the highest phosphate adsorption capacity (82.3 mg∙g-1) in comparison to the parent Mg-Al-LDH (65.3 mg∙g-1), in a broad range of concentrations and the effective phosphate adsorption at neutral pH (7.5) near to the real wastewater effluents conditions in comparison to the conventional limitations of other adsorbents. The effectiveness of Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite was higher than the conventional metal LDHs materials synthesized in a single co-precipitation step. The phosphate adsorption onto Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite was described to be governed by both physical and chemical interactions. The support of Mn2+/Zn2+/Fe3+ oxy(hydroxide) nanoparticles over the parent Mg-Al-LDH was a determinant for the improvement of the phosphate adsorption that was governed by complexation, hydrogen bonding, precipitation, and anion exchange. The intra-particular diffusion also described well the phosphate adsorption onto the Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite. Three specific stages of adsorption were determined during the phosphate immobilization with an initial fast rate, followed by the diffusion through the internal pores and the final equilibrium stage, reaching 80% of removal and the equilibrium within 1 h. The Mn2+/Zn2+/Fe3+/Mg-Al-LDH was strongly selective towards phosphate adsorption in presence of competing ions reducing the adsorption capacity at 20%. The Mn2+/Zn2+/Fe3+/Mg-Al-LDH has limited reusability, only 51% of the adsorbed phosphate could be recovered in the second cycle of the adsorption-desorption process. Around 14% of phosphate was loosely-bond to Mn2+/Zn2+/Fe3+/Mg-Al-LDH which brings the opportunity to be a new source of phosphorus. The use of eluted concentrates and the final disposal of the exhausted adsorbent for soil amendment applications can be an integral nutrient system (P, Mn, Zn, Fe) for agriculture purposes.
Collapse
Affiliation(s)
- Diana Guaya
- Department of Chemistry, Universidad Técnica Particular de Loja, Loja 110107, Ecuador
- Department of Chemical Engineering, BarcelonaTECH-UPC, 08019 Barcelona, Spain
- Correspondence:
| | - Hernán Cobos
- Department of Chemistry, Universidad Técnica Particular de Loja, Loja 110107, Ecuador
| | - César Valderrama
- Department of Chemical Engineering, BarcelonaTECH-UPC, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| | - José Luis Cortina
- Department of Chemical Engineering, BarcelonaTECH-UPC, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| |
Collapse
|