1
|
Zeng Y, Ait Bamai Y, Goudarzi H, Ketema RM, Roggeman M, den Ouden F, Gys C, Ito S, Konno S, Covaci A, Kishi R, Ikeda A. Organophosphate flame retardants associated with increased oxidative stress biomarkers and elevated FeNO levels in general population of children: The Hokkaido study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177756. [PMID: 39616912 DOI: 10.1016/j.scitotenv.2024.177756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024]
Abstract
Our previous study found that exposure to higher organophosphate flame retardants (PFRs) was associated with increased prevalence of wheeze and type 2 inflammation among school-aged children. It remains unclear whether PFR exposure elevates oxidative stress in these general pediatric population, thereby potentially contributing to the development of allergic diseases. This study examined the associations between individual and mixture exposure to PFRs and oxidative stress in children aged 9-12 years (n = 423). The oxidative stress biomarkers included 4-hydroxynonenal (4-HNE) and hexanoyl-lysine (HEL) for lipid peroxidation, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) for DNA damage. We also examined the mediation effects of oxidative stress on the relationships between PFR exposure and health outcomes: wheeze and type 2 inflammation biomarkers, including fraction of exhaled nitric oxide (FeNO) and blood eosinophils. Higher concentrations of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), Σ triphenyl phosphate (ΣTPHP), Σ tris(2-butoxyethyl) phosphate (ΣTBOEP), and Σ 2-Ethylhexyldiphenyl phosphate (ΣEHDPHP) metabolites were significantly associated with higher levels of 4-HNE. Elevated concentrations of TDCIPP, ΣTPHP, and ΣTBOEP were positively associated with HEL. Higher ΣTPHP and ΣTBOEP were positively associated with 8-OHdG. The PFR mixture was positively associated with all three oxidative stress biomarkers according to the Quantile g-computation and Bayesian kernel machine regression models. Oxidative stress biomarkers mediated 11.4 % to 15.3 % of the association between PFRs and FeNO ≥35 ppb. PFR exposure was positively associated with oxidative stress markers of DNA damage and lipid peroxidation, which may contribute to elevated type 2 inflammation among school-aged children. These findings, identified in the general pediatric population at low exposure levels, highlight the need for ongoing attention to the allergic symptoms posed by PFR exposure.
Collapse
Affiliation(s)
- Yi Zeng
- Faculty of Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan; Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan; Creative Research Institution, Hokkaido University, 060-0812 Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan; Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Houman Goudarzi
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
| | - Rahel Mesfin Ketema
- Faculty of Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan; Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Maarten Roggeman
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Fatima den Ouden
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Celine Gys
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Sachiko Ito
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Atsuko Ikeda
- Faculty of Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan; Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan.
| |
Collapse
|
2
|
Stevens DR, Goldberg M, Adgent M, Chin HB, Baird DD, Stallings VA, Sandler DP, Calafat AM, Ford EG, Zemel BS, Kelly A, Umbach DM, Rogan W, Ferguson KK. Environmental Phenols and Growth in Infancy: The Infant Feeding and Early Development Study. J Clin Endocrinol Metab 2024; 109:3108-3118. [PMID: 38753668 PMCID: PMC11570111 DOI: 10.1210/clinem/dgae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Higher mean and rapid increases in body mass index (BMI) during infancy are associated with subsequent obesity and may be influenced by exposure to endocrine-disrupting chemicals such as phenols. OBJECTIVE In a prospective US-based cohort conducted 2010-2014, we investigated associations between environmental phenol exposures and BMI in 199 infants. METHODS We measured 7 urinary phenols at ages 6-8 and 12 weeks and assessed BMI z-score at up to 12 study visits between birth and 36 weeks. We examined individual and joint associations of averaged early infancy phenols with level of BMI z-score using mean differences (β [95% CI]) and with BMI z-score trajectories using relative risk ratios (RR [95% CI]). RESULTS Benzophenone-3, methyl and propyl paraben, and all phenols jointly were positively associated with higher mean BMI z-score (0.07 [-0.05, 0.18], 0.10 [-0.08, 0.27], 0.08 [-0.09, 0.25], 0.17 [-0.08, 0.43], respectively). Relative to a stable trajectory, benzophenone-3, 2,4-dichlorophenol, 2,5-dichlorophenol, and all phenols jointly were positively associated with risk of a rapid increase trajectory (1.46 [0.89, 2.39], 1.33 [0.88, 2.01], 1.66 [1.03, 2.68], 1.41 [0.71, 2.84], respectively). CONCLUSION Early phenol exposure was associated with a higher mean and rapid increase in BMI z-score across infancy, signaling potential long-term cardiometabolic consequences of exposure.
Collapse
Affiliation(s)
- Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Mandy Goldberg
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Margaret Adgent
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN 27709, USA
| | - Helen B Chin
- Department of Global and Community Health, College of Public Health, George Mason University, Fairfax, VA 22030, USA
| | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Virginia A Stallings
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Eileen G Ford
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrea Kelly
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Endocrinology & Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Walter Rogan
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| |
Collapse
|
3
|
Sdougkou K, Papazian S, Bonnefille B, Xie H, Edfors F, Fagerberg L, Uhlén M, Bergström G, Martin LJ, Martin JW. Longitudinal Exposomics in a Multiomic Wellness Cohort Reveals Distinctive and Dynamic Environmental Chemical Mixtures in Blood. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16302-16315. [PMID: 39236221 PMCID: PMC11411717 DOI: 10.1021/acs.est.4c05235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Chemical exposomes can now be comprehensively measured in human blood, but knowledge of their variability and longitudinal stability is required for robust application in cohort studies. Here, we applied high-resolution chemical exposomics to plasma of 46 adults, each sampled 6 times over 2 years in a multiomic cohort, resulting in 276 individual exposomes. In addition to quantitative analysis of 83 priority target analytes, we discovered and semiquantified substances that have rarely or never been reported in humans, including personal care products, pesticide transformation products, and polymer additives. Hierarchical cluster analysis for 519 confidently annotated substances revealed unique and distinctive coexposures, including clustered pesticides, poly(ethylene glycols), chlorinated phenols, or natural substances from tea and coffee; interactive heatmaps were publicly deposited to support open exploration of the complex (meta)data. Intraclass correlation coefficients (ICC) for all annotated substances demonstrated the relatively low stability of the exposome compared to that of proteome, microbiome, and endogenous small molecules. Implications are that the chemical exposome must be measured more frequently than other omics in longitudinal studies and four longitudinal exposure types are defined that can be considered in study design. In this small cohort, mixed-effect models nevertheless revealed significant associations between testosterone and perfluoroalkyl substances, demonstrating great potential for longitudinal exposomics in precision health research.
Collapse
Affiliation(s)
- Kalliroi Sdougkou
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| | - Stefano Papazian
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Bénilde Bonnefille
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Hongyu Xie
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| | - Fredrik Edfors
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Linn Fagerberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Mathias Uhlén
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg 413 45, Sweden
| | | | - Jonathan W Martin
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| |
Collapse
|
4
|
Hunt KJ, Ferguson PL, Bloom MS, Neelon B, Pearce J, Commodore S, Newman RB, Roberts JR, Bain L, Baldwin W, Grobman WA, Sciscione AC, Tita AT, Nageotte MP, Palomares K, Skupski DW, Zhang C, Wapner R, Vena JE. Phthalate and phthalate replacement concentrations in relationship to adiposity in a multi-racial cohort of children. Int J Obes (Lond) 2024; 48:1266-1273. [PMID: 38824227 PMCID: PMC11347365 DOI: 10.1038/s41366-024-01548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/16/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND/OBJECTIVE Phthalates and phthalate replacements are used in multiple everyday products, making many of them bioavailable to children. Experimental studies suggest that phthalates and their replacements may be obesogenic, however, epidemiologic studies remain inconsistent. Therefore, our objective was to examine the association between phthalates, phthalate replacements and childhood adiposity/obesity markers in children. SUBJECTS/METHODS A cross-sectional study was conducted in 630 racial/ethnically diverse children ages 4-8 years. Urinary oxidative metabolites of DINCH and DEHTP, three low molecular weight (LMW) phthalates, and eleven high molecular weight (HMW) phthalates were measured. Weight, height, waist circumference and % body fat were measured. Composite molar sum groups (nmol/ml) were natural log-transformed. Linear regression models adjusted for urine specific gravity, sex, age, race-ethnicity, birthweight, breastfeeding, reported activity level, mother's education and pre-pregnancy BMI. RESULTS All children had LMW and HMW phthalate metabolites and 88% had DINCH levels above the limit of detection. One unit higher in the log of DINCH was associated with 0.106 units lower BMI z-score [β = -0.106 (95% CI: -0.181, -0.031)], 0.119 units lower waist circumference z-score [β = -0.119 (95% CI: -0.189, -0.050)], and 0.012 units lower percent body fat [β = -0.012 (95% CI: -0.019, -0.005)]. LMW and HMW group values were not associated with adiposity/obesity. CONCLUSIONS We report an inverse association between child urinary DINCH levels, a non-phthalate plasticizer that has replaced DEHP in several applications, and BMI z-score, waist circumference z-score and % body fat in children. Few prior studies of phthalates and their replacements in children have been conducted in diverse populations. Moreover, DINCH has not received a great deal of attention or regulation, but it is a common exposure. In summary, understanding the ubiquitous nature of these chemical exposures and ultimately their sources will contribute to our understanding of their relationship with obesity.
Collapse
Affiliation(s)
- Kelly J Hunt
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Pamela L Ferguson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Michael S Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA, USA
| | - Brian Neelon
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - John Pearce
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Sarah Commodore
- Department of Environmental and Occupational Health, Indiana University, Bloomington, IN, USA
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - James R Roberts
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Lisa Bain
- Department of Biological Sciences, Clemson, SC, USA
| | | | - William A Grobman
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Anthony C Sciscione
- Department of Obstetrics and Gynecology, Christiana Care Health System, Newark, DE, USA
| | - Alan T Tita
- Department of Obstetrics and Gynecology and Center for Women's Reproductive Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael P Nageotte
- Department of Obstetrics and Gynecology, Miller Children's and Women's Hospital, Long Beach, CA, USA
| | - Kristy Palomares
- Department of Obstetrics and Gynecology, Saint Peter's University Hospital, New Brunswick, NJ, USA
| | - Daniel W Skupski
- Department of Obstetrics and Gynecology, New York Presbyterian Queens Hospital, Queens, NY, USA
| | - Cuilin Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Global Center for Asian Women's Health and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, USA
| | - John E Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
5
|
Choi YH, Moon KW. Exposure to biocides and their potential exposure sources among adults: A nationwide population-based study in South Korea. CHEMOSPHERE 2024; 364:143099. [PMID: 39146988 DOI: 10.1016/j.chemosphere.2024.143099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Biocides are present in personal care (including preservatives or antibacterials), pest control, and disinfectant products (including non-agricultural insecticides, fungicides, and disinfectants), and their long-term exposure may induce adverse health effects in humans. Therefore, in this study, we assessed the exposure levels and major exposure predictors of biocides among nationally representative Korean adults. The target group included adults (≥19 years) participating in the Korean National Environmental Health Survey (KoNEHS) 2015-2020. We employed survey-weighted multiple regression analysis and conditional inference trees analysis to assess the associations between demographic characteristics, behavioral sources (including personal care product use, pesticide use, and dietary patterns), and urinary levels of phenol (triclosan [TCS]), parabens (methyl paraben [MP], ethyl paraben [EP], propyl paraben [PP], and butyl paraben [BP]), and the pyrethroid insecticide metabolite (3-phenoxybenzoic acid [3-PBA]). Urinary EP, BP, and 3-PBA levels were higher in South Korean adults compared with those in Western countries. Major exposure predictors for MP, EP, and PP included the use of personal care products such as sunscreen, makeup, and hair care products in KoNEHS 2018-2020. Major exposure predictors for TCS and BP were vegetable consumption, and those for 3-PBA were mosquitocide use during summer in KoNEHS 2018-2020. However, these predictors were not observed in KoNEHS 2015-2017. Collectively, our findings suggest that biocide exposure predictors vary according to changes in product use and diet habits of individuals. Therefore, developing strategies to mitigate biocide exposure based on the demographic and behavioral characteristics of the general population is imperative.
Collapse
Affiliation(s)
- Yun-Hee Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea; School of Health and Environmental Science, Korea University, Seoul, South Korea
| | - Kyong Whan Moon
- School of Health and Environmental Science, Korea University, Seoul, South Korea.
| |
Collapse
|
6
|
Tagne-Fotso R, Riou M, Saoudi A, Zeghnoun A, Frederiksen H, Berman T, Montazeri P, Andersson AM, Rodriguez-Martin L, Akesson A, Berglund M, Biot P, Castaño A, Charles MA, Cocco E, Den Hond E, Dewolf MC, Esteban-Lopez M, Gilles L, Govarts E, Guignard C, Gutleb AC, Hartmann C, Kold Jensen T, Koppen G, Kosjek T, Lambrechts N, McEachan R, Sakhi AK, Snoj Tratnik J, Uhl M, Urquiza J, Vafeiadi M, Van Nieuwenhuyse A, Vrijheid M, Weber T, Zaros C, Tarroja-Aulina E, Knudsen LE, Covaci A, Barouki R, Kolossa-Gehring M, Schoeters G, Denys S, Fillol C, Rambaud L. Exposure to bisphenol A in European women from 2007 to 2014 using human biomonitoring data - The European Joint Programme HBM4EU. ENVIRONMENT INTERNATIONAL 2024; 190:108912. [PMID: 39116556 DOI: 10.1016/j.envint.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bisphenol A (BPA; or 4,4'-isopropylidenediphenol) is an endocrine disrupting chemical. It was widely used in a variety of plastic-based manufactured products for several years. The European Food Safety Authority (EFSA) recently reduced the Tolerable Daily Intake (TDI) for BPA by 20,000 times due to concerns about immune-toxicity. OBJECTIVE We used human biomonitoring (HBM) data to investigate the general level of BPA exposure from 2007 to 2014 of European women aged 18-73 years (n = 4,226) and its determinants. METHODS Fifteen studies from 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Luxembourg, Slovenia, Spain, Sweden, and the United Kingdom) were included in the BPA Study protocol developed within the European Joint Programme HBM4EU. Seventy variables related to the BPA exposure were collected through a rigorous post-harmonization process. Linear mixed regression models were used to investigate the determinants of total urine BPA in the combined population. RESULTS Total BPA was quantified in 85-100 % of women in 14 out of 15 contributing studies. Only the Austrian PBAT study (Western Europe), which had a limit of quantification 2.5 to 25-fold higher than the other studies (LOQ=2.5 µg/L), found total BPA in less than 5 % of the urine samples analyzed. The geometric mean (GM) of total urine BPA ranged from 0.77 to 2.47 µg/L among the contributing studies. The lowest GM of total BPA was observed in France (Western Europe) from the ELFE subset (GM=0.77 µg/L (0.98 µg/g creatinine), n = 1741), and the highest levels were found in Belgium (Western Europe) and Greece (Southern Europe), from DEMOCOPHES (GM=2.47 µg/L (2.26 µg/g creatinine), n = 129) and HELIX-RHEA (GM=2.47 µg/L (2.44 µg/g creatinine), n = 194) subsets, respectively. One hundred percent of women in 14 out of 15 data collections in this study exceeded the health-based human biomonitoring guidance value for the general population (HBM-GVGenPop) of 0.0115 µg total BPA/L urine derived from the updated EFSA's BPA TDI. Variables related to the measurement of total urine BPA and those related to the main socio-demographic characteristics (age, height, weight, education, smoking status) were collected in almost all studies, while several variables related to BPA exposure factors were not gathered in most of the original studies (consumption of beverages contained in plastic bottles, consumption of canned food or beverages, consumption of food in contact with plastic packaging, use of plastic film or plastic containers for food, having a plastic floor covering in the house, use of thermal paper…). No clear determinants of total urine BPA concentrations among European women were found. A broader range of data planned for collection in the original questionnaires of the contributing studies would have resulted in a more thorough investigation of the determinants of BPA exposure in European women. CONCLUSION This study highlights the urgent need for action to further reduce exposure to BPA to protect the population, as is already the case in the European Union. The study also underscores the importance of pre-harmonizing HBM design and data for producing comparable data and interpretable results at a European-wide level, and to increase HBM uptake by regulatory agencies.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Abdessattar Saoudi
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Abdelkrim Zeghnoun
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem, Israel
| | - Parisa Montazeri
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Agneta Akesson
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Pierre Biot
- Federal Public Service Health, Food Chain Safety and Environment, Brussels, Belgium
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marie-Aline Charles
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France; Inserm UMR 1153, Centre for Research in Epidemiology and Statistics (CRESS), Team Early Life Research on Later Health, University of Paris, Villejuif, France
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Elly Den Hond
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - Marta Esteban-Lopez
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Cedric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | | | - Tina Kold Jensen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark (SDU), Odense, Denmark
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Tina Kosjek
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Nathalie Lambrechts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Janja Snoj Tratnik
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Maria Uhl
- German Environment Agency (UBA), Berlin, Germany
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - An Van Nieuwenhuyse
- Department Health Protection, Laboratoire national de santé (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Till Weber
- German Environment Agency (UBA), Berlin, Germany
| | - Cécile Zaros
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France
| | | | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | - Robert Barouki
- Inserm UMR S-1124, University of Paris, T3S, Paris, France; Biochemistry, Metabolomics, and Proteomics Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sebastien Denys
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Clemence Fillol
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| |
Collapse
|
7
|
Varshavsky JR, Meeker JD, Zimmerman E, Woodbury ML, Aung MT, Rosario-Pabon ZY, Cathey AL, Vélez-Vega CM, Cordero J, Alshawabkeh A, Eick SM. Association of Phenols, Parabens, and Their Mixture with Maternal Blood Pressure Measurements in the PROTECT Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:87004. [PMID: 39140735 PMCID: PMC11323763 DOI: 10.1289/ehp14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Phenols and parabens are two classes of high production volume chemicals that are used widely in consumer and personal care products and have been associated with reproductive harm and pregnancy complications, such as preeclampsia and gestational diabetes. However, studies examining their influence on maternal blood pressure and gestational hypertension are limited. OBJECTIVES We investigated associations between individual phenols, parabens, and their mixture on maternal blood pressure measurements, including systolic and diastolic blood pressure (SBP and DBP) and hypertension during pregnancy (defined as stage 1 or 2 hypertension), among N = 1,433 Puerto Rico PROTECT study participants. METHODS We examined these relationships cross-sectionally at two time points during pregnancy (16-20 and 24-28 wks gestation) and longitudinally using linear mixed models (LMMs). Finally, we used quantile g-computation to examine the mixture effect on continuous (SBP, DBP) and binary (hypertension during pregnancy) blood pressure outcomes. RESULTS We observed a trend of higher odds of hypertension during pregnancy with exposure to multiple analytes and the overall mixture [including bisphenol A (BPA), bisphenol S (BPS), triclocarbon (TCC), triclosan (TCS), benzophenone-3 (BP-3), 2,4-dichlorophenol (2,4-DCP), 2,5-dichlorophenol (2,5-DCP), methyl paraben (M-PB), propyl paraben (P-PB), butyl paraben (B-PB), and ethyl paraben (E-PB)], especially at 24-28 wk gestation, with an adjusted mixture odds ratio ( OR ) = 1.57 (95% CI: 1.03, 2.38). Lower SBP and higher DBP were also associated with individual analytes, with results from LMMs most consistent for methyl paraben (M-PB) or propyl paraben (P-PB) and increased DBP across pregnancy [adjusted M-PB β = 0.78 (95% CI: 0.17, 1.38) and adjusted P-PB β = 0.85 (95% CI: 0.19, 1.51)] and for BPA, which was associated with decreased SBP (adjusted β = - 0.57 ; 95% CI: - 1.09 , - 0.05 ). Consistent with other literature, we also found evidence of effect modification by fetal sex, with a strong inverse association observed between the overall exposure mixture and SBP at visit 1 among participants carrying female fetuses only. CONCLUSIONS Our findings indicate that phenol and paraben exposure may collectively increase the risk of stage 1 or 2 hypertension during pregnancy, which has important implications for fetal and maternal health. https://doi.org/10.1289/EHP14008.
Collapse
Affiliation(s)
- Julia R. Varshavsky
- Department of Public Health and Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
- Department of Civil and Environmental Engineering, College of Engineering, Northeastern University, Boston, Massachusetts, USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Emily Zimmerman
- Department of Communication Sciences and Disorders, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Megan L. Woodbury
- Department of Civil and Environmental Engineering, College of Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Max T. Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Zaira Y. Rosario-Pabon
- Department of Social Sciences, Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Amber L. Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Carmen M. Vélez-Vega
- Department of Social Sciences, Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - José Cordero
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Akram Alshawabkeh
- Department of Civil and Environmental Engineering, College of Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Stephanie M. Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Wang Y, Wu H, Li K, Huang R, Liu J, Lu Z, Wang Y, Wang J, Du Y, Jin X, Xu Y, Li B. Environmental triggers of autoimmunity: The association between bisphenol analogues and systemic lupus erythematosus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116452. [PMID: 38744066 DOI: 10.1016/j.ecoenv.2024.116452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The aim of this research was to examine the correlation between the exposure to bisphenol analogues (BPs), such as bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS), and the risk of developing systemic lupus erythematosus (SLE). Ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was utilized to measure the levels of BPA, BPF, and BPS in the urine of 168 female participants diagnosed with SLE and 175 female participants who were deemed healthy controls. Logistic regression models were utilized to assess the connections between levels of bisphenol and the risk of SLE. The findings indicated that levels of BPA and BPF in the urine of individuals with SLE were markedly elevated compared to those in the control group. Higher exposure to BPA and BPF exhibited positive dose-response relationships with increased SLE risk. No significant associations were identified between BPS and the risk of SLE. These findings suggest exposure to BPA and BPF may be implicated as novel environmental triggers in the development of autoimmunity such as SLE. The significantly increased levels of these bisphenol analogues detected in SLE patients versus healthy controls, along with the associations between higher exposures and elevated SLE risk, which offers crucial hints for comprehending how endocrine-disrupting substances contribute to the genesis of autoimmune illnesses. Further research using robust longitudinal assessments of bisphenol analogue exposures is warranted to corroborate these epidemiological findings. Overall, this study highlights potential environmental risk factors for SLE while calling for additional investigation into the impact of bisphenol exposures on autoimmunity development.
Collapse
Affiliation(s)
- Yiyu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Kaidi Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Ronggui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Jiamin Liu
- Department of Health lnspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhangwei Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Yiyuan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Jing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Yujie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Ya Xu
- Clinical College of Anhui Medical University, Hefei, Anhui, China
| | - Baozhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Second Hospital of Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China; Clinical College of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
9
|
Robin J, Lefeuvre S, Guihenneuc J, Cambien G, Dupuis A, Venisse N. Analytical methods and biomonitoring results in hair for the assessment of exposure to endocrine-disrupting chemicals: A literature review. CHEMOSPHERE 2024; 353:141523. [PMID: 38417485 DOI: 10.1016/j.chemosphere.2024.141523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Endocrine-disrupting chemicals (EDC) are compounds that alter functions of the endocrine system due to their ability to mimic or antagonize endogenous hormones, or that alter their synthesis and metabolism, causing adverse health effects. Human biomonitoring (HBM) is a reliable method to assess human exposure to chemicals through measurement in human body fluids and tissues. It identifies new sources of exposure and determines their distribution, thereby enabling detection of the most exposed populations. Blood and urine are commonly used for HBM of EDC, but their interest is limited for compounds presenting short half-lives. Hair appears as an interesting alternative insofar as it provides a large exposure window. For the present study, we evaluated the relevance of hair in determining EDC exposure. With this in mind, we undertook a literature review focusing on the bioanalytical aspects and performances of methods developed to determine EDC in hair. The literature review was performed through methodical bibliographical research. Relevant articles were identified using two scientific databases: PubMed and Web of Science, with search equations built from a combination of keywords, MeSH terms and Boolean operators. The search strategy identified 2949 articles. After duplicates were removed, and following title, abstract, and full-text screenings, only 31 were included for qualitative synthesis. Hair collection was mainly performed in the back of the head and preparation involved two processes: cutting into small pieces or grounding to powder. The off-line LC-MS/MS method remains the main technique used to assess EDC through hair. Differences regarding the validation of analytical methods and interpretation of HBM results were highlighted, suggesting a need for international harmonisation to obtain reliable and comparable results. External contamination of hair was identified as a main limitation in the interpretation of results, highlighting the need to better understand EDC transfers through hair and to develop relevant hair decontamination processes.
Collapse
Affiliation(s)
- Julien Robin
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Sandrine Lefeuvre
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Jérémy Guihenneuc
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Guillaume Cambien
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Antoine Dupuis
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Nicolas Venisse
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France.
| |
Collapse
|
10
|
Choi YH, Huh DA, Moon KW. Exposure to biocides and its association with atopic dermatitis among children and adolescents: A population-based cross-sectional study in South Korea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115926. [PMID: 38181603 DOI: 10.1016/j.ecoenv.2023.115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Biocides have emerged as a contributor to the rising cases of atopic dermatitis among children and adolescents. Previous animal studies suggested that phenols, parabens, and pyrethroid insecticides present in these products might play a role in atopic dermatitis. However, there's limited epidemiological evidence confirming the individual or combined effects of exposure to these chemicals on atopic dermatitis in young populations. This study aimed to investigate the association between phenol, paraben, and pyrethroid metabolite levels in urine and atopic dermatitis among Korean children and adolescents METHODS: We analyzed 556 preschool children (3-5 years), 701 schoolchildren (6-11 years), and 731 adolescents (12-17 years) enrolled in the 4th Korean National Environmental Health Survey (KoNEHS) (2018-2020). We used logistic regression and Bayesian kernel machine regression to evaluate the association between atopic dermatitis and individual or mixed exposure to urinary triclosan (TCS), parabens (methylparaben, ethylparaben, propylparaben, and butylparaben), and 3-phenoxybenzoic acid (3-PBA) levels. RESULTS Urinary TCS levels were positively associated with atopic dermatitis in schoolchildren. When stratified by sex, male schoolchildren exhibited an increasing prevalence of atopic dermatitis as their urinary TCS and 3-PBA levels increased. The combined effect of biocide mixtures on atopic dermatitis was also significantly increased in male schoolchildren, with TCS as the main contributor. CONCLUSIONS These study findings suggest that biocides at levels found in Korean children and adolescents affect atopic dermatitis.
Collapse
Affiliation(s)
- Yun-Hee Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Da-An Huh
- Institute of Health Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, South Korea.
| | - Kyong Whan Moon
- School of Health and Environmental Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, South Korea
| |
Collapse
|
11
|
Soomro MH, England-Mason G, Liu J, Reardon AJF, MacDonald AM, Kinniburgh DW, Martin JW, Dewey D. Associations between the chemical exposome and pregnancy induced hypertension. ENVIRONMENTAL RESEARCH 2023; 237:116838. [PMID: 37544468 DOI: 10.1016/j.envres.2023.116838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/04/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Exposure to environmental chemicals has been linked to an increased risk of pregnancy-induced hypertension (PIH). This prospective cohort study examined the associations between PIH and maternal chemical exposure to four classes of chemicals (i.e., phthalates, bisphenols, perfluoroalkyl acids, non-essential metals and trace minerals). Participants included 420 pregnant women from the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort who had data available on diagnosed PIH and environmental chemical exposure. Twelve phthalate metabolites, two bisphenols, eight perfluoroalkyl acids and eleven non-essential metals or trace minerals were quantified in maternal urine or blood samples collected in the second trimester of pregnancy. Associations between the urinary and blood concentrations of these chemicals and PIH were assessed using multiple logistic and LASSO regression analyses in single- and multi-chemical exposure models, respectively. Thirty-five (8.3%) participants were diagnosed with PIH. In single chemical exposure models, two phthalate metabolites, mono-methyl phthalate (MMP) and monoethyl phthalate (MEP), three perfluoroalkyl acids, perfluoroheptanoic acid (PFHpA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA), and one metal, manganese, were associated with increased odds of PIH. The metabolites of di (2-ethylhexyl) phthalate (DEHP) and the molar sum of these metabolites, as well as antimony, displayed trend associations (p < 0.10). In multi-chemical exposure models using LASSO penalized regressions and double-LASSO regressions, MEP (AOR: 1.43, 95% CI: 1.09-1.88, p = 0.009) and PFNA (AOR: 2.03, 95% CI: 1.01-4.07, p = 0.04) were selected as the chemicals most highly associated with PIH. These findings suggest that maternal levels of phthalates and perfluoroalkyl acids may be associated with the diagnosis on PIH. Future research should consider both individual and multi-chemical exposures when examining predictors of PIH and other maternal cardiometabolic health disorders, such as preeclampsia, eclampsia, HELLP syndrome, and gestational diabetes.
Collapse
Affiliation(s)
- Munawar Hussain Soomro
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Anthony J F Reardon
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Analytical Chemistry and Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
12
|
Génard-Walton M, McGee G, Williams PL, Souter I, Ford JB, Chavarro JE, Calafat AM, Hauser R, Mínguez-Alarcón L. Mixtures of urinary concentrations of phenols and phthalate biomarkers in relation to the ovarian reserve among women attending a fertility clinic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165536. [PMID: 37453702 DOI: 10.1016/j.scitotenv.2023.165536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Although prior studies have found associations of the ovarian reserve with urinary concentrations of some individual phenols and phthalate metabolites, little is known about the potential associations of these chemicals as a mixture with the ovarian reserve. We investigated whether mixtures of four urinary phenols (bisphenol A, butylparaben, methylparaben, propylparaben) and eight metabolites of five phthalate diesters including di(2-ethylhexyl) phthalate were associated with markers of the ovarian reserve among 271 women attending a fertility center who enrolled in the Environment and Reproductive Health study (2004-2017). The analysis was restricted to one outcome per study participant using the earliest outcome after the last exposure assessment. Ovarian reserve markers included lower antral follicle count (AFC) defined as AFC < 7, circulating serum levels of day 3 follicle stimulating hormone (FSH) assessed by immunoassays, and diminished ovarian reserve (DOR) defined as either AFC < 7, FSH > 10 UI/L or primary infertility diagnosis of DOR. We applied Bayesian Kernel Machine Regression (BKMR) and quantile g-computation to estimate the joint associations and assess the interactions between chemical exposure biomarkers on the markers of the ovarian reserve while adjusting for confounders. Among all 271 women, 738 urine samples were collected. In quantile g-computation models, a quartile increase in the exposure biomarkers mixture was not significantly associated with lower AFC (OR = 1.10, 95 % CI = 0.52, 2.30), day 3 FSH levels (Beta = 0.30, 95 % CI = -0.32, 0.93) or DOR (OR = 1.02, 95 % CI = 0.52, 2.05). Similarly, BKMR did not show any evidence of associations between the mixture and any of the studied outcomes, or interactions between chemicals. Despite the lack of associations, these results need to be explored among women in other study cohorts.
Collapse
Affiliation(s)
- Maximilien Génard-Walton
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Glen McGee
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Paige L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA; Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Irene Souter
- Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer B Ford
- Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Jorge E Chavarro
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA; Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA; Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA; Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, USA
| | - Lidia Mínguez-Alarcón
- Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA; Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, USA
| |
Collapse
|
13
|
Zeng Y, Goudarzi H, Ait Bamai Y, Ketema RM, Roggeman M, den Ouden F, Gys C, Miyashita C, Ito S, Konno S, Covaci A, Kishi R, Ikeda-Araki A. Exposure to organophosphate flame retardants and plasticizers is positively associated with wheeze and FeNO and eosinophil levels among school-aged children: The Hokkaido study. ENVIRONMENT INTERNATIONAL 2023; 181:108278. [PMID: 37897874 DOI: 10.1016/j.envint.2023.108278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Exposure to organophosphate flame retardants and plasticizers (PFRs) increases the risk of asthma and allergies. However, little is known about its association with type 2 inflammation (T2) biomarkers used in the management of allergies. The study investigated associations among urinary PFR metabolite concentrations, allergic symptoms, and T2 biomarkers. The data and samples were collected between 2017 and 2020, including school children (n = 427) aged 9-12 years living in Sapporo City, Japan, among the participants of "The Hokkaido Study on Environment and Children's Health." Thirteen urinary PFR metabolites were measured by LC-MS/MS. Allergic symptoms were assessed using the International Study of Asthma and Allergies in Childhood questionnaire. For T2 biomarkers, the peripheral blood eosinophil counts, fraction of exhaled nitric oxide level (FeNO), and serum total immunoglobulin E level were measured. Multiple logistic regression analysis, quantile-based g-computation (qg-computation), and Bayesian kernel machine regression (BKMR) were used to examine the associations between the health outcomes of the individual PFRs and the PFR mixtures. The highest concentration of PFR was Σtris(1-chloro-isopropyl) phosphates (ΣTCIPP) (Median:1.20 nmol/L). Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) was significantly associated with a high odds ratio (OR, 95%CI:1.36, 1.07-1.72) for wheeze. TDCIPP (OR, 95%CI:1.19, 1.02-1.38), Σtriphenyl phosphate (ΣTPHP) (OR, 95%CI:1.81, 1.40-2.37), and Σtris(2-butoxyethyl) phosphate (ΣTBOEP) (OR, 95%:1.40, 1.13-1.74) were significantly associated with increased odds of FeNO (≥35 ppb). ΣTPHP (OR, 95%CI:1.44, 1.15-1.83) was significantly associated with high eosinophil counts (≥300/μL). For the PFR mixtures, a one-quartile increase in all PFRs (OR, 95%CI:1.48, 1.18-1.86) was significantly associated with high FeNO (≥35 ppb) in the qg-computation model. The PFR mixture was positively associated with high FeNO (≥35 ppb) and eosinophil counts (≥300/μL) in the BKMR models. These results may suggest that exposure to PFRs increases the probability of asthma, allergies, and T2 inflammation.
Collapse
Affiliation(s)
- Yi Zeng
- Graduate School of Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Houman Goudarzi
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan; Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Maarten Roggeman
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Fatima den Ouden
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Celine Gys
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Sachiko Ito
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan.
| |
Collapse
|
14
|
Stevens DR, Starling AP, Bommarito PA, Keil AP, Nakiwala D, Calafat AM, Adgate JL, Dabelea D, Ferguson KK. Midpregnancy Phthalate and Phenol Biomarkers in Relation to Infant Body Composition: The Healthy Start Prospective Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87017. [PMID: 37616158 PMCID: PMC10449008 DOI: 10.1289/ehp12500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Gestational phthalate and phenol exposure disrupts adipogenesis, contributing to obesity in mice. Whether gestational phthalate or phenol exposure is associated with infant body composition has not been investigated in humans. OBJECTIVE We examined associations between biomarkers of phthalate and phenol exposure in midpregnancy and infant size and body composition at birth and at 5 months of age. METHODS Analyses were conducted among 438 infants from the Healthy Start prospective pregnancy cohort. Sixteen phthalate and phenol biomarkers were quantified in spot urine samples collected at 24-28 wk of gestation. Infant outcomes measured at birth and at 5 months of age included size [weight (in grams)] and body composition [fat and lean masses (in grams); percentage fat mass]. Single- (linear) and multipollutant (quantile g-computation) models were used to estimate associations of phthalate and phenol biomarkers with infant outcomes at birth and at 5 months of age. Models were adjusted for sociodemographics, sample collection timing, and lifestyle factors and used to examine for effect modification by infant sex. RESULTS In single-pollutant models, mono-benzyl phthalate and di-n -butyl phthalate were inversely associated with percentage fat mass [β : - 0.49 (95% CI: - 0.91 , - 0.08 ) and - 0.51 (95% CI: - 1.02 , 0.01), respectively] in male but not female infants at birth. Similar, but less precise, associations were observed at 5 months of age. In multipollutant models, a 1-quartile increase in the phthalate and phenol biomarker mixture was inversely associated with percentage fat mass at birth [- 1.06 (95% CI: - 2.21 , 0.1)] and at 5 months of age [- 2.14 (95% CI: - 3.88 , - 0.39 )] among males, but associations were null among females [0.48 (95% CI: - 0.78 , 1.75) and - 0.64 (95% CI: - 2.68 , 1.41), respectively]. Similar associations were observed with infant weight. CONCLUSION In this U.S.-based prospective cohort, gestational phthalate and phenol biomarkers were inversely associated with infant weight and fat mass, particularly in males. https://doi.org/10.1289/EHP12500.
Collapse
Affiliation(s)
- Danielle R. Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Anne P. Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paige A. Bommarito
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alexander P. Keil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dorothy Nakiwala
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John L. Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Public Health Campus, Aurora, Colorado, USA
| | - Dana Dabelea
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
15
|
Reimann B, Sleurs H, Dockx Y, Rasking L, De Boever P, Pirard C, Charlier C, Nawrot TS, Plusquin M. Exposure to endocrine disrupters and cardiometabolic health effects in preschool children: Urinary parabens are associated with wider retinal venular vessels. CHEMOSPHERE 2023; 328:138570. [PMID: 37019399 DOI: 10.1016/j.chemosphere.2023.138570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND AIM Parabens are widely used as antimicrobial preservatives in personal care products. Studies investigating obesogenic or cardiovascular effects of parabens show discordant results, while data on preschool children are lacking. Paraben exposure during early childhood could have profound cardiometabolic effects later in life. METHODS In this cross-sectional study paraben concentrations [methyl (MeP), ethyl (EtP), propyl (PrP), butyl (BuP)] were measured by ultra-performance liquid chromatography/tandem mass spectrometry in 300 urinary samples of 4-6-year-old children of the ENVIRONAGE birth cohort. Paraben values below the limit of quantitation (LOQ) were imputed by censored likelihood multiple imputation. The associations between log-transformed paraben values and cardiometabolic measurements (BMI z-scores, waist circumference, blood pressure and retinal microvasculature) were analyzed in multiple linear regression models with a priori selected covariates. Effect modification by sex was investigated by including interaction terms. RESULTS Geometric means (geometric SD) of urinary MeP, EtP, and PrP levels above the LOQ were 32.60 (6.64), 1.26 (3.45), and 4.82 (4.11) μg/L, respectively. For BuP more than 96% of all measurements were below the LOQ. Regarding the microvasculature, we found direct associations between MeP and central retinal venular equivalent (β = 1.23, p = 0.039) and PrP with the retinal tortuosity index (x103)(β = 1.75, p = 0.0044). Furthermore, we identified inverse associations between MeP and ∑parabens with BMI z-scores (β = -0.067, p = 0.015 and β = -0.070, p = 0.014 respectively), and EtP with mean arterial pressure (β = -0.69, p = 0.048). The direction of association between EtP and BMI z-scores showed evidence for sex-specific differences with a direct trend in boys (β = 0.10, p = 0.060). CONCLUSIONS Already at young age paraben exposure is associated with potentially adverse changes in the retinal microvasculature.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Hanne Sleurs
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Leen Rasking
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Patrick De Boever
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Health Unit, Flemish Institute for Technological Research, Mol, Belgium
| | - Catherine Pirard
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULg), CHU, (B35), 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULg), CHU, (B35), 4000, Liege, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health, Environment & Health Unit, Leuven University (KU Leuven), 3000, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
16
|
Occurrence and seasonal variation of plasticizers in sediments and biota from the coast of Mahdia, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48532-48545. [PMID: 36759412 DOI: 10.1007/s11356-023-25687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Plasticizers are compounds often involved in the manufacturing of plastic products. Nevertheless, the ageing of the latter generates plasticizers that generally end up in the marine environment. In fact, marine pollution by phthalate acid esters (PAEs) and their alternatives has become an environmental and health issue of serious concern, as they are largely and ubiquitously present in the environment and aquatic organisms. In the present study, four PAEs, such as diethyl phthalate (DEP), diisobutyl phthalate (DiBP), dibutyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), and one non-phthalate plasticizer (NPP), namely di-2-ethylhexyl terephthalate (DEHT), are wanted in different marine compartments from the coast of Mahdia in Tunisia such as sediment, seagrass, and mussel. The most abundant and frequently detected congener was DEHT at the concentrations reached 1.181 mg/kg in the sediment, 1.121 mg/kg in the seagrass, and 1.86 mg/kg in the mussel. This result indicates that the DEHT could emerge through the food chain and therefore bioaccumulate in marine compartments. In addition, we noticed that the seasonal variations of plasticizers were seriously affected by environmental factors including industrial and urban discharges.
Collapse
|