1
|
Cuffaro D, Bertolini A, Silva AM, Rodrigues F, Gabbia D, De Martin S, Saba A, Bertini S, Digiacomo M, Macchia M. Comparative Analysis on Polyphenolic Composition of Different Olive Mill Wastewater and Related Extra Virgin Olive Oil Extracts and Evaluation of Nutraceutical Properties by Cell-Based Studies. Foods 2024; 13:3312. [PMID: 39456374 PMCID: PMC11507932 DOI: 10.3390/foods13203312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study reports a comparative analysis of the polyphenolic composition and nutraceutical properties of different olive mill wastewater (OMWW) and corresponding extra virgin olive oil (EVOO) extracts. Specifically, four OMWWs and corresponding EVOOs from cultivars Frantoio (A) and Leccino (B) obtained from different crushing seasons (early-stage (A1 and B1) and later-stage (A2 and B2)) were analyzed. Employing HPLC-DAD and LC-MS methods, the primary polyphenol content was identified and quantified. Overall, OMWW extracts showed a greater polyphenolic content compared to corresponding EVOO extracts, with OMWW B1 displaying the highest levels of polyphenols. The antiradical properties of extracts towards radical species (DPPH, ABTS, O2-, and HOCl-) were demonstrated in vitro, revealing a correlation with polyphenolic content. In fact, OMWW B1 and B2 demonstrated the strongest antiradical activity. Exploring nutraceutical properties of OMWWs, the intestinal permeation of the main polyphenols in a co-culture model (Caco-2 and HT29-MTX cell lines) was assessed, with tyrosol achieving a permeation of almost 60%. Furthermore, the involvement in the inflammation process has been evaluated in cell studies on THP1-derived macrophages by immunocytochemistry, demonstrating that OMWW B1 may exert an anti-inflammatory effect by modulating specific phenotype expression on macrophages. In conclusion, this study provides evidence supporting the reuse of OMWWs as a source of polyphenols with nutraceutical properties.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| | - Andrea Bertolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy;
| | - Ana Margarida Silva
- REQUIMTE/LAQV, ISEP, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; (A.M.S.); (F.R.)
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; (A.M.S.); (F.R.)
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 351131 Padova, Italy; (D.G.); (S.D.M.)
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 351131 Padova, Italy; (D.G.); (S.D.M.)
| | - Alessandro Saba
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy;
- Center for Instrument Sharing of the University of Pisa (CISUP), 56126 Pisa, Italy
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
- Center for Instrument Sharing of the University of Pisa (CISUP), 56126 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| |
Collapse
|
2
|
Gonçalves M, Costa M, Paiva-Martins F, Silva P. Olive Oil Industry By-Products as a Novel Source of Biophenols with a Promising Role in Alzheimer Disease Prevention. Molecules 2024; 29:4841. [PMID: 39459209 PMCID: PMC11510978 DOI: 10.3390/molecules29204841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review explores the potential health benefits and applications of phenolic secoiridoids derived from olive oil by-products in the prevention of Alzheimer's disease (AD). As reviewed herein, polyphenols, such as epigallocatechin-3-gallate, epicatechin, and resveratrol, show in vitro and in vivo antioxidant, anti-inflammatory, and neuroprotective properties, and are particularly relevant in the context of AD, a leading cause of dementia globally. The olive oil industry, particularly in the Mediterranean region, produces significant amounts of waste, including leaves, pomace, and wastewater, which pose environmental challenges but also offer an untapped source of bioactive compounds. Despite promising in vitro and in vivo studies indicating that olive-derived polyphenols, such as oleuropein and hydroxytyrosol, may mitigate AD pathology, human clinical trials remain limited. The variability in extraction methods and the complex nature of AD further complicate research. Future studies should focus on standardizing the protocols and conducting robust clinical trials to fully assess the therapeutic potential of these compounds. This approach not only supports the development of new treatments for AD but also promotes environmental sustainability by valorizing olive oil industry waste.
Collapse
Affiliation(s)
- Marta Gonçalves
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
3
|
Louhichi G, El Khouni A, Ghrabi A, Khouni I. Phytotoxicity assessment of treated vegetable oily wastewater via environmentally coagulation/flocculation and membrane filtration technologies using lettuce (Lactuca sativa) seeds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57204-57228. [PMID: 38175507 DOI: 10.1007/s11356-023-31594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
The present investigation highlights the necessity of monitoring some basic physico-chemical water quality indicators and their phytotoxic effect using ecotoxicological bioassays such as "seed germination tests." The phytotoxicity of raw and treated vegetable oil refinery wastewater (VORW) using different treatment processes was assessed through some physiological responses (relative seed germination (RSG), seedling elongation, and germination index (GI)) using Lactuca sativa cultivar. Biotest results of different raw water samples revealed a noticeable correlation between the organic matter content and water phytotoxicity. In fact, VORW showed a very low RSG (17 ± 0.7 to -47 ± 0.58%) and high phytotoxic effects (GI < 50%). The use of coagulation/flocculation (CF) allowed a satisfactory phytotoxicity removal where RSG obtained ranged from 83 ± 1.58 to 90 ± 1.2%. However, the effluent still presents high to moderate phytotoxicity since GI remained below 80% which indicates the presence of toxic elements remaining after CF treatment. When VORW were treated using membrane processes, their phytotoxicity was gradually decreased with the decrease in the membrane pore size. The use of microfiltration membranes (MF), with pore size of 5 µm, 1.2 µm, 0.45 µm, and 0.22 µm, showed RSG values ranged from 37 ± 1.15 to 77 ± 1.68% and GI of less than 80% indicating a moderate to high phytotoxicity. However, the use of ultrafiltration (UF) membranes with molecular weight cut-off (MWCO) of 100 kDa, 30 kDa, and 10 kDa made it possible to achieve an RSG of 100% and an IG exceeding 80% showing that the VORW-treated using UF does not exhibit any phytotoxicity effect. Hence, UF appears to be the most efficient and environmentally friendly technology that could be used for safely treated VORW irrigation purposes compared to CF and MF processes.
Collapse
Affiliation(s)
- Ghofrane Louhichi
- Laboratoire Eaux Usées Et Environnement, Centre de Recherches Et Des Technologies Des Eaux (CERTE), BP 273-8020, Soliman, Tunisia
| | - Amine El Khouni
- Laboratoire de Production Oléicole Intégrée, Institut de L'Olivier, Cité Mahrajène, BP 208, 1082, Tunis, Tunisia
| | - Ahmed Ghrabi
- Laboratoire Eaux Usées Et Environnement, Centre de Recherches Et Des Technologies Des Eaux (CERTE), BP 273-8020, Soliman, Tunisia
| | - Imen Khouni
- Laboratoire Eaux Usées Et Environnement, Centre de Recherches Et Des Technologies Des Eaux (CERTE), BP 273-8020, Soliman, Tunisia.
| |
Collapse
|
4
|
Rondini T, Branciari R, Franceschini E, Acito M, Fatigoni C, Roila R, Ranucci D, Villarini M, Galarini R, Moretti M. Olive Mill Wastewater Extract: In Vitro Genotoxicity/Antigenotoxicity Assessment on HepaRG Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1050. [PMID: 39200660 PMCID: PMC11354589 DOI: 10.3390/ijerph21081050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024]
Abstract
Olive mill wastewater (OMWW), with its high level of phenolic compounds, simultaneously represents a serious environmental challenge and a great resource with potential nutraceutical activities. To increase the knowledge of OMWW's biological effects, with an aim to developing a food supplement, we performed a chemical characterisation of the extract using the Liquid Chromatography-Quadrupole Time-of-flight spectrometry (LC-QTOF) and an in vitro genotoxicity/antigenotoxicity assessment on HepaRG ™ cells. Chemical analysis revealed that the most abundant phenolic compound was hydroxytyrosol. Biological tests showed that the extract was not cytotoxic at the lowest tested concentrations (from 0.25 to 2.5 mg/mL), unlike the highest concentrations (from 5 to 20 mg/mL). Regarding genotoxic activity, when tested at non-cytotoxic concentrations, the extract did not display any effect. Additionally, the lowest tested OMWW concentrations showed antigenotoxic activity (J-shaped dose-response effect) against a known mutagenic substance, reducing the extent of DNA damage in the co-exposure treatment. The antigenotoxic effect was also obtained in the post-exposure procedure, although only at the extract concentrations of 0.015625 and 0.03125 mg/mL. This behaviour was not confirmed in the pre-exposure protocol. In conclusion, the present study established a maximum non-toxic OMWW extract dose for the HepaRG cell model, smoothing the path for future research.
Collapse
Affiliation(s)
- Tommaso Rondini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (R.R.); (D.R.)
| | - Edoardo Franceschini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Mattia Acito
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Rossana Roila
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (R.R.); (D.R.)
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (R.R.); (D.R.)
| | - Milena Villarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy;
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| |
Collapse
|
5
|
Sayın B, Kaban G. Biotechnological Innovations Unleashing the Potential of Olive Mill Wastewater in Added-Value Bioproducts. Foods 2024; 13:2245. [PMID: 39063329 PMCID: PMC11276412 DOI: 10.3390/foods13142245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Byproducts and wastes from the food processing industry represent an important group of wastes generated annually in large quantities. It is important to note that the amount of this waste will increase with industrialization, and effective solutions must be found urgently. Many wastes that cause environmental pollution are evaluated by their low-tech conversion into products with little economic value, such as animal feed and fertilizer. Therefore, the evaluation of food processing waste using effective recycling techniques has become an interesting subject with increasing population, ongoing biotechnological studies, and advances in technology. The conversion of food waste into biotechnological products via fermentation is a sustainable, environmentally friendly, and economical method in line with the principles of green chemistry. This approach promotes the reuse of food waste by supporting the principles of a circular economy and offers sustainable alternatives to fossil fuels and synthetic chemicals. This contributes to reducing the carbon footprint, preserving soil and water quality, and providing economic sustainability through the production of high-value products. In this study, the properties of olive mill wastewater, an important and valuable waste in the olive oil industry, its environmental aspects, and its use in biotechnological applications that integrate green chemistry are evaluated.
Collapse
Affiliation(s)
- Bilge Sayın
- Department of Gastronomy and Culinary Arts, School of Tourism and Hotel Management, Ardahan University, 75002 Ardahan, Türkiye
| | - Güzin Kaban
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240 Erzurum, Türkiye
| |
Collapse
|
6
|
Vaz T, Quina MMJ, Martins RC, Gomes J. Olive mill wastewater treatment strategies to obtain quality water for irrigation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172676. [PMID: 38670378 DOI: 10.1016/j.scitotenv.2024.172676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
The olive mill industry is a relevant sector in the economy of Mediterranean countries, while it involves high consumption of water and the production of effluents with high environmental impact. The efficient treatment of olive mill wastewater (OMW) is of high relevance, particularly for these countries. Climate changes are leading to increasing periods of droughts, and water recovery from polluted streams is essential to ensure the sustainability of this scarce resource. A combination of various technologies involving physical, chemical, and biological processes has been developed for OMW treatment. However, the treatments studied have limitations such as the operation costs, difficulty of industrial scale-up, and the fact that the vast majority do not lead to suitable treated water for discharge/reuse. As such, it is urgent to develop a solution capable of efficiently treating this effluent, overcoming the disadvantages of existing processes to convert OMW from a serious environmental problem into a valuable source of water and nutrients. In this review, several studies based on the OMW treatment are critically discussed, from conventional approaches such as the physical (e.g. centrifugation, filtration, and adsorption) and biological (anaerobic digestion and anaerobic co-digestion) processes, to the most recent technologies such as advanced membrane filtration, advanced oxidation processes (AOPs) and sulfate radical based AOPs (SR-AOPs). Due to the complexity of the effluent, OMW cannot be efficiently treated by a single process, requiring a sequence of technologies before reaching the required characteristics for discharge into water courses or use in crop irrigation. Reviewing the published results in this matter, it seems that the sequence of processes encompassing ozonation, anaerobic digestion, and SR-AOPs could be the ideal combination for this purpose. However, membrane technologies may be necessary in the final stage of treatment so that the effluent meets legal discharge or irrigation limits.
Collapse
Affiliation(s)
- Telma Vaz
- University of Coimbra, CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - Margarida M J Quina
- University of Coimbra, CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - Rui C Martins
- University of Coimbra, CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - João Gomes
- University of Coimbra, CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal..
| |
Collapse
|
7
|
Anggraeni VS, Lee HC, Goh PS, Sutrisna PD, Chan EWC, Wong CW. Biodegradable ultrafiltration membrane enhanced with anti-biofouling agent from Anacardium occidentale extract. BIOFOULING 2024; 40:348-365. [PMID: 38836472 DOI: 10.1080/08927014.2024.2357309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Our research focuses on developing environmentally friendly biodegradable ultrafiltration (UF) membranes for small-scale water purification in areas lacking infrastructure or during emergencies. To address biofouling challenges without resorting to harmful chemicals, we incorporate bio-based extracts, such as methyl gallate from A. occidentale leaves, a Malaysian ulam herb, known for its quorum sensing inhibition (QSI) properties. The methyl gallate enriched extract was purified by solvent partitioning and integrated into cellulose-based UF membranes (0 to 7.5% w w-1) through phase inversion technique. The resulting membranes exhibited enhanced anti-organic fouling and anti-biofouling properties, with flux recovery ratio (FRR) of 87.84 ± 2.00% against bovine serum albumin and FRRs of 76.67 ± 1.89% and 69.57 ± 1.77% against E. coli and S. aureus, respectively. The CA/MG-5 membrane showed a 224% improvement in pure water flux (PWF) compared to the neat CA membrane. Our innovative approach significantly improves PWF, presenting an environmentally friendly method for biofouling prevention in UF membrane applications.
Collapse
Affiliation(s)
- Vania Septa Anggraeni
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Hoong Chern Lee
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Pei Sean Goh
- Advanced Membranes Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Putu Doddy Sutrisna
- Department of Chemical Engineering, University of Surabaya (UBAYA), Surabaya, Indonesia
| | - Eric Wei Chiang Chan
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Chen Wai Wong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Lia F, Attard K. Bioactive Potential of Olive Mill Waste Obtained from Cultivars Grown in the Island of Malta. Foods 2024; 13:1152. [PMID: 38672825 PMCID: PMC11049450 DOI: 10.3390/foods13081152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
This study explores the bioactive potential of olive mill waste derived from cultivars grown in the Maltese Islands through various analytical approaches. Cell culture, cell staining, allelopathic assays, shrimp brine lethality assays, and HPLC analysis were conducted to assess the efficacy and bioactivity of the extracts using different treatments, including methanolic extraction, acid, and alkaline hydrolysis. Notably, the results from cell lines revealed that NB4r2 cells exhibited high susceptibility to the tested extracts, with the lowest IC50 recorded after 72 h of exposure. Notably, the 'Bajda' cultivar displayed the most effectiveness, particularly with acid hydrolysis. In allelopathic assays, higher concentrations of 'Malti', 'Bidni', and 'Bajda' extracts significantly inhibited lettuce seed germination. Similarly, in the brine shrimp lethality assay, higher concentrations led to increased mortality rates of Artemia salina, though rates decreased at lower concentrations. The identification of phenolic compounds found in olive mill waste was conducted using high-performance liquid chromatography (HPLC) with the use of internal standards. The identification revealed a variety of compounds, with 3-hydroxytyrosol and oleacein being present in high abundance in nearly all hydrolyzed and methanolic extracts, whereas gallic acid was found to be the least abundant. These findings highlight the rich bioactive potential of olive mill waste and provide insights into its applications in pharmaceuticals, nutraceuticals, and agriculture, emphasizing the importance of further research to fully exploit these valuable resources.
Collapse
Affiliation(s)
- Frederick Lia
- Institute of Applied Science, Malta College of Arts, Science and Technology, PLA 9032 Paola, Malta;
| | | |
Collapse
|
9
|
Yazici Guvenc S, Tunc S. Alternative treatment of olive mill wastewater by combined sulfate radical-based advanced electrocoagulation processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10951. [PMID: 38031510 DOI: 10.1002/wer.10951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
The aim of this study is to investigate the performance of advanced electrocoagulation (EC) process for the treatment of olive mill wastewater. In EC process, iron plates were used as electrodes, and peroxydisulfate (PS) and peroxymonosulfate (PMS) were added as oxidants. The effects of the initial pH value, current density, oxidant dose, and electrolysis time were optimized for pollutant removal from olive mill wastewater by EC-PS and EC-PMS processes. Control experiments showed that addition of oxidants to the conventional EC process increased the pollutant removal efficiency. Classical optimization method was used to determine optimum conditions, which were initial pH 4, current density 40 mA/cm2 , oxidant dose 5 g/L, and electrolysis time 30 min for both processes. Under these conditions, EC-PS and EC-PMS processes achieved 50.5% and 48.9% chemical oxygen demand (COD), 93.8% and 89.3% total phenol, 87.7% and 83% UV254 , and 74.5% and 64.1% total suspended solid removal efficiencies. Quenching experiments were performed to determine the dominant radical species participating in the processes. It was observed that hydroxyl and sulfate radicals were involved in both processes but hydroxyl radicals were more active. Specific energy consumption was calculated as 5.90 kWh/kg COD for EC process, 4.95 kWh/kg COD for EC-PS process, and 5.20 kWh/kg COD for EC-PMS process. The organic removal/sludge ratio of EC-PS process was found to be higher with 17.5 g/L value. Although the application of EC-PS and EC-PMS processes alone is insufficient to meet the discharge limits, they have been found to be effective in olive mill wastewater treatment. PRACTITIONER POINTS: Peroxydisulfate (PS) and peroxymonosulfate (PMS)-based advanced electrocoagulation (EC) was used in olive mill wastewater treatment. 50.5% chemical oxygen demand (COD), 93.8% TP, 87.7% UV254 , and 74.5% TSS removals were achieved by EC-PS. 48.9% COD, 89.3% TP, 83% UV254 , and 64.1% TSS removals were obtained by EC-PMS. Hydroxyl and sulfate radicals were involved in both processes.
Collapse
Affiliation(s)
- Senem Yazici Guvenc
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Sinan Tunc
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
10
|
Pugazhendi A, Jamal MT. Application of halophiles in UMFC (upflow microbial fuel cell) for the treatment of saline olive oil industrial wastewater coupled with eco-energy yield. 3 Biotech 2023; 13:351. [PMID: 37810189 PMCID: PMC10550894 DOI: 10.1007/s13205-023-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
The olive oil industry faces a major problem of treating the wastewater with high organic content and safe disposal. Olive oil industrial wastewater (OOIWW) consists of highly toxic environmental pollutants with high salinity. Saline olive oil industrial wastewater was treated using halophilic consortium in UMFC (upflow microbial fuel cell) mobilized with carbon felt as electrode. Total and soluble COD (chemical oxygen demand), total suspended solids and phenol content removal were studied at different organic loads (0.56, 0.77, 1.05, 1.26, 1.52 and 1.8 gCOD/L). UMFC with OOIWW was optimized at 1.52 gCOD/L for high organic removal and corresponding electricity production. Total COD, soluble COD, TSS and phenol removal were 91%, 89%, 78%, and complete removal of phenol was accomplished at the optimized organic load (1.52 gCOD/L). Correspondingly, the maximum bioenergy yield was 784 mV with 439 mW/m2 (power density) and 560 mA/m2 (current density), respectively. The presence of prominent halophilic exo-electrogens such as Ochrobactrum, Marinobacter, Rhodococcus and Bacillus potently treated the OOIWW and exhibited high energy yield.
Collapse
Affiliation(s)
- Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mamdoh T. Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
11
|
Cuffaro D, Bertolini A, Bertini S, Ricci C, Cascone MG, Danti S, Saba A, Macchia M, Digiacomo M. Olive Mill Wastewater as Source of Polyphenols with Nutraceutical Properties. Nutrients 2023; 15:3746. [PMID: 37686778 PMCID: PMC10489820 DOI: 10.3390/nu15173746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Agrifood waste products are often considered rich sources of bioactive compounds that can be conveniently recovered. Due to these peculiar characteristics, the study of these waste products is attracting great interest in nutraceutical research. Olive mill wastewaters (OMWWs) are generated by extra virgin olive oil (EVOO) production, and they pose environmental challenges due to their disposal. This study aimed to characterize the polyphenolic profile and to evaluate the nutraceutical properties of OMWW extracts from two Tuscan olive cultivars, Leccino (CL) and Frantoio (CF), collected during different time points in EVOO production. METHOD After a liquid-liquid extraction, the HPLC and LC-MS/MS analysis of OMWW extracts confirmed the presence of 18 polyphenolic compounds. RESULTS The polyphenol composition varied between the cultivars and during maturation stages. Notably, oleacein was detected at remarkably high levels in CL1 and CF1 extracts (314.628 ± 19.535 and 227.273 ± 3.974 μg/mg, respectively). All samples demonstrated scavenging effects on free radicals (DPPH and ABTS assays) and an anti-inflammatory potential by inhibiting cyclooxygenase (COX) enzymes. CONCLUSIONS This study highlights the nutraceutical potential of OMWW extracts, emphasizing their antioxidant, antiradical, and anti-inflammatory activities. The results demonstrate the influence of olive cultivar, maturation stage, and extraction process on the polyphenolic composition and the bioactivity of OMWW extracts. These findings support a more profitable reuse of OMWW as an innovative, renewable, and low-cost source of dietary polyphenols with potential applications as functional ingredients in the development of dietary supplements, as well as in the pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| | - Andrea Bertolini
- Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy;
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (C.R.); (M.G.C.); (S.D.)
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (C.R.); (M.G.C.); (S.D.)
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (C.R.); (M.G.C.); (S.D.)
| | - Alessandro Saba
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
- Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy;
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| |
Collapse
|
12
|
Prelac M, Palčić I, Cvitan D, Anđelini D, Repajić M, Ćurko J, Kovačević TK, Goreta Ban S, Užila Z, Ban D, Major N. Biochar from Grapevine Pruning Residues as an Efficient Adsorbent of Polyphenolic Compounds. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4716. [PMID: 37445031 DOI: 10.3390/ma16134716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Agricultural waste, which is produced in large quantities annually, can be a threat to the environment. Biochar (BC) production represents a potential solution for reducing the amount of grapevine pruning residues and, accordingly, the impact on the environment and climate change. Biochar produced by the process of pyrolysis from grapevine pruning residues was investigated and characterized to be applied as an adsorbent of polyphenolic compounds with the aim of using the waste from viticultural production to obtain a quality product with adsorption and recovery potential. Standards of caffeic acid (CA), gallic acid (GA), and oleuropein (OLP) were used as polyphenolic representatives. The obtained data were fitted with the Langmuir and Freundlich isotherms models to describe the adsorption process. The best KL (0.39) and R2 (0.9934) were found for OLP using the Langmuir model. Furthermore, the adsorption dynamics and recovery potential of BC were investigated using an adapted BC column and performed on an HPLC instrument. The adsorption dynamics of biochar resulted in the adsorption of 5.73 mg CA g-1 of BC, 3.90 mg GA g-1 of BC, and 3.17 mg OLP g-1 of BC in a 24 h contact. The online solid phase extraction of the compounds performed on an HPLC instrument yielded a recovery of 41.5 ± 1.71% for CA, 61.8 ± 1.16% for GA, and 91.4 ± 2.10% for OLP. The investigated biochar has shown a higher affinity for low-polar compound adsorption and, consequently, a higher polar compound recovery suggesting its potential as an efficient polyphenolic compound adsorbent.
Collapse
Affiliation(s)
- Melissa Prelac
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Igor Palčić
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Danko Cvitan
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Dominik Anđelini
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Maja Repajić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Josip Ćurko
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | | | | | - Zoran Užila
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Dean Ban
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Nikola Major
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| |
Collapse
|