1
|
Sheng W, Yang L, Yang Y, Wang C, Jiang G, Tian Y. Photo-responsive Cu-tannic acid nanoparticle-mediated antibacterial film for efficient preservation of strawberries. Food Chem 2025; 464:141711. [PMID: 39447267 DOI: 10.1016/j.foodchem.2024.141711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The existing films used for fruit preservation suffer from insufficient preservation abilities. This study introduces Cu-tannic acid (Cu-TA) nanoparticles, synthesized from tannic acid (TA) and Cu2+, to enhance food packaging properties. Integrated into a chitosan-gelatin (CG) matrix, the resultant Cu-TA nanocomposite films exhibit superior antibacterial efficacy and killing rates of Escherichia coli and Staphylococcus aureus more than 99 %, and double the shelf life of strawberries, underscoring the exceptional freshness preservation capabilities of film. Additionally, the tensile strength of the Cu-TA nanocomposite films increased by 1.75 times, the DPPH radical scavenging percentage increased from 29.4 % to 68.4 %, and the water vapor permeability (WVP) decreased by about 60 % compared to the pure CG films. Comprehensive cytotoxicity and migration assessments confirm the safety of film, paving the way for their application in food packaging. The excellent performance of the Cu-TA nanocomposite films positions them as a formidable solution for protecting perishable food items.
Collapse
Affiliation(s)
- Wenyang Sheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Chenzhi Wang
- Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| |
Collapse
|
2
|
Zhang Y, Li Y, Ning H, Lu L, Tang Y. Preparation of bioactive film for regulating chlorine dioxide release based on the hygroscopic properties of chitosan and its application in broccoli preservation. Int J Biol Macromol 2024; 290:138972. [PMID: 39708859 DOI: 10.1016/j.ijbiomac.2024.138972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
An active packaging film was developed by integrating sodium chlorite (SC) and citric acid (CA) into a Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) (PLA/PBAT) matrix, enabling the controlled release of chlorine dioxide (ClO2) gas. The release of ClO2 was further regulated by introducing chitosan (CS) into the film, leveraging its hygroscopic properties. The results showed that when the addition amount of CS was 4 wt%, the water vapor transmission rate increased by 41.41 %, the water contact angle decreased by 24.4 %, the ClO2 release increased by 2.81 times after 72 h, and the scavenging rate of DPPH free radicals reached 96.26 % after 96 h. When the film was applied to broccoli packaging, it successfully protected the appearance and color of broccoli, effectively inhibited the activity of oxidase and reduced the reduction of active substances, and maintained the marketable quality for up to 8 days. Therefore, this ClO2-releasing active film has application potential in the color protection and preservation of broccoli and other green vegetables.
Collapse
Affiliation(s)
- Yuemei Zhang
- Department of Packaging Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yuqing Li
- Department of Packaging Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Haoyue Ning
- Department of Packaging Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Lixin Lu
- Department of Packaging Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu 214122, China.
| | - Yali Tang
- Department of Packaging Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Luo C, Zhou Y, Chen Z, Bian X, Chen N, Li J, Wu Y, Yang Z. Comparative life cycle assessment of PBAT from fossil-based and second-generation generation bio-based feedstocks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176421. [PMID: 39306119 DOI: 10.1016/j.scitotenv.2024.176421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
With the increasing demand for plastics, plastic pollution is growing rapidly. A significant amount of plastic has leaked into the environment, leading to severe environmental issues. Biodegradable plastics are considered promising alternatives to conventional durable plastics, and the environmental impacts of biodegradable plastics have received increasing attention. Poly (butylene adipate-co-terephthalate) (PBAT) is a commercial and cost-competitive biodegradable polymer and has been applied in the packaging and agriculture sectors. The environmental performances of PBAT with second-generation feedstocks from forestry waste have been rarely investigated. Since China is the leading global producer and exporter of PBAT polymer, Chinese cradle-to-gate life cycle inventories of PBAT were compiled in this study. A comparative life cycle assessment (LCA) was conducted to explore the potential for environmental performance of PBAT with second-generation bio-based feedstock compared to fossil-based PBAT and conventional plastics. The results showed that feedstocks contributed to more than 70 % of 18 environmental impact categories of fossil-based PBAT. In comparison, PBAT with second-generation bio-based feedstock reduces the environmental loads in 16 impact categories by 15-85 %, and renewable energy substitution has the potential to reduce environmental impacts by 10 %. Bio-based PBAT performs better than PVC, PP, HDPE, LDPE, and PET in 16 impact categories by 15-80 %. Bio-based PBAT has GWP of 3.72 kg CO2 eq, which is 37 % lower than fossil-based PBAT (5.89 kg CO2 eq) and 18-32 % lower than conventional plastics. Since feedstock dominates the environmental performance of PBAT, the development of biomanufacturing technologies for bio-based polymers and chemicals could significantly improve environmental performance of biodegradable plastics and promote the sustainable development of the plastic industry. Results could serve as the basis for environmental impact and mitigation strategies for biodegradable plastics with bio-based feedstocks, as well as the sustainable development of the PBAT industry.
Collapse
Affiliation(s)
- Chenkai Luo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Ya Zhou
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhitong Chen
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinchao Bian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Junjie Li
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Yufeng Wu
- Institute of Circular Economy, Beijing University of Technology, Beijing 100124, China
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Xie M, Cai K, Zhang J, Tu S, Feng J. Preparation of PBAT microplastics and their potential toxicity to zebrafish embryos and juveniles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107065. [PMID: 39213726 DOI: 10.1016/j.aquatox.2024.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The extensive use of traditional non-biodegradable plastics results in the generation of microplastics (MPs), forming a new pollutant that can pose significant environmental risks. Biodegradable plastics (BP) possess degradation properties and can partially replace conventional plastics, thereby reducing pollution. However, further investigation is needed into the toxicity of biodegradable microplastics (BMPs) on aquatic organisms. This study explores the toxic effects of PBAT microplastics (PBAT-BMPs) and microplastics produced from degradable PBAT/TPS (thermoplastic starch) composite film (PBAT/TPS-BMPs) on zebrafish embryos. Our findings indicate that the presence of microplastics on the embryo's surface increases with higher BMPs concentration. Nonetheless, PBAT-BMPs tend to aggregate and are blocked by the embryonic membrane, thus diminishing their toxic effects on the embryo. Acute toxicity experiments revealed that 30 mg/L of PBAT-BMPs significantly reduced the survival rate of zebrafish embryos, whereas PBAT/TPS-BMPs had a lesser effect on survival. Both types of BMPs influenced the hatching rate of the embryos, leading to prolonged incubation periods. Additionally, both types of BMPs impacted the locomotor behavior of zebrafish larvae, causing an increase in larval locomotor speed. However, these BMPs had little impact on larval body development and heartbeat behavior. Fluorescent microplastic tracer experiments demonstrated that PBAT-BMPs persisted in juvenile fish for at least 144 h and were difficult to metabolize and excrete. Our study aims to gain a better understanding of the potential effects of BMPs on aquatic ecosystems and biological health, as well as to propose effective strategies for reducing environmental pollution and protecting organisms.
Collapse
Affiliation(s)
- Mengmeng Xie
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kai Cai
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuhua Tu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jie Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Venkatesan R, Dhilipkumar T, Kiruthika A, Ali N, Kim SC. Green composites for sustainable food packaging: Exploring the influence of lignin-TiO 2 nanoparticles on poly(butylene adipate-co-terephthalate). Int J Biol Macromol 2024; 277:134511. [PMID: 39111470 DOI: 10.1016/j.ijbiomac.2024.134511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Titanium dioxide (TiO2) is a common pigment used in food packaging to provide a transparent appearance to plastic packaging materials. In the present study, poly(butylene adipate-co-terephthalate) (PBAT) incorporated with lignin-TiO2 nanoparticles (L-TiO2) eco-friendly composite films was prepared by employing an inexpensive melting and hot-pressing technique. The P-L-TiO2 composite films have been studied using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), Thermogravimetric analysis (TGA), and Differential scanning calorimetry (DSC) analysis. The FTIR results and homogeneous, dense SEM images confirm the interaction of L-TiO2 with the PBAT matrix. It has also been found that the addition of L-TiO2 nanoparticles can increase the crystallinity, tensile strength, and thermal stability of PBAT. The addition of L-TiO2 increased the tensile strength and decreased the elongation at break of films. The maximum tensile strength of the film, achieved with 5 wt% L-TiO2, was 47.0 MPa, compared with 24.3 MPa for pure PBAT film. The composite film with 5 wt% L-TiO2 has outstanding oxygen and water vapor barrier properties. As the content of lignin-TiO2 increases, the antimicrobial activity of the composite films also increases; the percentage of growth of all the tested bacteria Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli) is significantly reduced. Strawberries were packed to evaluate the suitability of produced composite films as packaging materials, as they effectively preserved pigments from accumulation and extended the shelf-life as compared to commercial polyethylene packaging film.
Collapse
Affiliation(s)
- Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India.
| | - Thulasidhas Dhilipkumar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India; Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Arumugam Kiruthika
- Department of Chemistry, Quaid-E-Millath Government College for Women, Chennai 600002, Tamil Nadu, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
6
|
Fan L, Ma J, Liu W, Shang C, Xie Y, Zhou X, Zhang M, Hou J, Feng Y. A study on the performance, structure, composition, and release behavior changes of polybutylene adipate terephthalic acid (PBAT) film during food contact. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134603. [PMID: 38749243 DOI: 10.1016/j.jhazmat.2024.134603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
Polybutylene adipate terephthalic acid (PBAT) is an emerging biodegradable material in food packaging. However, concerns have been raised regarding the potential hazards it could pose to food safety. In this study, the changes of PBAT films during food contact and the release of small molecules were inestigated by a multiscale approach. On a macro-scale, the surface roughness of the films increased with the reduction in the concentration of food simulants and the increase in contact temperatures, especially after immersion in acidic food environments. On a micro-scale, the crystallinity (Xc) and degradation indexes (DI) of the films increased by 5.7-61.2% and 7.8-48.6%, respectively, which led to a decrease in thermal stability. On a scale approaching the molecular level, 2,4-di-tert-butylphenol (2,4-DTBP) was detected by gas chromatography-mass spectrometry (GC-MS/MS) with the highest migration content, and the release behavior of 2,4-DTBP was further investigated by migration kinetics. In addition, terephthalic acid (TPA), a hydrolysis product of PBAT, was detected in acidic food environments by liquid chromatography-mass spectrometry (LC-MS/MS). The results of this study could provide practical guidance and assistance to promote sustainable development in the field of food packaging.
Collapse
Affiliation(s)
- Linwang Fan
- School of Materials Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Jiaxin Ma
- School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Wenyan Liu
- School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Chaonan Shang
- School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yanli Xie
- Analytical & Testing Center, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Xueqing Zhou
- Analytical & Testing Center, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Mingnan Zhang
- Analytical & Testing Center, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Jinjian Hou
- School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yuhong Feng
- School of Materials Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| |
Collapse
|
7
|
Zhou X, Zhou X, Zhou L, Jia M, Xiong Y. Nanofillers in Novel Food Packaging Systems and Their Toxicity Issues. Foods 2024; 13:2014. [PMID: 38998521 PMCID: PMC11241462 DOI: 10.3390/foods13132014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Environmental concerns about petroleum-based plastic packaging materials and the growing demand for food have inspired researchers and the food industry to develop food packaging with better food preservation and biodegradability. Nanocomposites consisting of nanofillers, and synthetic/biopolymers can be applied to improve the physiochemical and antimicrobial properties and sustainability of food packaging. Scope and approach: This review summarized the recent advances in nanofiller and their applications in improved food packaging systems (e.g., nanoclay, carbon nanotubes), active food packaging (e.g., silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs)), intelligent food packaging, and degradable packaging (e.g., titanium dioxide nanoparticles (e.g., TiO2 NPs)). Additionally, the migration processes and related assessment methods for nanofillers were considered, as well as the use of nanofillers to reduce migration. The potential cytotoxicity and ecotoxicity of nanofillers were also reviewed. Key findings: The incorporation of nanofillers may increase Young's modulus (YM) while decreasing the elongation at break (EAB) (y = -1.55x + 1.38, R2 = 0.128, r = -0.358, p = 0.018) and decreasing the water vapor (WVP) and oxygen permeability (OP) (y = 0.30x - 0.57, R2 = 0.039, r = 0.197, p = 0.065). Meanwhile, the addition of metal-based NPs could also extend the shelf-life of food products by lowering lipid oxidation by an average of approx. 350.74% and weight loss by approx. 28.39% during the longest storage period, and significantly increasing antibacterial efficacy against S. aureus compared to the neat polymer films (p = 0.034). Moreover, the migration process of nanofillers may be negligible but still requires further research. Additionally, the ecotoxicity of nanofillers is unclear, as the final distribution of nanocomposites in the environment is unknown. Conclusions: Nanotechnology helps to overcome the challenges associated with traditional packaging materials. Strong regulatory frameworks and safety standards are needed to ensure the appropriate use of nanocomposites. There is also a need to explore how to realize the economic and technical requirements for large-scale implementation of nanocomposite technologies.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China;
| | - Xiaoyu Zhou
- The Fine Arts Academy, Hunan Normal University, Changsha 410012, China;
| | - Longli Zhou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - Ming Jia
- College of Computer and Mathematics, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Xiong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
8
|
Venkatesan R, Alagumalai K, Vetcher AA, Al-Asbahi BA, Kim SC. Eco-Friendly Poly (Butylene Adipate- co-Terephthalate) Coated Bi-Layered Films: An Approach to Enhance Mechanical and Barrier Properties. Polymers (Basel) 2024; 16:1283. [PMID: 38732752 PMCID: PMC11085390 DOI: 10.3390/polym16091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
In this research work, a coated paper was prepared with poly (butylene adipate-co-terephthalate) (PBAT) film to explore its use in eco-friendly food packaging. The paper was coated with PBAT film for packaging using hot pressing, a production method currently employed in the packaging industry. The coated papers were evaluated for their structural, mechanical, thermal, and barrier properties. The structural morphology and chemical analysis of the coated paper confirmed the consistent formation of PBAT bi-layered on paper surfaces. Surface coating with PBAT film increased the water resistance of the paper samples, as demonstrated by tests of barrier characteristics, including the water vapor transmission rate (WVTR), oxygen transmission rate (OTR), and water contact angle (WCA) of water drops. The transmission rate of the clean paper was 2010.40 cc m-2 per 24 h for OTR and 110.24 g m-2 per 24 h for WVTR. If the PBAT-film was coated, the value decreased to 91.79 g m-2 per 24 h and 992.86 cc m-2 per 24 h. The hydrophobic nature of PBAT, confirmed by WCA measurements, contributed to the enhanced water resistance of PBAT-coated paper. This result presents an improved PBAT-coated paper material, eliminating the need for adhesives and allowing for the fabrication of bi-layered packaging.
Collapse
Affiliation(s)
- Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea;
| | - Krishnapandi Alagumalai
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea;
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| | - Bandar Ali Al-Asbahi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
9
|
Pan H, Yu T, Zheng Y, Ma H, Shan J, Yi X, Liu Y, Zhan J, Wang W, Zhou H. Isolation, characteristics, and poly(butylene adipate-co-terephthalate) (PBAT) degradation mechanism of a marine bacteria Roseibium aggregatum ZY-1. MARINE POLLUTION BULLETIN 2024; 201:116261. [PMID: 38537567 DOI: 10.1016/j.marpolbul.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Marine microorganisms have been reported to degrade microplastics. However, the degradation mechanisms are still poorly understood. In this study, a bacterium Roseibium aggregatum ZY-1 was isolated from seawater, which can degrade poly(butylene adipate-co-terephthalate) (PBAT). The PBAT-PLA(polylactic acid, PLA) films, before and after degradation, were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectrometer (FTIR), the weight loss rate and water contact angle were measured. The results indicate that ZY-1 colonized on PBAT-PLA film, changed the functional groups and decreased water contact angle of PBAT-PLA film. Moreover, liquid chromatography mass spectrometry (LC-MS) analysis reveales that PBAT was degraded into its oligomers (TB, BTB) and monomers (T, A) during 10 days, and adipic acid (A) could be used as a sole carbon source. The whole genome sequencing analyses illustrate the mechanisms and enzymes such as PETase, carboxylesterases, arylesterase (PpEst) and genes like pobA, pcaBCDFGHIJKT, dcaAEIJK, paaGHJ involved in PBAT degradation. Therefore, the R. aggregatum ZY-1 will be a promising candidate of PBAT degradation.
Collapse
Affiliation(s)
- Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Tianyi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yuan Zheng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Huiqing Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jiajia Shan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Wenyuan Wang
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China.
| |
Collapse
|
10
|
Venkatesan R, Vetcher AA, Al-Asbahi BA, Kim SC. Chitosan-Based Films Blended with Tannic Acid and Moringa Oleifera for Application in Food Packaging: The Preservation of Strawberries ( Fragaria ananassa). Polymers (Basel) 2024; 16:937. [PMID: 38611195 PMCID: PMC11013215 DOI: 10.3390/polym16070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Biobased plastics provide a sustainable alternative to conventional food packaging materials, thereby reducing the environmental impact. The present study investigated the effectiveness of chitosan with varying levels of Moringa oleifera seed powder (MOSP) and tannic acid (TA). Chitosan (CS) biocomposite films with tannic acid acted as a cross-linker, and Moringa oleifera seed powder served as reinforcement. To enhance food packaging and film performance, Moringa oleifera seed powder was introduced at various loadings of 1.0, 3.0, 5.0, and 10.0 wt.%. Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy analyses were performed to study the structure and morphology of the CS/TA/MOSP films. The scanning electron microscopy results confirmed that chitosan/TA with 10.0 wt.% of MOSP produced a lightly miscible droplet/matrix structure. Furthermore, mechanical properties, swelling, water solubility, optical barrier, and water contact angle properties of the film were also calculated. With increasing Moringa oleifera seed powder contents, the biocomposite films' antimicrobial and antifungal activity increased at the 10.0 wt.% MOSP level; all of the observed bacteria [Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Aspergillus niger (A. niger), and Candida albicans (C. albicans)] had a notably increased percentage of growth. The film, with 10.0 wt.% MOSP content, effectively preserves strawberries' freshness, making it an ideal food packaging material.
Collapse
Affiliation(s)
- Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia;
| | - Bandar Ali Al-Asbahi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
Fang YG, Lin JY, Zhang YC, Qiu QW, Zeng Y, Li WX, Wang ZY. A reactive compatibilization with the compound containing four epoxy groups for polylactic acid/poly(butylene adipate-co-terephthalate)/thermoplastic starch ternary bio-composites. Int J Biol Macromol 2024; 262:129998. [PMID: 38336326 DOI: 10.1016/j.ijbiomac.2024.129998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
How to effectively improve the poor interfacial adhesion between polylactic acid/poly(butylene adipate-co-terephthalate) (PLA/PBAT) matrix and thermoplastic starch (TPS) is still a challenge. Therefore, this work aims to introduce a convenient method to enhance the performance of PLA/PBAT/TPS blend by melt reactive extrusion. Here, using 4,4'-methylene-bis(N,N-diglycidyl-aniline) (MBDG) containing four epoxy groups as a reactive compatibilizer, and respectively using 1-methylimidazole (MI) or triethylenediamine (TD) as a catalyzer, serial PLA/PBAT/TPS ternary bio-composites are successfully prepared via melt reactive extrusion. The results showed that, under the catalysis of organic base, especially MI, the epoxy groups of MBDG can effectively react with hydroxyl and carboxyl groups of PLA/PBAT and hydroxyl groups in TPS to form chain-expanded and cross-linked structures. The tensile strength of the composites is increased by 20.0 % from 21.1 MPa, and the elongation at break is increased by 182.4 % from 17.6 % owing to the chain extension and the forming of cross-linked structures. The molecular weight, thermal stability, crystallinity, and surface hydrophobicity of the materials are gradually improved with the increase of MBDG content. The melt fluidity of the composites is also improved due to the enhancement of compatibility. The obtained PLA/PBAT/TPS materials have the potential to be green plastic products with good properties.
Collapse
Affiliation(s)
- Yong-Gan Fang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Jian-Yun Lin
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China; Guangdong Esquel Textiles Co., Ltd., Foshan, Guangdong 528500, PR China.
| | - You-Cai Zhang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Qi-Wen Qiu
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Yong Zeng
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Wen-Xi Li
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
12
|
Li Z, Wang Y, Lu H, Sun Y, Wang X, Chen S. Stable nanoscale sea-island structure of biobased polyamide 56/poly (butylene adipate-co-terephthalate) blends compatibilized by interfacial hyperbranched structure: Toward biobased polymer blends with ultrahigh toughness. Int J Biol Macromol 2024; 259:129310. [PMID: 38216014 DOI: 10.1016/j.ijbiomac.2024.129310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Developing biobased materials is a considerably effective approach to save fossil resources and reduce emissions. Biobased polyamide 56 (PA56) is an excellent engineering material, but it has low toughness. Herein, to enhance the toughness of PA56, an ultra-tough biodegradable material, i.e., poly (butylene adipate-co-terephthalate) (PBAT) was introduced into PA56. Moreover, a self-synthesized epoxy-terminated hyperbranched polyester (EHBP) was used to improve the compatibility of the blended materials. The results of differential scanning calorimetry and Fourier-transform infrared spectroscopy indicated that the epoxide group of EHBP could react with PA56 and PBAT to form a block-like polymer structure and limit the crystallization behavior of the blends. The scanning electron microscopy results show that the addition of EHBP considerably reduced the dispersed-phase size in the blends, forming a nanoscale island structure. Moreover, the hydrogen bonds formed between EHBP and PA56/PBAT enhanced the intermolecular interaction between the two materials. Thus, PA56 blends with ultrahigh toughness were successfully prepared. The prepared PA56/PBAT/EHBP blend exhibited a notch impact strength of 20.71 kJ/m2 and a breaking elongation of 38.3 %, which represent increases of 427.3 % and 252.8 %, respectively, compared with those of pure PA56. Thus, the proposed method is suitable for toughening PA56 and broadening its applications.
Collapse
Affiliation(s)
- Zhuolun Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing, People's Republic of China
| | - Yaqiao Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China; College of Materials Science and Engineering, Fujian University of Technology, Fujian 350118, People's Republic of China
| | - Haofan Lu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing, People's Republic of China
| | - Yibo Sun
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing, People's Republic of China
| | - Xiangdong Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing, People's Republic of China
| | - Shihong Chen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Priya M, Venkatesan R, Deepa S, Sana SS, Arumugam S, Karami AM, Vetcher AA, Kim SC. Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract. Sci Rep 2023; 13:18838. [PMID: 37914791 PMCID: PMC10620180 DOI: 10.1038/s41598-023-46002-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
The green methodologies of nanoparticles with plant extracts have received an increase of interest. Copper oxide nanoparticles (CuO NPs) have been utilized in a many of applications in the last few decades. The current study presents the synthesis of CuO NPs with aqueous extract of Morinda citrifolia as a stabilizing agent. The leaf extract of Morinda citrifolia was mixed with a solution of copper sulphate (CuSO4·5H2O) and sodium hydroxide as a catalyst. UV-visible spectroscopy, FTIR, XRD, SEM, TEM, and EDAX analysis were performed to study the synthesized CuO NPs. Particle size distribution of the synthesized CuO NPs have been measured with dynamic light scattering. The CuO NPs synthesized were highly stable, sphere-like, and have size of particles from 20 to 50 nm. Furthermore, as-formed CuO NPs shown strong antibacterial activity against the Gram-positive bacteria (Bacillus subtilis, and Staphylococcus aureus), and Gram-negative bacteria (Escherichia coli). CuO NPs revealed a similar trend was analysed for antifungal activity. The zone of inhibition for the fungi evaluated for Aspergillus flavus (13.0 ± 1.1), Aspergillus niger (14.3 ± 0.7), and Penicillium frequentans (16.8 ± 1.4). According to the results of this investigation, green synthesized CuO NPs with Morinda citrifolia leaf extract may be used in biomedicine as a replacement agent for biological applications.
Collapse
Affiliation(s)
- Manogar Priya
- Department of Chemistry, School of Basic Sciences, Vels Institute of Science, Technology and Advanced Studies, Chennai, Tamil Nadu, 600117, India.
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Simon Deepa
- Department of Chemistry, School of Basic Sciences, Vels Institute of Science, Technology and Advanced Studies, Chennai, Tamil Nadu, 600117, India
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Soundhar Arumugam
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Abdulnasser M Karami
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Alexandre A Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples' Friendship, University of Russia (RUDN), 6 Miklukho-Maklaya St., Moscow, Russia, 117198
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|