1
|
Goraya RK, Singla M, Kaura R, Singh CB, Singh A. Exploring the impact of high pressure processing on the characteristics of processed fruit and vegetable products: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 38957008 DOI: 10.1080/10408398.2024.2373390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Consumers are increasingly interested in additive-free products with a fresh taste, leading to a growing trend in high pressure processing (HPP) as an alternative to thermal processing. This review explores the impact of HPP on the properties of juices, smoothies, and purees, as well as its practical applications in the food industry. Research findings have explained that HPP is a most promising technology in comparison to thermal processing, in two ways i.e., for ensuring microbial safety and maximum retention of micro and macro nutrients and functional components. HPP preserves natural color and eliminates the need for artificial coloring. The review also emphasizes its potential for enhancing flavor in the beverage industry. The review also discusses how HPP indirectly affects plant enzymes that cause off-flavors and suggests potential hurdle approaches for enzyme inactivation based on research investigations. Scientific studies regarding the improved quality insights on commercially operated high pressure mechanisms concerning nutrient retention have paved the way for upscaling and boosted the market demand for HPP equipment. In future research, the clear focus should be on scientific parameters and sensory attributes related to consumer acceptability and perception for better clarity of the HPP effect on juice and smoothies/purees.
Collapse
Affiliation(s)
- Rajpreet Kaur Goraya
- Advanced Post-Harvest Technology Centre, Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, Alberta, Canada
| | - Mohit Singla
- Department of Food Technology, Bhai Gurdas Institute of Engineering and Technology, Sangrur, India
| | - Robin Kaura
- Dairy Engineering Division, ICAR-NDRI, Karnal, India
| | - Chandra B Singh
- Advanced Post-Harvest Technology Centre, Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, Alberta, Canada
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Jaworek MW, Oliva R, Winter R. Enabling High Activation of Glucose-6-Phosphate Dehydrogenase Activity Through Liquid Condensate Formation and Compression. Chemistry 2024; 30:e202400690. [PMID: 38471074 DOI: 10.1002/chem.202400690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Droplet formation via liquid-liquid phase separation is thought to be involved in the regulation of various biological processes, including enzymatic reactions. We investigated a glycolytic enzymatic reaction, the conversion of glucose-6-phosphate to 6-phospho-D-glucono-1,5-lactone with concomitant reduction of NADP+ to NADPH both in the absence and presence of dynamically controlled liquid droplet formation. Here, the nucleotide serves as substrate as well as the scaffold required for the formation of liquid droplets. To further expand the process parameter space, temperature and pressure dependent measurements were performed. Incorporation of the reactants in the liquid droplet phase led to a boost in enzymatic activity, which was most pronounced at medium-high pressures. The crowded environment of the droplet phase induced a marked increase of the affinity of the enzyme and substrate. An increase in turnover number in the droplet phase at high pressure contributed to a further strong increase in catalytic efficiency. Enzyme systems that are dynamically coupled to liquid condensate formation may be the key to deciphering many biochemical reactions. Expanding the process parameter space by adjusting temperature and pressure conditions can be a means to further increase the efficiency of industrial enzyme utilization and help uncover regulatory mechanisms adopted by extremophiles.
Collapse
Affiliation(s)
- Michel W Jaworek
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Edenharter K, Jaworek MW, Engelbrecht V, Winter R, Happe T. H 2 production under stress: [FeFe]‑hydrogenases reveal strong stability in high pressure environments. Biophys Chem 2024; 308:107217. [PMID: 38490110 DOI: 10.1016/j.bpc.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Hydrogenases are a diverse group of metalloenzymes that catalyze the conversion of H2 into protons and electrons and the reverse reaction. A subgroup is formed by the [FeFe]‑hydrogenases, which are the most efficient enzymes of microbes for catalytic H2 conversion. We have determined the stability and activity of two [FeFe]‑hydrogenases under high temperature and pressure conditions employing FTIR spectroscopy and the high-pressure stopped-flow methodology in combination with fast UV/Vis detection. Our data show high temperature stability and an increase in activity up to the unfolding temperatures of the enzymes. Remarkably, both enzymes reveal a very high pressure stability of their structure, even up to pressures of several kbars. Their high pressure-stability enables high enzymatic activity up to 2 kbar, which largely exceeds the pressure limit encountered by organisms in the deep sea and sub-seafloor on Earth.
Collapse
Affiliation(s)
- Kristina Edenharter
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Michel W Jaworek
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | - Vera Engelbrecht
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| | - Thomas Happe
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany.
| |
Collapse
|
4
|
Bai C, Chen R, Chen Y, Bai H, Sun H, Li D, Wu W, Wang Y, Gong M. Plant polysaccharides extracted by high pressure: A review on yields, physicochemical, structure properties, and bioactivities. Int J Biol Macromol 2024; 263:129939. [PMID: 38423909 DOI: 10.1016/j.ijbiomac.2024.129939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Polysaccharides are biologically essential macromolecules, widely exist in plants, which are used in food, medicine, bioactives' encapsulation, targeted delivery and other fields. Suitable extraction technology can not only improve the yield, but also regulate the physicochemical, improve the functional property, and is the basis for the research and application of polysaccharide. High pressure (HP) extraction (HPE) induces the breakage of raw material cells and tissues through rapid changes in pressure, increases extraction yield, reduces extraction time, and modifies structure of polysaccharides. However, thus far, literature review on the mechanism of extraction, improved yield and modified structure of HPE polysaccharide is lacking. Therefore, the present work reviews the mechanism of HPE polysaccharide, increasing extraction yield, regulating physicochemical and functional properties, modifying structure and improving activity. This review contributes to a full understanding of the HPE or development of polysaccharide production and modification methods and promotes the application of HP technology in polysaccharide production.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Yubo Chen
- FAW-Volkswagen Automotive Co., Ltd., Powertrain Division T-D Planning Powertrain T-D-1, Changchun 130011, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Dongxue Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Wenjing Wu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yongtang Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Mingze Gong
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
5
|
Abedi E, Kaveh S, Mohammad Bagher Hashemi S. Structure-based modification of a-amylase by conventional and emerging technologies: Comparative study on the secondary structure, activity, thermal stability and amylolysis efficiency. Food Chem 2024; 437:137903. [PMID: 37931423 DOI: 10.1016/j.foodchem.2023.137903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
α-Amylase is an endo-enzyme that catalyzes the hydrolysis of starch into shorter oligosaccharides. α-Amylase plays a crucial role in various industries. Manipulated α-amylases are of particular interest due to their remarkable amylolysis efficiency and thermostability for large-scale biotechnological processes. The retained catalytic activity of enzymes is decreased according to extreme pH, temperature, pressure, and chemical reagents. Broad industrial applications of α-amylases need special properties such as stability against temperature, pH, and chelators, and also attain reusability, desirable enzymatic activity, efficiency, and selectivity. Considering the biotechnological importance of α-amylase, its high stability is the most critical challenge for its economic viability. Therefore, improving its functionality and stability recently gained much interest. To achieve this purpose, various emerging technologies in combination with conventional methods on α-Amylases with different sources have been conducted. The present review is an attempt to summarize the effect of various conventional methods and emerging technologies employed to date on α-amylase secondary structure, thermal stability, and performance.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| | - Shima Kaveh
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | | |
Collapse
|
6
|
Olmo-Cunillera A, Ribas-Agustí A, Lozano-Castellón J, Pérez M, Ninot A, Romero-Aroca A, Lamuela-Raventós RM, Vallverdú-Queralt A. High hydrostatic pressure enhances the formation of oleocanthal and oleacein in 'Arbequina' olive fruit. Food Chem 2024; 437:137902. [PMID: 37924762 DOI: 10.1016/j.foodchem.2023.137902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
During olive oil production, the activity of endogenous enzymes plays a crucial role in determining the oil's phenolic composition. β-Glucosidase contributes to the formation of secoiridoids, while polyphenol oxidase (PPO) and peroxidase (POX) are involved in their oxidation. This study investigated whether high hydrostatic pressure (HHP), known to cause cell disruption and modify enzymatic activity and food texture, could reduce PPO and POX activity. HHP was applied to 'Arbequina' olives at different settings (300 and 600 MPa, 3 and 6 min) before olive oil extraction. The tested HHP conditions were not effective in reducing the activity of PPO and POX in olives, resulting in oils with a lower phenolic content. However, HHP increased the secoiridoid content of olives, particularly oleocanthal and oleacein (>50%). The pigments in oils produced from HHP-treated olives were higher compared to the control, whereas squalene and α-tocopherol levels and the fatty acid profile remained the same.
Collapse
Affiliation(s)
- Alexandra Olmo-Cunillera
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Albert Ribas-Agustí
- Food Safety and Functionality Program, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Spain.
| | - Julián Lozano-Castellón
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Maria Pérez
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Antònia Ninot
- Fruit Science Program, Olive Growing and Oil Technology Research Team, Institute of Agrifood Research and Technology (IRTA), 43120 Constantí, Spain.
| | - Agustí Romero-Aroca
- Fruit Science Program, Olive Growing and Oil Technology Research Team, Institute of Agrifood Research and Technology (IRTA), 43120 Constantí, Spain.
| | - Rosa Maria Lamuela-Raventós
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
7
|
Carré L, Henneke G, Henry E, Flament D, Girard É, Franzetti B. DNA Polymerization in Icy Moon Abyssal Pressure Conditions. ASTROBIOLOGY 2024; 24:151-162. [PMID: 36622808 DOI: 10.1089/ast.2021.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Evidence of stable liquid water oceans beneath the ice crust of moons within the Solar System is of great interest for astrobiology. In particular, subglacial oceans may present hydrothermal processes in their abysses, similarly to terrestrial hydrothermal vents. Therefore, terrestrial extremophilic deep life can be considered a model for putative icy moon extraterrestrial life. However, the comparison between putative extraterrestrial abysses and their terrestrial counterparts suffers from a potentially determinant difference. Indeed, some icy moons oceans may be so deep that the hydrostatic pressure would exceed the maximal pressure at which hydrothermal vent organisms have been isolated. While terrestrial microorganisms that are able to survive in such conditions are known, the effect of high pressure on fundamental biochemical processes is still unclear. In this study, the effects of high hydrostatic pressure on DNA synthesis catalyzed by DNA polymerases are investigated for the first time. The effect on both strand displacement and primer extension activities is measured, and pressure tolerance is compared between enzymes of various thermophilic organisms isolated at different depths.
Collapse
Affiliation(s)
- Lorenzo Carré
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Ghislaine Henneke
- Laboratoire de Microbiologie des Environnements Extrêmes, CNRS, Ifremer, Université de Brest, Plouzané, France
| | - Etienne Henry
- Laboratoire de Microbiologie des Environnements Extrêmes, CNRS, Ifremer, Université de Brest, Plouzané, France
| | - Didier Flament
- Laboratoire de Microbiologie des Environnements Extrêmes, CNRS, Ifremer, Université de Brest, Plouzané, France
| | - Éric Girard
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Bruno Franzetti
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| |
Collapse
|
8
|
Peters J, Oliva R, Caliò A, Oger P, Winter R. Effects of Crowding and Cosolutes on Biomolecular Function at Extreme Environmental Conditions. Chem Rev 2023; 123:13441-13488. [PMID: 37943516 DOI: 10.1021/acs.chemrev.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The extent of the effect of cellular crowding and cosolutes on the functioning of proteins and cells is manifold and includes the stabilization of the biomolecular systems, the excluded volume effect, and the modulation of molecular dynamics. Simultaneously, it is becoming increasingly clear how important it is to take the environment into account if we are to shed light on biological function under various external conditions. Many biosystems thrive under extreme conditions, including the deep sea and subseafloor crust, and can take advantage of some of the effects of crowding. These relationships have been studied in recent years using various biophysical techniques, including neutron and X-ray scattering, calorimetry, FTIR, UV-vis and fluorescence spectroscopies. Combining knowledge of the structure and conformational dynamics of biomolecules under extreme conditions, such as temperature, high hydrostatic pressure, and high salinity, we highlight the importance of considering all results in the context of the environment. Here we discuss crowding and cosolute effects on proteins, nucleic acids, membranes, and live cells and explain how it is possible to experimentally separate crowding-induced effects from other influences. Such findings will contribute to a better understanding of the homeoviscous adaptation of organisms and the limits of life in general.
Collapse
Affiliation(s)
- Judith Peters
- Univ. Grenoble Alpes, CNRS, LiPhy, 140 rue de la physique, 38400 St Martin d'Hères, France
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
- Institut Universitaire de France, 75005 Paris, France
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Antonino Caliò
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Philippe Oger
- INSA Lyon, Universite Claude Bernard Lyon1, CNRS, UMR5240, 69621 Villeurbanne, France
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Dortmund, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| |
Collapse
|
9
|
Silva Amorim D, Silva Amorim I, Campos Chisté R, André Narciso Fernandes F, Regina Barros Mariutti L, Teixeira Godoy H, Rosane Barboza Mendonça C. Non-thermal technologies for the conservation of açai pulp and derived products: A comprehensive review. Food Res Int 2023; 174:113575. [PMID: 37986445 DOI: 10.1016/j.foodres.2023.113575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Açai (Euterpe oleracea) is one of the main sustainable extractive crops in the Amazon region, widely consumed by the local population and a significant export product. This review presents the current knowledge regarding nonthermal technologies employed in açai processing. This review aims to discuss and compare the main results attained by the application of HPP, ultrasound, ozone, UV light, cold plasma, and pulsed electric field on microbial inactivation, enzymatic inhibition, and the content of anthocyanin and other bioactive compounds after açai pulp processing. The discussion compares these technologies with pasteurization, the current main technology applied to açai sanitization. This review shows that there are still many gaps to be filled concerning açai processing in thermal and non-thermal technologies. Data analysis allowed the conclusion that pasteurization and HPP are, up to now, the only technologies that enable a 5-log CFU reduction of yeasts, molds, and some bacteria in açai. However, no study has reported the inactivation of Trypanosoma cruzi, which is the major gap found in current knowledge. Other technologies, such as pulsed electric field, cold plasma, and ultrasound, require further development and process intensification studies to be as successful as HPP and pasteurization.
Collapse
Affiliation(s)
- Danyelly Silva Amorim
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, 96010-900 Pelotas, Rio Grande do Sul, Brazil; Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universida Estadual de Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil.
| | - Isabelly Silva Amorim
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, 96010-900 Pelotas, Rio Grande do Sul, Brazil; Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universida Estadual de Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Renan Campos Chisté
- Faculdade de Engenharia de Alimentos (FEA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), 66075-110 Belém, Pará, Brazil
| | - Fabiano André Narciso Fernandes
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, Bloco 709, 60440-900 Fortaleza, CE, Brazil
| | - Lilian Regina Barros Mariutti
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universida Estadual de Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Helena Teixeira Godoy
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universida Estadual de Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Carla Rosane Barboza Mendonça
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Buitimea-Cantúa GV, Chávez-Leal V, Soto-Caballero MC, Tellez-Medina DI, Welti-Chanes J, Escobedo-Avellaneda Z. Enzymatic Activity and Its Relationships with the Total Phenolic Content and Color Change in the High Hydrostatic Pressure-Assisted Curing of Vanilla Bean ( Vanilla planifolia). Molecules 2023; 28:7606. [PMID: 38005328 PMCID: PMC10674283 DOI: 10.3390/molecules28227606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Diverse enzymatic reactions taking place after the killing of green vanilla beans are involved in the flavor and color development of the cured beans. The effects of high hydrostatic pressure (HHP) at 50-400 MPa/5 min and blanching as vanilla killing methods were evaluated on the total phenolic content (TPC), polyphenoloxidase (PPO), and peroxidase (POD) activity and the color change at different curing cycles of sweating-drying (C0-C20) of vanilla beans. The rate constants describing the above parameters during the curing cycles were also obtained. The TPC increased from C1 to C6 compared with the untreated green beans after which it started to decrease. The 400 MPa samples showed the highest rate of phenolic increase. Immediately after the killing (C0), the highest increase in PPO activity was observed at 50 MPa (46%), whereas for POD it was at 400 MPa (25%). Both enzymes showed the maximum activity at C1, after which the activity started to decrease. As expected, the L* color parameter decreased during the entire curing for all treatments. An inverse relationship between the rate of TPC decrease and enzymatic activity loss was found, but the relationship with L* was unclear. HHP appears to be an alternative vanilla killing method; nevertheless, more studies are needed to establish its clear advantages over blanching.
Collapse
Affiliation(s)
- Génesis V. Buitimea-Cantúa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Viridiana Chávez-Leal
- Facultad de Ciencias Agrotecnologicas, Universidad Autónoma de Chihuahua, Av. Presa de la Amistad 2015, Cuauhtémoc, Chihuahua 31510, Mexico
| | - Mayra C. Soto-Caballero
- Facultad de Ciencias Agrotecnologicas, Universidad Autónoma de Chihuahua, Av. Presa de la Amistad 2015, Cuauhtémoc, Chihuahua 31510, Mexico
| | - Dario I. Tellez-Medina
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Azcapotzalco, Ciudad de México 11340, Mexico
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Zamantha Escobedo-Avellaneda
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| |
Collapse
|
11
|
Kumar P, Kermanshahi-Pour A, Brar SK, He QS, Rainey JK. Influence of elevated pressure and pressurized fluids on microenvironment and activity of enzymes. Biotechnol Adv 2023; 68:108219. [PMID: 37488056 DOI: 10.1016/j.biotechadv.2023.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Enzymes have great potential in bioprocess engineering due to their green and mild reaction conditions. However, there are challenges to their application, such as enzyme extraction and purification costs, enzyme recovery, and long reaction time. Enzymatic reaction rate enhancement and enzyme immobilization have the potential to overcome some of these challenges. Application of high pressure (e.g., hydrostatic pressure, supercritical carbon dioxide) has been shown to increase the activity of some enzymes, such as lipases and cellulases. Under high pressure, enzymes undergo multiple alterations simultaneously. High pressure reduces the bond lengths of molecules of reaction components and causes a reduction in the activation volume of enzyme-substrate complex. Supercritical CO2 interacts with enzyme molecules, catalyzes structural changes, and removes some water molecules from the enzyme's hydration layer. Interaction of scCO2 with the enzyme also leads to an overall change in secondary structure content. In the extreme, such changes may lead to enzyme denaturation, but enzyme activation and stabilization have also been observed. Immobilization of enzymes onto silica and zeolite-based supports has been shown to further stabilize the enzyme and provide resistance towards perturbation under subjection to high pressure and scCO2.
Collapse
Affiliation(s)
- Pawan Kumar
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada.
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Department of Chemistry, and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
12
|
Senyay-Oncel D, Kimiz-Gebologlu I, Yesil-Celiktas O. New developments in supercritical fluids as a green technology: Processing of β-glucanase with sub- and supercritical carbon dioxide. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
13
|
Zheng N, Long M, Zhang Z, Du S, Huang X, Osire T, Xia X. Behavior of enzymes under high pressure in food processing: mechanisms, applications, and developments. Crit Rev Food Sci Nutr 2023; 64:9829-9843. [PMID: 37243343 DOI: 10.1080/10408398.2023.2217268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High pressure processing (HPP) offers the benefits of safety, uniformity, energy-efficient, and low waste, which is widely applied for microbial inactivation and shelf-life extension for foods. Over the past forty years, HPP has been extensively researched in the food industry, enabling the inactivation or activation of different enzymes in future food by altering their molecular structure and active site conformation. Such activation or inactivation of enzymes effectively hinders the spoilage of food and the production of beneficial substances, which is crucial for improving food quality. This paper reviews the mechanism in which high pressure affects the stability and activity of enzymes, concludes the roles of key enzymes in the future food processed using high pressure technologies. Moreover, we discuss the application of modified enzymes based on high pressure, providing insights into the future direction of enzyme evolution under complex food processing conditions (e.g. high temperature, high pressure, high shear, and multiple elements). Finally, we conclude with prospects of high pressure technology and research directions in the future. Although HPP has shown positive effects in improving the future food quality, there is still a pressing need to develop new and effective combined processing methods, upgrade processing modes, and promote sustainable lifestyles.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuang Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xinlei Huang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Scepankova H, Galante D, Espinoza-Suaréz E, Pinto CA, Estevinho LM, Saraiva J. High Hydrostatic Pressure in the Modulation of Enzymatic and Organocatalysis and Life under Pressure: A Review. Molecules 2023; 28:molecules28104172. [PMID: 37241913 DOI: 10.3390/molecules28104172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The interest in high hydrostatic pressure (HHP) is mostly focused on the inactivation of deleterious enzymes, considering the quality-related issues associated with enzymes in foods. However, more recently, HHP has been increasingly studied for several biotechnological applications, including the possibility of carrying out enzyme-catalyzed reactions under high pressure. This review aims to comprehensively present and discuss the effects of HHP on the kinetic catalytic action of enzymes and the equilibrium of the reaction when enzymatic reactions take place under pressure. Each enzyme can respond differently to high pressure, mainly depending on the pressure range and temperature applied. In some cases, the enzymatic reaction remains significantly active at high pressure and temperature, while at ambient pressure it is already inactivated or possesses minor activity. Furthermore, the effect of temperature and pressure on the enzymatic activity indicated a faster decrease in activity when elevated pressure is applied. For most cases, the product concentration at equilibrium under pressure increased; however, in some cases, hydrolysis was preferred over synthesis when pressure increased. The compiled evidence of the effect of high pressure on enzymatic activity indicates that pressure is an effective reaction parameter and that its application for enzyme catalysis is promising.
Collapse
Affiliation(s)
- Hana Scepankova
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CIMO, Mountain Research Center Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal
| | - Diogo Galante
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Letícia M Estevinho
- CIMO, Mountain Research Center Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal
| | - Jorge Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Zan Q, Long M, Zheng N, Zhang Z, Zhou H, Xu X, Osire T, Xia X. Improving ethanol tolerance of ethyl carbamate hydrolase by diphasic high pressure molecular dynamic simulations. AMB Express 2023; 13:32. [PMID: 36920541 PMCID: PMC10017909 DOI: 10.1186/s13568-023-01538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/16/2023] Open
Abstract
Ethyl carbamate (EC) is mainly found in fermented foods and fermented alcoholic beverages, which could cause carcinogenic potential to humans. Reducing EC is one of the key research priorities to address security of fermented foods. Enzymatic degradation of EC with EC hydrolase in food is the most reliable and efficient method. However, poor tolerance to ethanol severely hinders application of EC hydrolase. In this study, the mutants of EC hydrolase were screened by diphasic high pressure molecular dynamic simulations (dHP-MD). The best variant with remarkable improvement in specific activity and was H68A/K70R/S325N, whose specific activity was approximately 3.42-fold higher than WT, and relative enzyme activity under 20% (v/v) was 5.02-fold higher than WT. Moreover, the triple mutant increased its stability by acquiring more hydration shell and forming extra hydrogen bonds. Furthermore, the ability of degrading EC of the immobilized triple mutant was both detected in mock wine and under certain reaction conditions. The stability of immobilized triple mutant and WT were both improved, and immobilized triple mutant degraded nearly twice as much EC as that of immobilized WT. Overall, dHP-MD was proved to effectively improve enzyme activity and ethanol tolerance for extent application at industrial scale.
Collapse
Affiliation(s)
- Qijia Zan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Huimin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xinjie Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, Guangdong, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
16
|
Landim APM, Tiburski JH, Mellinger CG, Juliano P, Rosenthal A. Potential Application of High Hydrostatic Pressure on the Production of Hydrolyzed Proteins with Antioxidant and Antihypertensive Properties and Low Allergenicity: A Review. Foods 2023; 12:foods12030630. [PMID: 36766158 PMCID: PMC9914325 DOI: 10.3390/foods12030630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The high hydrostatic pressure (HHP) process has been studied for several applications in food technology and has been commercially implemented in several countries, mainly for non-thermal pasteurization and shelf-life extension of food products. HHP processing has been demonstrated to accelerate proteolytic hydrolysis at a specific combination of pressure and pressure-holding time for a given protein source and enzyme. The enzymatic hydrolysis of proteins is a well-known alternative to producing biologically active peptides, with antioxidant and antihypertensive capacity, from different food protein sources. However, some of these protein sources contain allergenic epitopes which are often not degraded by traditional hydrolysis. Moreover, the peptide profile and related biological activity of a hydrolysate depend on the protein source, the enzymes used, the parameters of the proteolysis process (pH, temperature, time of hydrolysis), and the use of other technologies such as HHP. The present review aims to provide an update on the use of HHP for improving enzymatic hydrolysis, with a particular focus on studies which evaluated hydrolysate antihypertensive and antioxidant capacity, as well as residual allergenicity. Overall, HHP has been shown to improve the biological properties of hydrolysates. While protein allergenicity can be reduced with traditional hydrolysis, HHP can further reduce the allergenicity. Compared with traditional hydrolysis methods, HHP-assisted protein hydrolysis offers a greater opportunity to add value to protein-rich products through conversion into high-end hydrolysate products with enhanced nutritional and functional properties.
Collapse
Affiliation(s)
- Ana Paula Miguel Landim
- Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil
- Postgraduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
| | - Julia Hauck Tiburski
- Department of Food Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
| | - Caroline Grassi Mellinger
- Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil
- Postgraduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
| | - Pablo Juliano
- CSIRO Agriculture and Food, Werribee, VIC 3030, Australia
| | - Amauri Rosenthal
- Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil
- Postgraduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
- Correspondence: ; Tel./Fax: +55-21-3622-9620
| |
Collapse
|
17
|
Feiten MC, Morigi I, Di Luccio M, Oliveira JV. Activity and stability of lipase from Candida Antarctica after treatment in pressurized fluids. Biotechnol Lett 2023; 45:287-298. [PMID: 36592260 DOI: 10.1007/s10529-022-03335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 01/03/2023]
Abstract
Lipase B from Candida antarctica (CalB) is one of the biocatalysts most used in organic synthesis due to its ability to act in several medium, wide substrate specificity and enantioselectivity, tolerance to non-aqueous environment, and resistance to thermal deactivation. Thus, the objective of this work was to treat CalB in supercritical carbon dioxide (SC-CO2) and liquefied petroleum gas (LPG), and measure its activity before and after high-pressure treatment. Residual specific hydrolytic activities of 132% and 142% were observed when CalB was exposed to SC-CO2 at 35 ℃, 75 bar and 1 h and to LPG at 65 ℃, 30 bar and 1 h, respectively. Residual activity of the enzyme treated at high pressure was still above 100% until the 20th day of storage at low temperatures. There was no difference on the residual activity loss of CalB treated with LPG and stored at different temperatures over time. Greater difference was observed between CalB treated with CO2 and flash-frozen in liquid nitrogen (- 196 ℃) followed by storage in freezer (- 10 ℃) and CalB stored in freezer at - 10 ℃. Such findings encourage deeper studies on CalB as well as other enzymes behavior under different types of pressurized fluids aiming at industrial application.
Collapse
Affiliation(s)
- Mirian Cristina Feiten
- Department of Technology, State University of Maringá (UEM), Angelo Moreira da Fonseca Ave, Umuarama, Paraná, 87506-370, Brazil.
| | - Iasmin Morigi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Technology Center/C.P. 476, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Marco Di Luccio
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Technology Center/C.P. 476, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - José Vladimir Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Technology Center/C.P. 476, Florianópolis, Santa Catarina, 88040-900, Brazil
| |
Collapse
|
18
|
The Role of Emergent Processing Technologies in Beer Production. BEVERAGES 2023. [DOI: 10.3390/beverages9010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The brewing industry is regarded as a fiercely competitive and insatiable sector of activity, driven by the significant technological improvements observed in recent years and the most recent consumer trends pointing to a sharp demand for sensory enhanced beers. Some emergent and sustainable technologies regarding food processing such as pulsed electric fields (PEF), ultrasound (US), thermosonication (TS), high-pressure processing (HPP), and ohmic heating (OH) have shown the potential to contribute to the development of currently employed brewing methodologies by both enhancing the quality of beer and contributing to processing efficiency with a promise of being more environmentally friendly. Some of these technologies have not yet found their way into the industrial brewing process but already show potential to be embedded in continuous thermal and non-thermal unit operations such as pasteurization, boiling and sterilization, resulting in beer with improved organoleptic properties. This review article aims to explore the potential of different advanced processing technologies for industrial application in several key stages of brewing, with particular emphasis on continuous beer production.
Collapse
|
19
|
Knop JM, Mukherjee S, Jaworek MW, Kriegler S, Manisegaran M, Fetahaj Z, Ostermeier L, Oliva R, Gault S, Cockell CS, Winter R. Life in Multi-Extreme Environments: Brines, Osmotic and Hydrostatic Pressure─A Physicochemical View. Chem Rev 2023; 123:73-104. [PMID: 36260784 DOI: 10.1021/acs.chemrev.2c00491] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Elucidating the details of the formation, stability, interactions, and reactivity of biomolecular systems under extreme environmental conditions, including high salt concentrations in brines and high osmotic and high hydrostatic pressures, is of fundamental biological, astrobiological, and biotechnological importance. Bacteria and archaea are able to survive in the deep ocean or subsurface of Earth, where pressures of up to 1 kbar are reached. The deep subsurface of Mars may host high concentrations of ions in brines, such as perchlorates, but we know little about how these conditions and the resulting osmotic stress conditions would affect the habitability of such environments for cellular life. We discuss the combined effects of osmotic (salts, organic cosolvents) and hydrostatic pressures on the structure, stability, and reactivity of biomolecular systems, including membranes, proteins, and nucleic acids. To this end, a variety of biophysical techniques have been applied, including calorimetry, UV/vis, FTIR and fluorescence spectroscopy, and neutron and X-ray scattering, in conjunction with high pressure techniques. Knowledge of these effects is essential to our understanding of life exposed to such harsh conditions, and of the physical limits of life in general. Finally, we discuss strategies that not only help us understand the adaptive mechanisms of organisms that thrive in such harsh geological settings but could also have important ramifications in biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Jim-Marcel Knop
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Sanjib Mukherjee
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Michel W Jaworek
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Simon Kriegler
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Magiliny Manisegaran
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Zamira Fetahaj
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Lena Ostermeier
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Rosario Oliva
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany.,Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126Naples, Italy
| | - Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Charles S Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| |
Collapse
|
20
|
Insights into high hydrostatic pressure pre-treatment generating a more efficient catalytic mode of maltogenic α-amylase: Effect of multi-level structure on retrogradation properties of maize starch. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Oliva R, Winter R. Harnessing Pressure-Axis Experiments to Explore Volume Fluctuations, Conformational Substates, and Solvation of Biomolecular Systems. J Phys Chem Lett 2022; 13:12099-12115. [PMID: 36546666 DOI: 10.1021/acs.jpclett.2c03186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intrinsic thermodynamic fluctuations within biomolecules are crucial for their function, and flexibility is one of the strategies that evolution has developed to adapt to extreme environments. In this regard, pressure perturbation is an important tool for mechanistically exploring the causes and effects of volume fluctuations in biomolecules and biomolecular assemblies, their role in biomolecular interactions and reactions, and how they are affected by the solvent properties. High hydrostatic pressure is also a key parameter in the context of deep-sea and subsurface biology and the study of the origin and physical limits of life. We discuss the role of pressure-axis experiments in revealing intrinsic structural fluctuations as well as high-energy conformational substates of proteins and other biomolecular systems that are important for their function and provide some illustrative examples. We show that the structural and dynamic information obtained from such pressure-axis studies improves our understanding of biomolecular function, disease, biological evolution, and adaptation.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemistry and Chemical Biology, Physical Chemistry I, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 6, Dortmund44227, Germany
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126Naples, Italy
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry I, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 6, Dortmund44227, Germany
| |
Collapse
|
22
|
Zheng N, Long M, Zhang Z, Zan Q, Osire T, Zhou H, Xia X. Protein-Glutaminase Engineering Based on Isothermal Compressibility Perturbation for Enhanced Modification of Soy Protein Isolate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13969-13978. [PMID: 36281950 DOI: 10.1021/acs.jafc.2c06063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein-glutaminase plays a significant role in future food (e.g., plant-based meat) processing as a result of its ability to improve the solubility, foaming, emulsifying, and gel properties of plant-based proteins. However, poor stability, activity, high pressure, and high shear processing environments hinder its application. Therefore, we developed an application-oriented method isothermal compressibility perturbation engineering strategy to improve enzyme performance by simulating the high-pressure environment. The best variant with remarkable improvement in specific activity and half-time, N16M/Q21H/T113E, exhibited a 4.28-fold increase compared to the wild type in specific activity (117.18 units/mg) and a 1.23-fold increase in half-time (472 min), as one of the highest comprehensive performances ever reported. The solubility of the soy protein isolate deaminated by the N16M/Q21H/T113E mutant was 55.74% higher than that deaminated by the wild type, with a tinier particle size and coarser texture. Overall, this strategy has the potential to improve the functional performance of enzymes under complex food processing conditions.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| | - Qijia Zan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong518172, People's Republic of China
| | - Huimin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| |
Collapse
|
23
|
Wang W, Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. Effect of high hydrostatic pressure processing on the structure, functionality, and nutritional properties of food proteins: A review. Compr Rev Food Sci Food Saf 2022; 21:4640-4682. [PMID: 36124402 DOI: 10.1111/1541-4337.13033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Proteins are important food ingredients that possess both functional and nutritional properties. High hydrostatic pressure (HHP) is an emerging nonthermal food processing technology that has been subject to great advancements in the last two decades. It is well established that pressure can induce changes in protein folding and oligomerization, and consequently, HHP has the potential to modify the desired protein properties. In this review article, the research progress over the last 15 years regarding the effect of HHP on protein structures, as well as the applications of HHP in modifying protein functionalities (i.e., solubility, water/oil holding capacity, emulsification, foaming and gelation) and nutritional properties (i.e., digestibility and bioactivity) are systematically discussed. Protein unfolding generally occurs during HHP treatment, which can result in increased conformational flexibility and the exposure of interior residues. Through the optimization of HHP and environmental conditions, a balance in protein hydrophobicity and hydrophilicity may be obtained, and therefore, the desired protein functionality can be improved. Moreover, after HHP treatment, there might be greater accessibility of the interior residues to digestive enzymes or the altered conformation of specific active sites, which may lead to modified nutritional properties. However, the practical applications of HHP in developing functional protein ingredients are underutilized and require more research concerning the impact of other food components or additives during HHP treatment. Furthermore, possible negative impacts on nutritional properties of proteins and other compounds must be also considered.
Collapse
Affiliation(s)
- Wenxin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
24
|
Application of High Pressure Processing on Ultrasonically Treated Extract from Wild Bitter Gourd. Processes (Basel) 2022. [DOI: 10.3390/pr10101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wild bitter gourd extracts, such as saponins, polysaccharides, and peptides, could be used to adjust blood sugar. The objective of this research was to explore the use of high pressure processing (HPP) for sterilization and acceleration of enzyme hydrolysis in the ultrasonic preparation of peptide extracts from wild bitter gourd. The results showed that the wild bitter gourd powder could be extracted via ultrasonic processing with water at 70 °C for only 20 min with a solid to liquid ratio of 1:20 to obtain the total protein content of 1.514 mg/g. The two sterilization methods for wild bitter gourd extract treated with papaya enzyme—for 2 h in the traditional autoclave at 121 °C for 15 min, or under HPP 300 MPa for 5 min—showed no significant effect on protein content, and both sterilization methods were effective. However, the extract sterilized with HPP had a significantly higher ability to scavenge DPPH free radicals. In addition, HPP (300 MPa for 5 min), combined with papaya enzyme to hydrolyze the wild bitter gourd extract, simultaneously pasteurized the extract and acquired the peptides from the wild bitter gourd extract Therefore, the ultrasonic extraction of wild bitter gourd, combined with HPP and enzyme hydrolysis, could greatly shorten the operation time (to only 5 min) for extracting the active peptides.
Collapse
|
25
|
A High-Pressure, High-Temperature Flow Reactor Simulating the Hadean Earth Environment, with Application to the Pressure Dependence of the Cleavage of Avocado Viroid Hammerhead Ribozyme. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081224. [PMID: 36013404 PMCID: PMC9410335 DOI: 10.3390/life12081224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
The RNA world hypothesis suggests that chemical networks consisting of functional RNA molecules could have constructed a primitive life-like system leading a first living system. The chemical evolution scenario of RNA molecules should be consistent with the Hadean Earth environment. We have demonstrated the importance of the environment at both high temperature and high pressure, using different types of hydrothermal flow reactor systems and high-pressure equipment. In the present study, we have attempted to develop an alternative easy-to-implement method for high-pressure measurements and demonstrate that the system is applicable as an efficient research tool for high-pressure experiments at pressures up to 30 MPa. We demonstrate the usefulness of the system by detecting the high-pressure influence for the self-cleavage of avocado hammerhead ribozyme (ASBVd(−):HHR) at 45–65 °C. A kinetic analysis of the high-pressure behavior of ASBVd(−):HHR shows that the ribozyme is active at 30 MPa and its activity is sensitive to pressures between 0.1–30 MPa. The surprising finding that such a short ribozyme is effective for self-cleavage at a high pressure suggests the importance of pressure as a factor for selection of adaptable RNA molecules towards an RNA-based life-like system in the Hadean Earth environment deep in the ocean.
Collapse
|
26
|
Santos DI, Pinto CA, Corrêa‐Filho LC, Saraiva JA, Vicente AA, Moldão‐Martins M. Effect of moderate hydrostatic pressures on the enzymatic activity and bioactive composition of pineapple by‐products. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Diana I. Santos
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia Universidade de Lisboa Lisbon Portugal
| | - Carlos A. Pinto
- QOPNA & LAQV‐REQUIMTE, Química Orgânica, Produtos Naturais e Agroalimentares, Departamento de Química Universidade de Aveiro, Campus Universitário de Santiago Aveiro Portugal
| | - Luiz C. Corrêa‐Filho
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia Universidade de Lisboa Lisbon Portugal
| | - Jorge A. Saraiva
- QOPNA & LAQV‐REQUIMTE, Química Orgânica, Produtos Naturais e Agroalimentares, Departamento de Química Universidade de Aveiro, Campus Universitário de Santiago Aveiro Portugal
| | - António A. Vicente
- CEB, Centre of Biological Engineering University of Minho Braga Portugal
| | - Margarida Moldão‐Martins
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
27
|
Reich JA, Aßmann M, Hölting K, Bubenheim P, Kuballa J, Liese A. Shift of the reaction equilibrium at high pressure in the continuous synthesis of neuraminic acid. Beilstein J Org Chem 2022; 18:567-579. [PMID: 35651700 PMCID: PMC9127241 DOI: 10.3762/bjoc.18.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
The importance of a compound that helps fight against influenza is, in times of a pandemic, self-evident. In order to produce these compounds in vast quantities, many researchers consider continuous flow reactors in chemical industry as next stepping stone for large scale production. For these reasons, the synthesis of N-acetylneuraminic acid (Neu5Ac) in a continuous fixed-bed reactor by an immobilized epimerase and aldolase was investigated in detail. The immobilized enzymes showed high stability, with half-life times > 173 days under storage conditions (6 °C in buffer) and reusability over 50 recycling steps, and were characterized regarding the reaction kinetics (initial rate) and scalability (different lab scales) in a batch reactor. The reaction kinetics were studied in a continuous flow reactor. A high-pressure circular reactor (up to 130 MPa) was applied for the investigation of changes in the position of the reaction equilibrium. By this, equilibrium conversion, selectivity, and yield were increased from 57.9% to 63.9%, 81.9% to 84.7%, and 47.5% to 54.1%, respectively. This indicates a reduction in molar volume from N-acetyl-ᴅ-glucosamine (GlcNAc) and pyruvate (Pyr) to Neu5Ac. In particular, the circular reactor showed great potential to study reactions at high pressure while allowing for easy sampling. Additionally, an increase in affinity of pyruvate towards both tested enzymes was observed when high pressure was applied, as evidenced by a decrease of KI for the epimerase and KM for the aldolase from 108 to 42 mM and 91 to 37 mM, respectively.
Collapse
Affiliation(s)
- Jannis A Reich
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Miriam Aßmann
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany
| | - Kristin Hölting
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany
| | - Paul Bubenheim
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Jürgen Kuballa
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| |
Collapse
|
28
|
Effects of ultrasound and ultra-high pressure pretreatments on volatile and taste compounds of vacuum-freeze dried strawberry slice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Gygli G. On the reproducibility of enzyme reactions and kinetic modelling. Biol Chem 2022; 403:717-730. [PMID: 35357794 DOI: 10.1515/hsz-2021-0393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
Abstract
Enzyme reactions are highly dependent on reaction conditions. To ensure reproducibility of enzyme reaction parameters, experiments need to be carefully designed and kinetic modeling meticulously executed. Furthermore, to enable quality control of enzyme reaction parameters, the experimental conditions, the modeling process as well as the raw data need to be reported comprehensively. By taking these steps, enzyme reaction parameters can be open and FAIR (findable, accessible, interoperable, re-usable) as well as repeatable, replicable and reproducible. This review discusses these requirements and provides a practical guide to designing initial rate experiments for the determination of enzyme reaction parameters and gives an open, FAIR and re-editable example of the kinetic modeling of an enzyme reaction. Both the guide and example are scripted with Python in Jupyter Notebooks and are publicly available (https://fairdomhub.org/investigations/483/snapshots/1). Finally, the prerequisites of automated data analysis and machine learning algorithms are briefly discussed to provide further motivation for the comprehensive, open and FAIR reporting of enzyme reaction parameters.
Collapse
Affiliation(s)
- Gudrun Gygli
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
30
|
Han Q, Liu F, Ni Y. Cloning, sequencing and structural analysis of membrane‐bound polyphenol oxidase from Granny Smith apples (
Malus
×
domestica
Borkh). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qian‐Yun Han
- College of Food Science and Nutritional Engineering China Agricultural University 17 Qinghua East Road Beijing 100083 China
- National Engineering Research Center for Fruits and Vegetables Processing Beijing 100083 China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture Beijing 100083 China
| | - Fang Liu
- College of Food Science and Engineering Northwest A & F University Yang Ling Shaanxi 712100 China
| | - Yuan‐Ying Ni
- College of Food Science and Nutritional Engineering China Agricultural University 17 Qinghua East Road Beijing 100083 China
- National Engineering Research Center for Fruits and Vegetables Processing Beijing 100083 China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture Beijing 100083 China
| |
Collapse
|
31
|
Prangé T, Carpentier P, Dhaussy AC, van der Linden P, Girard E, Colloc'h N. Comparative study of the effects of high hydrostatic pressure per se and high argon pressure on urate oxidase ligand stabilization. Acta Crystallogr D Struct Biol 2022; 78:162-173. [DOI: 10.1107/s2059798321012134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022] Open
Abstract
The stability of the tetrameric enzyme urate oxidase in complex with excess of 8-azaxanthine was investigated either under high hydrostatic pressure per se or under a high pressure of argon. The active site is located at the interface of two subunits, and the catalytic activity is directly related to the integrity of the tetramer. This study demonstrates that applying pressure to a protein–ligand complex drives the thermodynamic equilibrium towards ligand saturation of the complex, revealing a new binding site. A transient dimeric intermediate that occurs during the pressure-induced dissociation process was characterized under argon pressure and excited substates of the enzyme that occur during the catalytic cycle can be trapped by pressure. Comparison of the different structures under pressure infers an allosteric role of the internal hydrophobic cavity in which argon is bound, since this cavity provides the necessary flexibility for the active site to function.
Collapse
|
32
|
Xu J, Wang Y, Zhang X, Zhao Z, Yang Y, Yang X, Wang Y, Liao X, Zhao L. A Novel Method of a High Pressure Processing Pre-Treatment on the Juice Yield and Quality of Persimmon. Foods 2021; 10:foods10123069. [PMID: 34945620 PMCID: PMC8700792 DOI: 10.3390/foods10123069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigates the effects of a high pressure processing pre-treatment (pre-HPP) on the juice yield of persimmon (Diospyros kaki L.) pulp and the pre-HPP plus HPP or thermal processing (TP) on microorganism inactivation and quality changes of the persimmon juice. The “Gongcheng” persimmon was selected with the highest juice yield (48.9%), and the pre-HPP set at 300 MPa/8 min increased the juice yield by 60% through an increasing pectin methylesterase (PME) activity of 25.03% and by maintaining polygalacturonase (PG) activity. For different processing modes, namely, pre-HPP plus HPP at 550 Mpa/5 min and pre-HPP plus TP treatment at 95 °C/5 min, both of the guaranteed microorganisms in the juice were below 2.0 lg CFU/mL; however, the persimmon juice treated by the pre-HPP plus HPP had higher contents of total phenol and ascorbic acid which were 16.07 mg GAE/100 g and 17.92 mg/100 mL, respectively, a lower content of soluble tannin which was 55.64 μg/mL, better clarity which was 18.6% and less color change where the ΔE was only 2.68.
Collapse
Affiliation(s)
- Jiayue Xu
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Yilun Wang
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Xinyue Zhang
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Zhen Zhao
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Yao Yang
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Xin Yang
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Yongtao Wang
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Xiaojun Liao
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Liang Zhao
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Correspondence: ; Tel.: +86-1062737464
| |
Collapse
|
33
|
Dimopoulos G, Limnaios A, Aerakis E, Andreou V, Taoukis P. Effect of high pressure on the proteolytic activity and autolysis of yeast Saccharomyces cerevisiae. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Basso F, Manzocco L, Nicoli MC. Hyperbaric Storage of Food: Applications, Challenges, and Perspectives. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09296-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Gaudron SM, Lefebvre S, Marques GM. Inferring functional traits in a deep-sea wood-boring bivalve using dynamic energy budget theory. Sci Rep 2021; 11:22720. [PMID: 34811447 PMCID: PMC8608800 DOI: 10.1038/s41598-021-02243-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022] Open
Abstract
For species in the deep sea, there is a knowledge gap related to their functional traits at all stages of their life cycles. Dynamic energy budget (DEB) theory has been proven to be an efficient framework for estimating functional traits throughout a life cycle using simulation modelling. An abj-DEB model, which compared with the standard DEB model includes an extra juvenile stage between the embryo and the usual juvenile stages, has been successfully implemented for the deep-sea Atlantic woodeater Xylonora atlantica. Most of the core and primary parameter values of the model were in the range of those found for shallow marine bivalve species; however, in comparison to shallow marine bivalves, X. atlantica required less energy conductance and energy to reach the puberty stage for the same range of body sizes, and its maximum reserve capacity was higher. Consequently, its size at first reproduction was small, and better survival under starvation conditions was expected. A series of functional traits were simulated according to different scenarios of food density and temperature. The results showed a weak cumulative number of oocytes, a low growth rate and a small maximum body size but an extended pelagic larval duration under deep-sea environmental conditions. Moreover, DEB modelling helped explain that some male X. atlantica individuals remain dwarfs while still reproducing by changing their energy allocation during their ontogenetic development in favour of reproduction. The estimation of functional traits using DEB modelling will be useful in further deep-sea studies on the connectivity and resilience of populations.
Collapse
Affiliation(s)
- S M Gaudron
- UMR 8187, Laboratoire d'Océanologie et de Géosciences (LOG), Université de Lille, ULCO, CNRS, 59000, Lille, France.
- Sorbonne Université, UFR 927, 75005, Paris, France.
| | - S Lefebvre
- UMR 8187, Laboratoire d'Océanologie et de Géosciences (LOG), Université de Lille, ULCO, CNRS, 59000, Lille, France
| | - G M Marques
- MARETEC-Marine, Environment & Technology Center, LARSyS, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
36
|
Abstract
Nowadays, the climate mitigation policies of EU promote the energy production based on renewable resources. Anaerobic digestion (AD) constitutes a biochemical process that can convert lignocellulosic materials into biogas, used for chemical products isolation or energy production, in the form of electricity, heat or fuels. Such practices are accompanied by several economic, environmental and climatic benefits. The method of AD is an effective method of utilization of several different low-value and negative-cost highly available materials of residual character, such as the lignocellulosic wastes coming from forest, agricultural or marine biomass utilization processes, in order to convert them into directly usable energy. Lignin depolymerization remains a great challenge for the establishment of a full scale process for AD of lignin waste. This review analyzes the method of anaerobic digestion (biomethanation), summarizes the technology and standards involved, the progress achieved so far on the depolymerization/pre-treatment methods of lignocellulosic bio-wastes and the respective residual byproducts coming from industrial processes, aiming to their conversion into energy and the current attempts concerning the utilization of the produced biogas. Substrates’ mechanical, physical, thermal, chemical, and biological pretreatments or a combination of those before biogas production enhance the hydrolysis stage efficiency and, therefore, biogas generation. AD systems are immensely expanding globally, especially in Europe, meeting the high demands of humans for clean energy.
Collapse
|
37
|
Boosting the kinetic efficiency of formate dehydrogenase by combining the effects of temperature, high pressure and co-solvent mixtures. Colloids Surf B Biointerfaces 2021; 208:112127. [PMID: 34626897 DOI: 10.1016/j.colsurfb.2021.112127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
The application of co-solvents and high pressure has been shown to be an efficient means to modify the kinetics of enzyme-catalyzed reactions without compromising enzyme stability, which is often limited by temperature modulation. In this work, the high-pressure stopped-flow methodology was applied in conjunction with fast UV/Vis detection to investigate kinetic parameters of formate dehydrogenase reaction (FDH), which is used in biotechnology for cofactor recycling systems. Complementary FTIR spectroscopic and differential scanning fluorimetric studies were performed to reveal pressure and temperature effects on the structure and stability of the FDH. In neat buffer solution, the kinetic efficiency increases by one order of magnitude by increasing the temperature from 25° to 45 °C and the pressure from ambient up to the kbar range. The addition of particular co-solvents further doubled the kinetic efficiency of the reaction, in particular the compatible osmolyte trimethylamine-N-oxide and its mixtures with the macromolecular crowding agent dextran. The thermodynamic model PC-SAFT was successfully applied within a simplified activity-based Michaelis-Menten framework to predict the effects of co-solvents on the kinetic efficiency by accounting for interactions involving substrate, co-solvent, water, and FDH. Especially mixtures of the co-solvents at high concentrations were beneficial for the kinetic efficiency and for the unfolding temperature.
Collapse
|
38
|
Queiroz C, Lopes MLM, Da Silva AJR, Fialho E, Valente‐Mesquita VL. Effect of high hydrostatic pressure and storage in fresh‐cut cashew apple: Changes in phenolic profile and polyphenol oxidase activity. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christiane Queiroz
- Departamento de Nutrição Universidade Federal do Paraná Curitiba Brazil
- Instituto de Nutrição Josué de Castro Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Maria Lúcia M. Lopes
- Instituto de Nutrição Josué de Castro Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Antonio Jorge R. Da Silva
- Instituto de Pesquisa de Produtos Naturais Walter Mors Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Eliane Fialho
- Instituto de Nutrição Josué de Castro Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | |
Collapse
|
39
|
Szczepańska J, Skąpska S, Połaska M, Marszałek K. High pressure homogenization with a cooling circulating system: The effect on physiochemical and rheological properties, enzymes, and carotenoid profile of carrot juice. Food Chem 2021; 370:131023. [PMID: 34509942 DOI: 10.1016/j.foodchem.2021.131023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
The influence of high pressure homogenization (HPH) at 100-150 MPa performed by multiple passes below 35 °C on carrot juice quality and stability was studied. The highest reduction in microorganisms (by 2.47 log) was noted at 150 MPa with 5 passes of the juice through the homogenizer. The PPO and POD's residual activity increased after HPH; PG was at the same level, while PME activity increased or decreased depending on the process parameters used. HPH treatment resulted in a decrease in the apparent dynamic viscosity, turbidity and colour parameters. Five passes at 150 MPa caused an increase in the carotenoid content, especially 9-Z-β-carotene (by 154%) while the TPC did not change significantly. Carrot juice treatment at 150 MPa with 5 passes may extend its shelf-life by 3 days when stored at 4 °C.
Collapse
Affiliation(s)
- Justyna Szczepańska
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka St., 02-532, Warsaw, Poland.
| | - Sylwia Skąpska
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka St., 02-532, Warsaw, Poland.
| | - Marzena Połaska
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Department of Microbiology, 36 Rakowiecka St., 02-532, Warsaw, Poland.
| | - Krystian Marszałek
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka St., 02-532, Warsaw, Poland.
| |
Collapse
|
40
|
Kaddour H, Lucchi H, Hervé G, Vergne J, Maurel MC. Kinetic Study of the Avocado Sunblotch Viroid Self-Cleavage Reaction Reveals Compensatory Effects between High-Pressure and High-Temperature: Implications for Origins of Life on Earth. BIOLOGY 2021; 10:720. [PMID: 34439952 PMCID: PMC8389264 DOI: 10.3390/biology10080720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022]
Abstract
A high pressure apparatus allowing one to study enzyme kinetics under pressure was used to study the self-cleavage activity of the avocado sunblotch viroid. The kinetics of this reaction were determined under pressure over a range up to 300 MPa (1-3000 bar). It appears that the initial rate of this reaction decreases when pressure increases, revealing a positive ΔV≠ of activation, which correlates with the domain closure accompanying the reaction and the decrease of the surface of the viroid exposed to the solvent. Although, as expected, temperature increases the rate of the reaction whose energy of activation was determined, it appeared that it does not significantly influence the ΔV≠ of activation and that pressure does not influence the energy of activation. These results provide information about the structural aspects or this self-cleavage reaction, which is involved in the process of maturation of this viroid. The behavior of ASBVd results from the involvement of the hammerhead ribozyme present at its catalytic domain, indeed a structural motif is very widespread in the ancient and current RNA world.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Honorine Lucchi
- Société PYMABS, 5 rue Henri Auguste Desbyeres, 91000 Évry-Courcouronnes, France;
| | - Guy Hervé
- Laboratoire BIOSIPE, Institut de biologie Paris-Seine, Sorbonne Université, 7 quai Saint-Bernard, 75005 Paris, France;
| | - Jacques Vergne
- Institut de Systématique, Evolution, Biodiversité, (ISYEB), Sorbonne Université, Museum National d’Histoire Naturelle, CNRS, EPHE, F 75005 Paris, France;
| | - Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité, (ISYEB), Sorbonne Université, Museum National d’Histoire Naturelle, CNRS, EPHE, F 75005 Paris, France;
| |
Collapse
|
41
|
Production and Purification of Novel Hypocholesterolemic Peptides from Lactic Fermented Spirulina platensis through High Hydrostatic Pressure-Assisted Protease Hydrolysis. Catalysts 2021. [DOI: 10.3390/catal11080873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This research focuses on the proteolytic capacity of Spirulina platensis and their hypocholesterolemic activity via the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) inhibitory activity. To select suitable proteases for releasing peptides with high HMGR-inhibiting activity from S. platensis, eight commonly used commercial proteases were used in protease hydrolysis under high hydrostatic pressure (HHP, 100 MPa or 0.1 MPa) at 50 °C for 24 h. The Peptidase R group had the highest inhibitory capacity (67%). First, S. platensis was fermented with seven mixed lactic acid bacteria for 5 h at 42 °C. This was followed by the addition of Peptidase R under high hydrostatic pressure (100 MPa at 50 °C) for 0–6 h of enzymatic hydrolysis (HHP-FH-PR6) to determine the hydrolytic capacity of S. platensis protein. As the hydrolysis time extended to 6 h, the peptide content increased from 96.8 mg/mL to 339.8 mg/mL, and the free amino acid content increased from 24 mg/mL to 115.2 mg/mL, while inhibition of HMGR increased from 67.0% to 78.4%. In an experimental simulation of in vitro gastrointestinal digestion, the IC50 of HHP-FH-PR6G on HMGR was 3.5 μg peptide/mL. Peptides with inhibitory activity on HMGR were purified, and their sequences were identified as Arg-Cys-Asp and Ser-Asn-Val (IC50: 6.9 and 20.1 μM, respectively).
Collapse
|
42
|
Olatunji KO, Ahmed NA, Ogunkunle O. Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:159. [PMID: 34281615 PMCID: PMC8287798 DOI: 10.1186/s13068-021-02012-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/09/2021] [Indexed: 05/10/2023]
Abstract
Population increase and industrialization has resulted in high energy demand and consumptions, and presently, fossil fuels are the major source of staple energy, supplying 80% of the entire consumption. This has contributed immensely to the greenhouse gas emission and leading to global warming, and as a result of this, there is a tremendous urgency to investigate and improve fresh and renewable energy sources worldwide. One of such renewable energy sources is biogas that is generated by anaerobic fermentation that uses different wastes such as agricultural residues, animal manure, and other organic wastes. During anaerobic digestion, hydrolysis of substrates is regarded as the most crucial stage in the process of biogas generation. However, this process is not always efficient because of the domineering stableness of substrates to enzymatic or bacteria assaults, but substrates' pretreatment before biogas production will enhance biogas production. The principal objective of pretreatments is to ease the accessibility of the enzymes to the lignin, cellulose, and hemicellulose which leads to degradation of the substrates. Hence, the use of pretreatment for catalysis of lignocellulose substrates is beneficial for the production of cost-efficient and eco-friendly process. In this review, we discussed different pretreatment technologies of hydrolysis and their restrictions. The review has shown that different pretreatments have varying effects on lignin, cellulose, and hemicellulose degradation and biogas yield of different substrate and the choice of pretreatment technique will devolve on the intending final products of the process.
Collapse
Affiliation(s)
- Kehinde Oladoke Olatunji
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa.
| | - Noor A Ahmed
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - Oyetola Ogunkunle
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
43
|
Wang F, Zhou H, Cheng F, Niu H, Yuan L, Yi J, Zhou L. Comparison of the characterization and the temperature/pressure stability of soluble and membrane-bound polyphenol oxidase from ‘Lijiang’ snow peach. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Ozturk E, Oztop MH, Alpas H. Use of high hydrostatic pressure (HHP) for increasing the product yield of lignocellulosic biomass hydrolysis: A study for peanut hull and microcrystalline cellulose. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
45
|
Zhang L, Qiao Y, Liao L, Shi D, An K, Jun W, Liu S. WITHDRAWN: Effects of ultrasound and ultra-high pressure pretreatments on volatile and taste compounds of vacuum-freeze dried strawberry slice. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Aganovic K, Hertel C, Vogel RF, Johne R, Schlüter O, Schwarzenbolz U, Jäger H, Holzhauser T, Bergmair J, Roth A, Sevenich R, Bandick N, Kulling SE, Knorr D, Engel KH, Heinz V. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr Rev Food Sci Food Saf 2021; 20:3225-3266. [PMID: 34056857 DOI: 10.1111/1541-4337.12763] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
The last two decades saw a steady increase of high hydrostatic pressure (HHP) used for treatment of foods. Although the science of biomaterials exposed to high pressure started more than a century ago, there still seem to be a number of unanswered questions regarding safety of foods processed using HHP. This review gives an overview on historical development and fundamental aspects of HHP, as well as on potential risks associated with HHP food applications based on available literature. Beside the combination of pressure and temperature, as major factors impacting inactivation of vegetative bacterial cells, bacterial endospores, viruses, and parasites, factors, such as food matrix, water content, presence of dissolved substances, and pH value, also have significant influence on their inactivation by pressure. As a result, pressure treatment of foods should be considered for specific food groups and in accordance with their specific chemical and physical properties. The pressure necessary for inactivation of viruses is in many instances slightly lower than that for vegetative bacterial cells; however, data for food relevant human virus types are missing due to the lack of methods for determining their infectivity. Parasites can be inactivated by comparatively lower pressure than vegetative bacterial cells. The degrees to which chemical reactions progress under pressure treatments are different to those of conventional thermal processes, for example, HHP leads to lower amounts of acrylamide and furan. Additionally, the formation of new unknown or unexpected substances has not yet been observed. To date, no safety-relevant chemical changes have been described for foods treated by HHP. Based on existing sensitization to non-HHP-treated food, the allergenic potential of HHP-treated food is more likely to be equivalent to untreated food. Initial findings on changes in packaging materials under HHP have not yet been adequately supported by scientific data.
Collapse
Affiliation(s)
- Kemal Aganovic
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Christian Hertel
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Rudi F Vogel
- Technical University of Munich (TUM), Munich, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Oliver Schlüter
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | | | - Henry Jäger
- University of Natural Resources and Life Sciences (BOKU), Wien, Austria
| | - Thomas Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut (PEI), Langen, Germany
| | | | - Angelika Roth
- Senate Commission on Food Safety (DFG), IfADo, Dortmund, Germany
| | - Robert Sevenich
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Technical University of Berlin (TUB), Berlin, Germany
| | - Niels Bandick
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | - Volker Heinz
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| |
Collapse
|
47
|
Wang J, Wang G, Chen N, An F, Zhang R, Zhang Y, Rahman MU, Zhang Y. Characterization of structural, functional and antioxidant properties and amino acid composition of pepsin-derived glutelin-1 hydrolysate from walnut processing by-products. RSC Adv 2021; 11:19158-19168. [PMID: 35478615 PMCID: PMC9033588 DOI: 10.1039/d1ra00657f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
Glutelin-1 of defatted walnut meal protein (DWPG-1) was modified by pepsin enzymatic hydrolysis to improve its functional properties and antioxidant activities. The amino acid composition, structural characteristics, physicochemical and functional properties as well as antioxidant activities of the hydrolysate were compared with those of unmodified DWPG-1. The analysis of X-ray diffraction patterns, surface microstructure and particle size distribution indicated that enzymatic hydrolysis changed the structures of DWPG-1. Compared with the natural unhydrolyzed protein, the hydrolysate showed better physicochemical properties, such as surface hydrophobicity, solubility, emulsifying properties, foaming properties and water absorption capacity. In addition, the hydrolysate also exhibited significantly stronger antioxidant activities than DWPG-1. In conclusion, the results of this study prove that pepsin-mediated hydrolysis of walnut glutelin-1 can effectively modify the structure, function and antioxidant activity of DWPG-1, and could be used as an effective technology to produce bioactive multifunctional hydrolysates.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 P. R. China +86-29-85310517 +86-29-85310520
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University Xi'an 710100 China
- The Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture China
| | - Guoliang Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 P. R. China +86-29-85310517 +86-29-85310520
| | - Ning Chen
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University Xi'an 710100 China
| | - Feiran An
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University Xi'an 710100 China
| | - Runguang Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 P. R. China +86-29-85310517 +86-29-85310520
| | - Yufeng Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 P. R. China +86-29-85310517 +86-29-85310520
| | - Mati Ur Rahman
- College of Food Engineering and Nutritional Science, Shaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 P. R. China +86-29-85310517 +86-29-85310520
| | - Youlin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 P. R. China +86-29-85310517 +86-29-85310520
| |
Collapse
|
48
|
Effect of Microfluidization on Deteriorative Enzymes, Sugars, Chlorophyll, and Color of Sugarcane Juice. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02651-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Osman JR, Cardon H, Montagnac G, Picard A, Daniel I. Pressure effects on sulfur-oxidizing activity of Thiobacillus thioparus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:169-175. [PMID: 33421329 PMCID: PMC7986089 DOI: 10.1111/1758-2229.12922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Carbon capture and storage technologies are crucial for reducing carbon emission from power plants as a response to global climate change. The CarbFix project (Iceland) aims at examining the geochemical response of injected CO2 into subsurface reservoirs. The potential role of the subsurface biosphere has been little investigated up to now. Here, we used Thiobacillus thioparus that became abundant at the CarbFix1 pilot site after injection of CO2 and purified geothermal gases in basaltic aquifer at 400-800 m depth (4-8 MPa). The capacity of T. thioparus to produce sulfate, through oxidation of thiosulfate, was measured by Raman spectroscopy as a function of pressure up to 10 MPa. The results show that the growth and metabolic activity of T. thioparus are influenced by the initial concentration of the electron donor thiosulfate. It grows best at low initial concentration of thiosulfate (here 5 g.l-1 or 31.6 mM) and best oxidizes thiosulfate into sulfate at 0.1 MPa with a yield of 14.7 ± 0.5%. Sulfur oxidation stops at 4.3 ± 0.1 MPa (43 bar). This autotrophic specie can thereby react to CO2 and H2 S injection down to 430 m depth and may contribute to induced biogeochemical cycles during subsurface energy operations.
Collapse
Affiliation(s)
- Jorge R. Osman
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
| | - Hervé Cardon
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
| | - Gilles Montagnac
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
| | - Aude Picard
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
- School of Life SciencesUniversity of Nevada, Las Vegas, 4505 S. Maryland ParkwayLas VegasNV89154‐4004USA
| | - Isabelle Daniel
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
| |
Collapse
|
50
|
Szczepańska J, Skąpska S, Marszałek K. Continuous High-pressure Cooling-Assisted Homogenization Process for Stabilization of Apple Juice. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02611-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe effect of high-pressure homogenization (HPH) at 100–200 MPa (with up to 5 passes) on the quality and storage stability of apple juice was investigated. The microbiological quality, polyphenol oxidase (PPO), peroxidase (POD), polygalacturonase (PG) and pectinmethylesterase (PME) activity, particle size distribution (PSD), apparent viscosity, turbidity, concentration of vitamin C, individual polyphenols and their total content (TPC), antioxidant activity, and colour of fresh, HPH-treated apple juice were all evaluated. The highest reduction in microorganisms (1.4 log) and oxidoreductase activity (~20%) was observed at 200 MPa, while hydrolases did not change significantly. HPH led to significant disintegration of the tissue and a decrease in viscosity. Vitamin C decreased by 62%, while TPC increased by 20% after HPH. Significant correlations were observed between antioxidant activity, TPC, and individual polyphenols. Chlorogenic, ferulic, and gallic acid were most stable at 200 MPa. The optimal shelf-life of the juice was estimated as 7 days.
Collapse
|