1
|
Lu XY, Lai MY, Qin P, Zheng YC, Liao JY, Zhang ZJ, Xu JH, Yu HL. Facilitating secretory expression of apple seed β-glucosidase in Komagataella phaffii for the efficient preparation of salidroside. Biotechnol J 2024; 19:e2400347. [PMID: 39167556 DOI: 10.1002/biot.202400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Plant-derived β-glucosidases hold promise for glycoside biosynthesis via reverse hydrolysis because of their excellent glucose tolerance and robust stability. However, their poor heterologous expression hinders the development of large-scale production and applications. In this study, we overexpressed apple seed β-glucosidase (ASG II) in Komagataella phaffii and enhanced its production from 289 to 4322 U L-1 through expression cassette engineering and protein engineering. Upon scaling up to a 5-L high cell-density fermentation, the resultant mutant ASG IIV80A achieved a maximum protein concentration and activity in the secreted supernatant of 2.3 g L-1 and 41.4 kU L-1, respectively. The preparative biosynthesis of salidroside by ASG IIV80A exhibited a high space-time yield of 33.1 g L-1 d-1, which is so far the highest level by plant-derived β-glucosidase. Our work addresses the long-standing challenge of the heterologous expression of plant-derived β-glucosidase in microorganisms and presents new avenues for the efficient production of salidroside and other natural glycosides.
Collapse
Affiliation(s)
- Xin-Yi Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Ming-Yuan Lai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Peng Qin
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jia-Yi Liao
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Shen Q, Cui J, Wang Y, Hu ZC, Xue YP, Zheng YG. Identification of a novel growth-associated promoter for biphasic expression of heterogenous proteins in Pichia pastoris. Appl Environ Microbiol 2024; 90:e0174023. [PMID: 38193674 PMCID: PMC10880622 DOI: 10.1128/aem.01740-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Pichia pastoris (P. pastoris) is one of the most popular cell factories for expressing exogenous proteins and producing useful chemicals. The alcohol oxidase 1 promoter (PAOX1) is the most commonly used strong promoter in P. pastoris and has the characteristic of biphasic expression. However, the inducer for PAOX1, methanol, has toxicity and poses risks in industrial settings. In the present study, analyzing transcriptomic data of cells collected at different stages of growth found that the formate dehydrogenase (FDH) gene ranked 4960th in relative expression among 5032 genes during the early logarithmic growth phase but rose to the 10th and 1st during the middle and late logarithmic growth phases, respectively, displaying a strict biphasic expression characteristic. The unique transcriptional regulatory profile of the FDH gene prompted us to investigate the properties of its promoter (PFDH800). Under single-copy conditions, when a green fluorescent protein variant was used as the expression target, the PFDH800 achieved 119% and 69% of the activity of the glyceraldehyde-3-phosphate dehydrogenase promoter and PAOX1, respectively. After increasing the copy number of the expression cassette in the strain to approximately four copies, the expression level of GFPuv driven by PFDH800 increased to approximately 2.5 times that of the strain containing GFPuv driven by a single copy of PAOX1. Our PFDH800-based expression system exhibited precise biphasic expression, ease of construction, minimal impact on normal cellular metabolism, and high strength. Therefore, it has the potential to serve as a new expression system to replace the PAOX1 promoter.IMPORTANCEThe alcohol oxidase 1 promoter (PAOX1) expression system has the characteristics of biphasic expression and high expression levels, making it the most widely used promoter in the yeast Pichia pastoris. However, PAOX1 requires methanol induction, which can be toxic and poses a fire hazard in large quantities. Our research has found that the activity of PFDH800 is closely related to the growth state of cells and can achieve biphasic expression without the need for an inducer. Compared to other reported non-methanol-induced biphasic expression systems, the system based on the PFDH800 offers several advantages, including high expression levels, simple construction, minimal impact on cellular metabolism, no need for an inducer, and the ability to fine-tune expression.
Collapse
Affiliation(s)
- Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Jie Cui
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yang Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Zhong-Ce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Utilization Potential of Agro-industrial By-products and Waste Sources: Laccase Production in Bioreactor with Pichia pastoris. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
Zhang H, Zhang D, Lu H, Zou D, Hu B, Lian S, Lu S. Antiviral activity of mink interferon alpha expressed in the yeast Pichia pastoris. Front Vet Sci 2022; 9:976347. [PMID: 36187832 PMCID: PMC9515496 DOI: 10.3389/fvets.2022.976347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Many viruses can cause infections in mink, including canine distemper virus, mink enteritis virus, and Aleutian disease virus. Current treatments are ineffective, and these infections are often fatal, causing severe economic losses. As antiviral drugs may effectively prevent and control these infections, recent research has increasingly focused on antiviral interferons. Herein, the gene encoding a mature mink interferon alpha (MiIFN-α) was synthesized according to the P. pastoris preference of codon usage and a recombinant plasmid, pPICZαA-MiIFN-α, was constructed. pPICZαA-MiIFN-α was linearized and transformed into the P. pastoris X33 strain, and zeocin-resistant transformants were selected. Protein expression was induced by methanol. SDS-PAGE and western blot analyses showed that a 25-kDa fusion protein was expressed in the culture supernatant. Antiviral activity of the expressed protein was determined using cytopathic effect inhibition (CPEI). The purified MiIFN-α significantly inhibited the cytopathic effect of vesicular stomatitis virus with a green fluorescent protein (VSV-GFP) in F81 feline kidney cells, with an antiviral activity of 6.4 × 107 IU/mL; it also significantly inhibited MEV replication in F81 cells. MiIFN-α antiviral activity against VSV-GFP was significantly reduced on treatment with pH 4 and pH 10 conditions for 24 h (p < 0.01). Serum MiIFN-α concentrations in rat were measured using enzyme-linked immune-sorbent assay; MiIFN-α concentrations in rat serum peaked at ~36 h after injection. A high dose of MiIFN-α was safe for use. There were no significant differences in body temperature, tissue changes, and lymphocyte, total white blood cell, and central granulocyte counts between the injected and control groups (p > 0.05). These findings lay a foundation for the large-scale production of recombinant MiIFNs.
Collapse
Affiliation(s)
- Hailing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Dongliang Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Han Lu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Deying Zou
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Bo Hu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shizhen Lian
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shiying Lu
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
- *Correspondence: Shiying Lu
| |
Collapse
|
5
|
Wang J, Woodley JM. In Situ Cofactor Regeneration Using NAD(P)H Oxidase: Enzyme Stability in a Bubble Column. ChemCatChem 2022. [DOI: 10.1002/cctc.202200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingyu Wang
- Technical University of Denmark Department of Chemical and Biochemical Engineerning Søltofts Plads Bygning 228A, 2800 Kgs. Lyngby 2800 2800 Kgs. Lyngby DENMARK
| | - John M. Woodley
- Technical University of Denmark Department of Chemical Engineering S�ltofts Plads DK-2800 Lyngby DENMARK
| |
Collapse
|
6
|
Coetzee G, Smith JJ, Görgens JF. Influence of codon optimization, promoter, and strain selection on the heterologous production of a β-fructofuranosidase from Aspergillus fijiensis ATCC 20611 in Pichia pastoris. Folia Microbiol (Praha) 2022; 67:339-350. [PMID: 35133569 DOI: 10.1007/s12223-022-00947-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/01/2022] [Indexed: 12/21/2022]
Abstract
Fructooligosaccharides (FOS) are compounds possessing various health properties and are added to functional foods as prebiotics. The commercial production of FOS is done through the enzymatic transfructolysation of sucrose by β-fructofuranosidases which is found in various organisms of which Aureobasidium pullulans and Aspergillus niger are the most well known. This study overexpressed two differently codon-optimized variations of the Aspergillus fijiensis β-fructofuranosidase-encoding gene (fopA) under the transcriptional control of either the alcohol oxidase (AOX1) or glyceraldehyde-3-phosphate dehydrogenase (GAP) promoters. When cultivated in shake flasks, the two codon-optimized variants displayed similar volumetric enzyme activities when expressed under control of the same promoter with the GAP strains producing 11.7 U/ml and 12.7 U/ml, respectively, and the AOX1 strains 95.8 U/ml and 98.6 U/ml, respectively. However, the highest production levels were achieved for both codon-optimized genes when expressed under control of the AOX1 promoter. The AOX1 promoter was superior to the GAP promoter in bioreactor cultivations for both codon-optimized genes with 13,702 U/ml and 2718 U/ml for the AOX1 promoter for ATUM and GeneArt®, respectively, and 6057 U/ml and 1790 U/ml for the GAP promoter for ATUM and GeneArt®, respectively. The ATUM-optimized gene produced higher enzyme activities when compared to the one from GeneArt®, under the control of both promoters.
Collapse
Affiliation(s)
- Gerhardt Coetzee
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Jacques J Smith
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Johann F Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
7
|
Wen X, Lin H, Ren Y, Li C, Zhang C, Lin J, Lin J. Allitol bioproduction by recombinant Escherichia coli with NADH regeneration system co-expressing ribitol dehydrogenase (RDH) and formate dehydrogenase (FDH) in individual or in fusion. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
8
|
Varga V, Štefuca V, Mihálová L, Levarski Z, Struhárňanská E, Blaško J, Kubinec R, Farkaš P, Sitkey V, Turňa J, Rosenberg M, Stuchlík S. Recombinant Enzymatic Redox Systems for Preparation of Aroma Compounds by Biotransformation. Front Microbiol 2021; 12:684640. [PMID: 34248905 PMCID: PMC8264508 DOI: 10.3389/fmicb.2021.684640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to develop immobilized enzyme systems that reduce carbonyl compounds to their corresponding alcohols. The demand for natural aromas and food additives has been constantly growing in recent years. However, it can no longer be met by extraction and isolation from natural materials. One way to increase the availability of natural aromas is to prepare them by the enzymatic transformation of suitable precursors. Recombinant enzymes are currently being used for this purpose. We investigated trans-2-hexenal bioreduction by recombinant Saccharomyces cerevisiae alcohol dehydrogenase (ScADH1) with simultaneous NADH regeneration by recombinant Candida boidinii formate dehydrogenase (FDH). In a laboratory bioreactor with two immobilized enzymes, 88% of the trans-2-hexenal was transformed to trans-2-hexenol. The initial substrate concentration was 3.7 mM. The aldehyde destabilized ScADH1 by eluting Zn2+ ions from the enzyme. A fed-batch operation was used and the trans-2-hexenal concentration was maintained at a low level to limit the negative effect of Zn2+ ion elution from the immobilized ScADH1. Another immobilized two-enzyme system was used to reduce acetophenone to (S)-1-phenylethanol. To this end, the recombinant alcohol dehydrogenase (RrADH) from Rhodococcus ruber was used. This biocatalytic system converted 61% of the acetophenone to (S)-1-phenylethanol. The initial substrate concentration was 8.3 mM. All enzymes were immobilized by poly-His tag to Ni2+, which formed strong but reversible bonds that enabled carrier reuse after the loss of enzyme activity.
Collapse
Affiliation(s)
- Viktor Varga
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Vladimír Štefuca
- Institute of Biotechnology, Faculty of Food and Chemical Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Lenka Mihálová
- Institute of Biotechnology, Faculty of Food and Chemical Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Zdenko Levarski
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.,Science Park of Comenius University, Bratislava, Slovakia
| | - Eva Struhárňanská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jaroslav Blaško
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Robert Kubinec
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | - Ján Turňa
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.,Science Park of Comenius University, Bratislava, Slovakia
| | - Michal Rosenberg
- Institute of Biotechnology, Faculty of Food and Chemical Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Stanislav Stuchlík
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.,Science Park of Comenius University, Bratislava, Slovakia
| |
Collapse
|
9
|
Enhancing recombinant Chaetomium thermophilium Formate Dehydrogenase Expression with CRISPR Technology. Protein J 2021; 40:504-511. [PMID: 33999303 DOI: 10.1007/s10930-021-09997-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Genetic manipulation of Escherichia coli influences the regulation of bacterial metabolism, which could be useful for the production of different targeted products. The RpoZ gene encodes for the ω subunit of the RNA polymerase (RNAP) and is involved in the regulation of the relA gene pathway. RelA is responsible for the production of guanosine pentaphosphate (ppGpp), which is a major alarmone in the stringent response. Expression of relA is reduced in the early hours of growth of RpoZ mutant E. coli. In the absence of the ω subunit, ppGpp affinity to RNAP is decreased; thus, rpoZ gene deleted E. coli strains show a modified stringent response. We used the E. coli K-12 MG1655 strain that lacks rpoZ (JEN202) to investigate the effect of the modified stringent response on recombinant protein production. However, the absence of the ω subunit results in diminished stability of the RNA polymerase at the promoter site. To avoid this, we used a deactivated CRISPR system that targets the ω subunit to upstream of the promoter site in the expression plasmid. The expression plasmid encodes for Chaetomium thermophilum formate dehydrogenase (CtFDH), a valuable enzyme for cofactor regeneration and CO2 reduction. A higher amount of CtFDH from the soluble fraction was purified from the JEN202 strain compared to the traditional BL21(DE3) method, thus offering a new strategy for batch-based recombinant enzyme production.
Collapse
|
10
|
Duman-Özdamar ZE, Binay B. Production of Industrial Enzymes via Pichia pastoris as a Cell Factory in Bioreactor: Current Status and Future Aspects. Protein J 2021; 40:367-376. [DOI: 10.1007/s10930-021-09968-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
|