1
|
Kumaragamage C, McIntyre S, Nixon TW, De Feyter HM, de Graaf RA. High-quality lipid suppression and B0 shimming for human brain 1H MRSI. Neuroimage 2024; 300:120845. [PMID: 39276817 PMCID: PMC11540284 DOI: 10.1016/j.neuroimage.2024.120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) is a powerful technique that can map the metabolic profile in the brain non-invasively. Extracranial lipid contamination and insufficient B0 homogeneity however hampers robustness, and as a result has hindered widespread use of MRSI in clinical and research settings. Over the last six years we have developed highly effective extracranial lipid suppression methods with a second order gradient insert (ECLIPSE) utilizing inner volume selection (IVS) and outer volume suppression (OVS) methods. While ECLIPSE provides > 100-fold in lipid suppression with modest radio frequency (RF) power requirements and immunity to B1+ field variations, axial coverage is reduced for non-elliptical head shapes. In this work we detail the design, construction, and utility of MC-ECLIPSE, a pulsed second order gradient coil with Z2 and X2Y2 fields, combined with a 54-channel multi-coil (MC) array. The MC-ECLIPSE platform allows arbitrary region of interest (ROI) shaped OVS for full-axial slice coverage, in addition to MC-based B0 field shimming, for robust human brain proton MRSI. In vivo experiments demonstrate that MC-ECLIPSE allows axial brain coverage of 92-95 % is achieved following arbitrary ROI shaped OVS for various head shapes. The standard deviation (SD) of the residual B0 field following SH2 and MC shimming were 25 ± 9 Hz and 18 ± 8 Hz over a 5 cm slab, and 18 ± 5 Hz and 14 ± 6 Hz over a 1.5 cm slab, respectively. These results demonstrate that B0 magnetic field shimming with the MC array supersedes second order harmonic capabilities available on standard MRI systems for both restricted and large ROIs. Furthermore, MC based B0 shimming provides comparable shimming performance to an unrestricted SH5 shim set for both restricted, and 5-cm slab shim challenges. Phantom experiments demonstrate the high level of localization performance achievable with MC-ECLIPSE, with ROI edge chemical shift displacements ranging from 1-3 mm with a median value of 2 mm, and transition width metrics ranging from 1-2.5 mm throughout the ROI edge. Furthermore, MC based B0 shimming is comparable to performance following a full set of unrestricted spherical harmonic fields up to order 5. Short echo time MRSI and GABA-edited MRSI acquisitions in the human brain following MC-shimming and arbitrary ROI shaping demonstrate full-axial slice coverage and extracranial lipid artifact free spectra. MC-ECLIPSE allows full-axial coverage and robust MRSI acquisitions, while allowing interrogation of cortical tissue proximal to the skull, which has significant value in a wide range of neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA.
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Terence W Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Henk M De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA; Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Hangel G, Niess E, Lazen P, Bednarik P, Bogner W, Strasser B. Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Anal Biochem 2022; 638:114479. [PMID: 34838516 DOI: 10.1016/j.ab.2021.114479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) of the brain enables insights into the metabolic changes and fluxes in diseases such as tumors, multiple sclerosis, epilepsy, or hepatic encephalopathy, as well as insights into general brain functionality. However, the routine application of MRSI is mostly hampered by very low signal-to-noise ratios (SNR) due to the low concentrations of metabolites, about 10000 times lower than water. Furthermore, MRSI spectra have a dense information content with many overlapping metabolite resonances, especially for proton MRSI. MRI scanners at ultra-high field strengths, like 7 T or above, offer the opportunity to increase SNR, as well as the separation between resonances, thus promising to solve both challenges. Yet, MRSI at ultra-high field strengths is challenged by decreased B0- and B1-homogeneity, shorter T2 relaxation times, stronger chemical shift displacement errors, and aggravated lipid contamination. Therefore, to capitalize on the advantages of ultra-high field strengths, these challenges must be overcome. This review focuses on the challenges MRSI of the human brain faces at ultra-high field strength, as well as the possible applications to this date.
Collapse
Affiliation(s)
- Gilbert Hangel
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Philipp Lazen
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Petr Bednarik
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
3
|
Tal A, Zhao T, Schirda C, Hetherington HP, Pan JW, Gonen O. Fast, regional three-dimensional hybrid (1D-Hadamard 2D-rosette) proton MR spectroscopic imaging in the human temporal lobes. NMR IN BIOMEDICINE 2021; 34:e4507. [PMID: 33754420 PMCID: PMC8122085 DOI: 10.1002/nbm.4507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 05/05/2023]
Abstract
1 H-MRSI is commonly performed with gradient phase encoding, due to its simplicity and minimal radio frequency (RF) heating (specific absorption rate). Its two well-known main problems-(i) "voxel bleed" due to the intrinsic point-spread function, and (ii) chemical shift displacement error (CSDE) when slice-selective RF pulses are used, which worsens with increasing volume of interest (VOI) size-have long become accepted as unavoidable. Both problems can be mitigated with Hadamard multislice RF encoding. This is demonstrated and quantified with numerical simulations, in a multislice phantom and in five healthy young adult volunteers at 3 T, targeting a 2-cm thick temporal lobe VOI through the bilateral hippocampus. This frequently targeted region (e.g. in epilepsy and Alzheimer's disease) is subject to strong, 1-2 ppm.cm-1 regional B0, susceptibility gradients that can dramatically reduce the signal-to-noise ratio (SNR) and water suppression effectiveness. The chemical shift imaging (CSI) sequence used a 3-ms Shinnar-Le Roux (SLR) 90° RF pulse, acquiring eight steps in the slice direction. The Hadamard sequence acquired two overlapping slices using the same SLR 90° pulses, under twofold stronger gradients that proportionally halved the CSDE. Both sequences used 2D 20 × 20 rosette spectroscopic imaging (RSI) for in-plane spatial localization and both used RF and gradient performance characteristics that are easily met by all modern MRI instruments. The results show that Hadamard spectroscopic imaging (HSI) suffered dramatically less signal bleed within the VOI compared with CSI (<1% vs. approximately 26% in simulations; and 5%-8% vs. >50%) in a phantom specifically designed to test these effects. The voxels' SNR per unit volume per unit time was also 40% higher for HSI. In a group of five healthy volunteers, we show that HSI with in-plane 2D-RSI facilitates fast, 3D multivoxel encoding at submilliliter spatial resolution, over the bilateral human hippocampus, in under 10 min, with negligible CSDE, spectral and spatial contamination and more than 6% improved SNR per unit time per unit volume.
Collapse
Affiliation(s)
- Assaf Tal
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot, Israel
| | - Tiejun Zhao
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Siemens Medical Solutions USA Inc., Malvern, Pennsylvania, USA
| | - Claudiu Schirda
- Departments of Radiology and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hoby P. Hetherington
- Departments of Radiology and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jullie W. Pan
- Departments of Radiology and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Oded Gonen
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Maudsley AA, Andronesi OC, Barker PB, Bizzi A, Bogner W, Henning A, Nelson SJ, Posse S, Shungu DC, Soher BJ. Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4309. [PMID: 32350978 PMCID: PMC7606742 DOI: 10.1002/nbm.4309] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 02/01/2020] [Accepted: 03/10/2020] [Indexed: 05/04/2023]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) offers considerable promise for monitoring metabolic alterations associated with disease or injury; however, to date, these methods have not had a significant impact on clinical care, and their use remains largely confined to the research community and a limited number of clinical sites. The MRSI methods currently implemented on clinical MRI instruments have remained essentially unchanged for two decades, with only incremental improvements in sequence implementation. During this time, a number of technological developments have taken place that have already greatly benefited the quality of MRSI measurements within the research community and which promise to bring advanced MRSI studies to the point where the technique becomes a true imaging modality, while making the traditional review of individual spectra a secondary requirement. Furthermore, the increasing use of biomedical MR spectroscopy studies has indicated clinical areas where advanced MRSI methods can provide valuable information for clinical care. In light of this rapidly changing technological environment and growing understanding of the value of MRSI studies for biomedical studies, this article presents a consensus from a group of experts in the field that reviews the state-of-the-art for clinical proton MRSI studies of the human brain, recommends minimal standards for further development of vendor-provided MRSI implementations, and identifies areas which need further technical development.
Collapse
Affiliation(s)
- Andrew A Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ovidiu C Andronesi
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts
| | - Peter B Barker
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, and the Kennedy Krieger Institute, F.M. Kirby Center for Functional Brain Imaging, Baltimore, Maryland
| | - Alberto Bizzi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Anke Henning
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Stefan Posse
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico
| | - Dikoma C Shungu
- Department of Neuroradiology, Weill Cornell Medical College, New York, New York
| | - Brian J Soher
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
5
|
Abstract
Human neuroimaging has had a major impact on the biological understanding of epilepsy and the relationship between pathophysiology, seizure management, and outcomes. This review highlights notable recent advancements in hardware, sequences, methods, analyses, and applications of human neuroimaging techniques utilized to assess epilepsy. These structural, functional, and metabolic assessments include magnetic resonance imaging (MRI), positron emission tomography (PET), and magnetoencephalography (MEG). Advancements that highlight non-invasive neuroimaging techniques used to study the whole brain are emphasized due to the advantages these provide in clinical and research applications. Thus, topics range across presurgical evaluations, understanding of epilepsy as a network disorder, and the interactions between epilepsy and comorbidities. New techniques and approaches are discussed which are expected to emerge into the mainstream within the next decade and impact our understanding of epilepsies. Further, an increasing breadth of investigations includes the interplay between epilepsy, mental health comorbidities, and aberrant brain networks. In the final section of this review, we focus on neuroimaging studies that assess bidirectional relationships between mental health comorbidities and epilepsy as a model for better understanding of the commonalities between both conditions.
Collapse
Affiliation(s)
- Adam M. Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| | - Jerzy P. Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| |
Collapse
|
6
|
Diagnostica per immagini funzionale nell’epilessia. Neurologia 2020. [DOI: 10.1016/s1634-7072(20)43296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Maghsudi H, Schütze M, Maudsley AA, Dadak M, Lanfermann H, Ding XQ. Age-related Brain Metabolic Changes up to Seventh Decade in Healthy Humans : Whole-brain Magnetic Resonance Spectroscopic Imaging Study. Clin Neuroradiol 2019; 30:581-589. [PMID: 31350597 DOI: 10.1007/s00062-019-00814-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/03/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To study brain metabolic changes under normal aging and to collect reference data for the study of neurodegenerative diseases. METHODS A total of 55 healthy subjects aged 20-70 years (n ≥ 5 per age decade for each gender) underwent whole-brain magnetic resonance spectroscopic imaging at 3T after completing a DemTect test and the Beck depressions inventory II to exclude cognitive impairment and mental disorder. Regional concentrations of N-acetylaspartate (NAA), choline-containing compounds (Cho), total creatine (tCr), glutamine and glutamate (Glx), and myo-inositol (mI) were determined in 12 brain regions of interest (ROIs). The two-sided t‑test was used to estimate gender differences and linear regression analysis was carried out to estimate age dependence of brain regional metabolite contents. RESULTS Brain regional metabolite concentrations changed with age in the majority of selected brain regions. The NAA decreased in 8 ROIs with a rate varying from -4.9% to -1.9% per decade, reflecting a general reduction of brain neuronal function or volume and density in older age; Cho increased in 4 ROIs with a rate varying from 4.3% to 6.1%; tCr and mI increased in one ROI (4.2% and 8.2% per decade, respectively), whereas Glx decreased in one ROI (-5.1% per decade), indicating an inhomogeneous increase of cell membrane turnover (Cho) with altered energy metabolism (tCr) and glutamatergic neuronal activity (Glx) as well as function of glia cell (mI) in normal aging brain. CONCLUSION Healthy aging up to the seventh decade of life is associated with regional dependent alterations of brain metabolism. These results provide a reference database for future studies of patients.
Collapse
Affiliation(s)
- Helen Maghsudi
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Martin Schütze
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, FL, USA
| | - Mete Dadak
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Heinrich Lanfermann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Xiao-Qi Ding
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
8
|
Tsai SY, Lin YR, Lin HY, Lin FH. Reduction of lipid contamination in MR spectroscopy imaging using signal space projection. Magn Reson Med 2018; 81:1486-1498. [PMID: 30277271 DOI: 10.1002/mrm.27496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/22/2018] [Accepted: 07/25/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Lipid contamination can complicate the metabolite quantification in MR spectroscopic imaging (MRSI). In addition to various experimental methods demonstrated to be feasible for lipid suppression, the postprocessing method is beneficial in the flexibility of applications. In this study, the signal space projection (SSP) algorithm is proposed to suppress the lipid signal in the MRSI. METHODS The performance of lipid suppression using SSP and SSP combined with the Papoulis-Gerchberg (PG) algorithm (PG+SSP) is examined in 2D MRSI data and the results were compared with outer volume saturation (OVS) methods. Up to 10 lipid spatial components were extracted by SSP from lipid signals in the range of 0.8~1.5 ppm. RESULTS Our results show that most lipid signals were found in the first 4 to 5 components and that lipid signals on the spectra can be suppressed using 4 to 5 components. Metabolites concentrations were quantified using LCModel. Two regions of interest (ROIs) were manually selected on the peripheral and inner brain regions. The quantification of metabolites in terms of fitting reliability (CRLB) and spatial variations within ROIs (SpaVar) is improved using SSP. When 5 to 6 components were used in SSP and PG+SSP, the metabolite concentrations and the associated SpaVar and CRLB are at the same level as those from the OVS. CONCLUSION We have demonstrated that the SSP method can be used to suppress the lipid signals of MRSI and SSP with 5 to 6 components is suggested to have a similar suppression performance as the OVS method.
Collapse
Affiliation(s)
- Shang-Yueh Tsai
- Graduate Institute of Applied Physics, National Chengchi University, Taipei, Taiwan.,Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Yi-Ru Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsin-Yu Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Fa-Hsuan Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
de Graaf RA, Brown PB, De Feyter HM, McIntyre S, Nixon TW. Elliptical localization with pulsed second-order fields (ECLIPSE) for robust lipid suppression in proton MRSI. NMR IN BIOMEDICINE 2018; 31:e3949. [PMID: 29985532 PMCID: PMC6108906 DOI: 10.1002/nbm.3949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/02/2018] [Accepted: 04/27/2018] [Indexed: 05/21/2023]
Abstract
Proton MRSI has great clinical potential for metabolic mapping of the healthy and pathological human brain. Unfortunately, the promise has not yet been fully achieved due to numerous technical challenges related to insufficient spectral quality caused by magnetic field inhomogeneity, insufficient RF transmit power and incomplete lipid suppression. Here a robust, novel method for lipid suppression in 1 H MRSI is presented. The method is based on 2D spatial localization of an elliptical region of interest using pulsed second-order spherical harmonic (SH) magnetic fields. A dedicated, high-amplitude second-order SH gradient setup was designed and constructed, containing coils to generate Z2, X2Y2 and XY magnetic fields. Simulations and phantom MRI results are used to demonstrate the principles of the method and illustrate the manifestation of chemical shift displacement. 1 H MRSI on human brain in vivo demonstrates high quality, robust suppression of extracranial lipids. The method allows a wide range of inner or outer volume selection or suppression and should find application in MRSI, reduced-field-of-view MRI and single-volume MRS.
Collapse
Affiliation(s)
- Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Peter B. Brown
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Henk M. De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Terence W. Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Ding XQ, Maudsley AA, Schweiger U, Schmitz B, Lichtinghagen R, Bleich S, Lanfermann H, Kahl KG. Effects of a 72 hours fasting on brain metabolism in healthy women studied in vivo with magnetic resonance spectroscopic imaging. J Cereb Blood Flow Metab 2018; 38:469-478. [PMID: 28273723 PMCID: PMC5851137 DOI: 10.1177/0271678x17697721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adaptive response of human brain to stress plays a key role in maintaining health. Knowledge about how stress affects neurometabolism may help to understand adaptive stress responses, and distinguish maladaptation in neuropsychiatric disorders. In this study, neurometabolic responses to fasting stress in healthy women were investigated. Fifteen healthy females were examined for mood and cognition and using whole-brain MR spectroscopic imaging before and immediately after a 72-h fasting. Results were compared to 15 age-matched healthy females who did not taken part in fasting (non-fasting). Maps of the distributions in the brain of N-acetylaspartate (NAA), total choline (tCho), total creatine (tCr), glutamine/glutamate (Glx), and myo-Inositol (mI) were derived. Metabolite concentrations of each brain lobe and cerebellum measured before fasting were compared to those of post-fasting and non-fasting by repeated-measures ANOVA. After fasting, mood scores significantly increased. Glx decreased in all nine brain regions, tCho in eight, NAA in four and tCr in one, with Glx having the greatest change and the frontal lobes being the most affected brain region. In conclusion, fasting directly influences neurometabolism, and the adaptive brain response to maintain energy homeostasis under food deprivation in healthy women is associated with metabolite-selective and region-dependent changes of metabolite contents.
Collapse
Affiliation(s)
- Xiao-Qi Ding
- 1 Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Andrew A Maudsley
- 2 Department of Radiology, University of Miami School of Medicine, Miami, FL, USA
| | - Ulrich Schweiger
- 3 Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Birte Schmitz
- 1 Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | | | - Stefan Bleich
- 5 Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Heinrich Lanfermann
- 1 Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Kai G Kahl
- 5 Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Maudsley AA, Goryawala MZ, Sheriff S. Effects of tissue susceptibility on brain temperature mapping. Neuroimage 2016; 146:1093-1101. [PMID: 27693198 DOI: 10.1016/j.neuroimage.2016.09.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/15/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023] Open
Abstract
A method for mapping of temperature over a large volume of the brain using volumetric proton MR spectroscopic imaging has been implemented and applied to 150 normal subjects. Magnetic susceptibility-induced frequency shifts in gray- and white-matter regions were measured and included as a correction in the temperature mapping calculation. Additional sources of magnetic susceptibility variations of the individual metabolite resonance frequencies were also observed that reflect the cellular-level organization of the brain metabolites, with the most notable differences being attributed to changes of the N-Acetylaspartate resonance frequency that reflect the intra-axonal distribution and orientation of the white-matter tracts with respect to the applied magnetic field. These metabolite-specific susceptibility effects are also shown to change with age. Results indicate no change of apparent brain temperature with age from 18 to 84 years old, with a trend for increased brain temperature throughout the cerebrum in females relative for males on the order of 0.1°C; slightly increased temperatures in the left hemisphere relative to the right; and a lower temperature of 0.3°C in the cerebellum relative to that of cerebral white-matter. This study presents a novel acquisition method for noninvasive measurement of brain temperature that is of potential value for diagnostic purposes and treatment monitoring, while also demonstrating limitations of the measurement due to the confounding effects of tissue susceptibility variations.
Collapse
|
12
|
Abdoli A, Stoyanova R, Maudsley AA. Denoising of MR spectroscopic imaging data using statistical selection of principal components. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:811-822. [PMID: 27260664 DOI: 10.1007/s10334-016-0566-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To evaluate a new denoising method for MR spectroscopic imaging (MRSI) data based on selection of signal-related principal components (SSPCs) from principal components analysis (PCA). MATERIALS AND METHODS A PCA-based method was implemented for selection of signal-related PCs and denoising achieved by reconstructing the original data set utilizing only these PCs. Performance was evaluated using simulated MRSI data and two volumetric in vivo MRSIs of human brain, from a normal subject and a patient with a brain tumor, using variable signal-to-noise ratios (SNRs), metabolite peak areas, Cramer-Rao bounds (CRBs) of fitted metabolite peak areas and metabolite linewidth. RESULTS In simulated data, SSPC determined the correct number of signal-related PCs. For in vivo studies, the SSPC denoising resulted in improved SNRs and reduced metabolite quantification uncertainty compared to the original data and two other methods for denoising. The method also performed very well in preserving the spectral linewidth and peak areas. However, this method performs better for regions that have larger numbers of similar spectra. CONCLUSION The proposed SSPC denoising improved the SNR and metabolite quantification uncertainty in MRSI, with minimal compromise of the spectral information, and can result in increased accuracy.
Collapse
Affiliation(s)
- Abas Abdoli
- Department of Radiology, University of Miami School of Medicine, 1150 NW 14th St, Suite 713, Miami, FL, 33136, USA
| | - Radka Stoyanova
- Department Radiation Oncology, University of Miami School of Medicine, Miami, FL, USA
| | - Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, 1150 NW 14th St, Suite 713, Miami, FL, 33136, USA.
| |
Collapse
|
13
|
Abdoli A, Maudsley AA. Phased-array combination for MR spectroscopic imaging using a water reference. Magn Reson Med 2015; 76:733-41. [PMID: 26413752 DOI: 10.1002/mrm.25992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/04/2015] [Accepted: 08/27/2015] [Indexed: 12/29/2022]
Abstract
PURPOSE To evaluate methods for multichannel combination of three-dimensional MR spectroscopic imaging (MRSI) data with a focus on using information from a water-reference spectroscopic image. METHODS Volumetric MRSI data were acquired for a phantom and for human brain using 8- and 32-channel detection. Acquisition included a water-reference dataset that was used to determine the weights for several multichannel combination methods. Results were compared using the signal-to-noise ratio (SNR) of the N-acetylaspartate resonance. RESULTS Performance of all methods was very similar for the phantom study, with the whitened singular value decomposition (WSVD) and signal magnitude (S) weighting combination having a small advantage. For in vivo studies, the S weighting, SNR weighting and signal to noise squared (S/N(2) ) weighting were the three best methods and performed similarly. Example spectra and SNR maps indicated that the SVD and WSVD methods tend to fail for voxels at the outer edges of the brain that include strong lipid signal contributions. CONCLUSION For data combination of MRSI data using water-reference information, the S/N(2) weighting, SNR and S weighting were the best methods in terms of spectral quality SNR. These methods are also computationally efficient and easy to implement. Magn Reson Med 76:733-741, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abas Abdoli
- Department of Radiology, University of Miami School of Medicine, Miami, Florida, USA
| | - Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, Florida, USA
| |
Collapse
|
14
|
Pan JW, Kuzniecky RI. Utility of magnetic resonance spectroscopic imaging for human epilepsy. Quant Imaging Med Surg 2015; 5:313-22. [PMID: 25853088 DOI: 10.3978/j.issn.2223-4292.2015.01.03] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/15/2015] [Indexed: 01/07/2023]
Abstract
This review discusses the potential utility of broad based use of magnetic resonance (MR) spectroscopic imaging for human epilepsy and seizure localization. The clinical challenges are well known to the epilepsy community, intrinsic in the variability of location, volumetric size and network extent of epileptogenic tissue in individual patients. The technical challenges are also evident, with high performance requirements in multiple steps, including magnet homogeneity, detector performance, sequence design, speed of acquisition in addition to large territory spectral processing. We consider how MR spectroscopy and spectroscopic imaging has been informative for epilepsy thus far, with specific attention to what is measured, the interpretation of such measurements and technical performance challenges. Examples are shown from medial temporal lobe and neocortical epilepsies are considered from 4T, 7T and most recently 3T.
Collapse
Affiliation(s)
- Jullie W Pan
- 1 Departments of Neurology and Radiology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; 2 Department of Neurology, NYU School of Medicine, New York, USA
| | - Ruben I Kuzniecky
- 1 Departments of Neurology and Radiology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; 2 Department of Neurology, NYU School of Medicine, New York, USA
| |
Collapse
|
15
|
Lecocq A, Le Fur Y, Maudsley AA, Le Troter A, Sheriff S, Sabati M, Donnadieu M, Confort-Gouny S, Cozzone PJ, Guye M, Ranjeva JP. Whole-brain quantitative mapping of metabolites using short echo three-dimensional proton MRSI. J Magn Reson Imaging 2014; 42:280-9. [PMID: 25431032 DOI: 10.1002/jmri.24809] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To improve the extent over which whole brain quantitative three-dimensional (3D) magnetic resonance spectroscopic imaging (MRSI) maps can be obtained and be used to explore brain metabolism in a population of healthy volunteers. METHODS Two short echo time (20 ms) acquisitions of 3D echo planar spectroscopic imaging at two orientations, one in the anterior commissure-posterior commissure (AC-PC) plane and the second tilted in the AC-PC +15° plane were obtained at 3 Tesla in a group of 10 healthy volunteers. B1 (+) , B1 (-) , and B0 correction procedures and normalization of metabolite signals with quantitative water proton density measurements were performed. A combination of the two spatially normalized 3D-MRSI, using a weighted mean based on the pixel wise standard deviation metabolic maps of each orientation obtained from the whole group, provided metabolite maps for each subject allowing regional metabolic profiles of all parcels of the automated anatomical labeling (AAL) atlas to be obtained. RESULTS The combined metabolite maps derived from the two acquisitions reduced the regional intersubject variance. The numbers of AAL regions showing N-acetyl aspartate (NAA) SD/Mean ratios lower than 30% increased from 17 in the AC-PC orientation and 41 in the AC-PC+15° orientation, to a value of 76 regions of 116 for the combined NAA maps. Quantitatively, regional differences in absolute metabolite concentrations (mM) over the whole brain were depicted such as in the GM of frontal lobes (cNAA = 10.03 + 1.71; cCho = 1.78 ± 0.55; cCr = 7.29 ± 1.69; cmIns = 5.30 ± 2.67) and in cerebellum (cNAA = 5.28 ± 1.77; cCho = 1.60 ± 0.41; cCr = 6.95 ± 2.15; cmIns = 3.60 ± 0.74). CONCLUSION A double-angulation acquisition enables improved metabolic characterization over a wide volume of the brain.
Collapse
Affiliation(s)
- Angèle Lecocq
- CRMBM, Aix-Marseille Université, CNRS 7339, Marseille, France.,APHM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Yann Le Fur
- CRMBM, Aix-Marseille Université, CNRS 7339, Marseille, France.,APHM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Andrew A Maudsley
- Department of radiology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Arnaud Le Troter
- CRMBM, Aix-Marseille Université, CNRS 7339, Marseille, France.,APHM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Sulaiman Sheriff
- Department of radiology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mohamad Sabati
- Department of radiology, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Maxime Donnadieu
- CRMBM, Aix-Marseille Université, CNRS 7339, Marseille, France.,APHM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Sylviane Confort-Gouny
- CRMBM, Aix-Marseille Université, CNRS 7339, Marseille, France.,APHM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Patrick J Cozzone
- CRMBM, Aix-Marseille Université, CNRS 7339, Marseille, France.,APHM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Maxime Guye
- CRMBM, Aix-Marseille Université, CNRS 7339, Marseille, France.,APHM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- CRMBM, Aix-Marseille Université, CNRS 7339, Marseille, France.,APHM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| |
Collapse
|
16
|
Sabati M, Sheriff S, Gu M, Wei J, Zhu H, Barker PB, Spielman DM, Alger JR, Maudsley AA. Multivendor implementation and comparison of volumetric whole-brain echo-planar MR spectroscopic imaging. Magn Reson Med 2014; 74:1209-20. [PMID: 25354190 DOI: 10.1002/mrm.25510] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE To assess volumetric proton MR spectroscopic imaging (MRSI) of the human brain on multivendor MRI instruments. METHODS Echo-planar spectroscopic imaging was developed on instruments from three manufacturers, with matched specifications and acquisition protocols that accounted for differences in sampling performance, radiofrequency (RF) power, and data formats. Intersite reproducibility was evaluated for signal-normalized maps of N-acetylaspartate (NAA), creatine (Cre), and choline using phantom and human subject measurements. Comparative analyses included metrics for spectral quality, spatial coverage, and mean values in atlas-registered brain regions. RESULTS Intersite differences for phantom measurements were less than 1.7% for individual metabolites and less than 0.2% for ratio measurements. Spatial uniformity ranged from 79% to 91%. The human studies found differences of mean values in the temporal lobe, but good agreement in other white matter regions, with maximum differences relative to their mean of under 3.2%. For NAA/Cre, the maximum difference was 1.8%. In gray matter, a significant difference was observed for frontal lobe NAA. Primary causes of intersite differences were attributed to shim quality, B0 drift, and accuracy of RF excitation. Correlation coefficients for measurements at each site were over 0.60, indicating good reliability. CONCLUSION A volumetric intensity-normalized MRSI acquisition can be implemented in a comparable manner across multivendor MR instruments.
Collapse
Affiliation(s)
- Mohammad Sabati
- Department of Radiology, University of Miami, Miami, Florida, USA.,Department of Radiology, University of Calgary, Calgary, Canada
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami, Miami, Florida, USA
| | - Meng Gu
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Juan Wei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, and the F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Henry Zhu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, and the F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Peter B Barker
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, and the F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Daniel M Spielman
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Jeffry R Alger
- Neurology and Radiological Sciences, University of California, Los Angeles, California, USA
| | | |
Collapse
|
17
|
Degnan AJ, Samtani R, Paudel K, Levy LM. Neuroimaging of epilepsy: a review of MRI findings in uncommon etiologies and atypical presentations of seizures. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Imaging patients with seizures presents a challenge to both clinician and radiologist, especially when symptoms or EEG features are atypical, not conforming to established epilepsy syndromes or EEG patterns. Appropriate, directed use of MRI enhances the detection of underlying epileptogenic foci and can evaluate both common and unusual etiologies. This review examines imaging evaluation of epilepsies due to uncommon presentations of common conditions, unusual conditions and atypical seizure presentations. Understanding these uncommon presentations of seizures ensures optimal clinical management and can guide appropriate intervention. Advances in newer imaging methods including diffusion tensor imaging, functional connectivity MRI, magnetic source imaging and magnetic resonance spectroscopic imaging can further increase sensitivity to detect subtle structural abnormalities causing epilepsy and can also be used to plan more successful epilepsy surgery.
Collapse
Affiliation(s)
- Andrew J Degnan
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Rajeev Samtani
- Department of Radiology, George Washington University Medical Center, Washington, DC 20037, USA
| | - Kalyan Paudel
- Department of Radiology, George Washington University Medical Center, Washington, DC 20037, USA
| | - Lucien M Levy
- Department of Radiology, George Washington University Medical Center, Washington, DC 20037, USA
| |
Collapse
|
18
|
Qiu Y, Lv X, Su H, Jiang G, Li C, Tian J. Structural and functional brain alterations in end stage renal disease patients on routine hemodialysis: a voxel-based morphometry and resting state functional connectivity study. PLoS One 2014; 9:e98346. [PMID: 24854737 PMCID: PMC4031192 DOI: 10.1371/journal.pone.0098346] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 05/01/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Cognitive impairment is a well-described phenomenon in end-stage renal disease (ESRD) patients. However, its pathogenesis remains poorly understood. The primary focus of this study was to examine structural and functional brain deficits in ESRD patients. MATERIALS AND METHODS Thirty ESRD patients on hemodialysis (without clinical neurological disease) and 30 age- and gender-matched control individuals (without renal or neurological problems) were recruited in a prospective, single-center study. High-resolution structural magnetic resonance imaging (MRI) and resting state functional MRI were performed on both groups to detect the subtle cerebral deficits in ESRD patients. Voxel-based morphometry was used to characterize gray matter deficits in ESRD patients. The impact of abnormal morphometry on the cerebral functional integrity was investigated by evaluating the alterations in resting state functional connectivity when brain regions with gray matter volume reduction were used as seed areas. RESULTS A significant decrease in gray matter volume was observed in ESRD patients in the bilateral medial orbito-prefrontal cortices, bilateral dorsal lateral prefrontal cortices, and the left middle temporal cortex. When brain regions with gray matter volume reduction were used as seed areas, the integration was found to be significantly decreased in ESRD patients in the fronto-cerebellum circuits and within prefrontal circuits. In addition, significantly enhanced functional connectivity was found between the prefrontal cortex and the left temporal cortex and within the prefrontal circuits. CONCLUSIONS Our study revealed that both the structural and functional cerebral cortices were impaired in ESRD patients on routine hemodialysis.
Collapse
Affiliation(s)
- Yingwei Qiu
- Department of Medical Imaging, Guangdong No. 2 Provincial People's Hospital, Guangzhou, PR China
- Department of Medical Imaging, The First Affiliated Hospital of Gannan Medical University, Ganzhou, PR China
- * E-mail:
| | - Xiaofei Lv
- Departments of Medical Imaging and Interventional Radiology, Cancer Center, Sun Yat-Sen University, Guangzhou, PR China
| | - Huanhuan Su
- Department of Medical Imaging, Guangdong No. 2 Provincial People's Hospital, Guangzhou, PR China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong No. 2 Provincial People's Hospital, Guangzhou, PR China
| | - Cheng Li
- Department of Renal Transplantation, Guangdong No. 2 Provincial People's Hospital, Guangzhou, PR China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong No. 2 Provincial People's Hospital, Guangzhou, PR China
| |
Collapse
|
19
|
Öz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, Bolan PJ, Brindle KM, Cudalbu C, Dinçer A, Dydak U, Emir UE, Frahm J, González RG, Gruber S, Gruetter R, Gupta RK, Heerschap A, Henning A, Hetherington HP, Howe FA, Hüppi PS, Hurd RE, Kantarci K, Klomp DWJ, Kreis R, Kruiskamp MJ, Leach MO, Lin AP, Luijten PR, Marjańska M, Maudsley AA, Meyerhoff DJ, Mountford CE, Nelson SJ, Pamir MN, Pan JW, Peet AC, Poptani H, Posse S, Pouwels PJW, Ratai EM, Ross BD, Scheenen TWJ, Schuster C, Smith ICP, Soher BJ, Tkáč I, Vigneron DB, Kauppinen RA. Clinical proton MR spectroscopy in central nervous system disorders. Radiology 2014; 270:658-79. [PMID: 24568703 PMCID: PMC4263653 DOI: 10.1148/radiol.13130531] [Citation(s) in RCA: 429] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units.
Collapse
Affiliation(s)
- Gülin Öz
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jeffry R. Alger
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Peter B. Barker
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Robert Bartha
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alberto Bizzi
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Chris Boesch
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Patrick J. Bolan
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Kevin M. Brindle
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Cristina Cudalbu
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alp Dinçer
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ulrike Dydak
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Uzay E. Emir
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jens Frahm
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ramón Gilberto González
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Stephan Gruber
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Rolf Gruetter
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Rakesh K. Gupta
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Arend Heerschap
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Anke Henning
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Hoby P. Hetherington
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Franklyn A. Howe
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Petra S. Hüppi
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ralph E. Hurd
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Kejal Kantarci
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Dennis W. J. Klomp
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Roland Kreis
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Marijn J. Kruiskamp
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Martin O. Leach
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alexander P. Lin
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Peter R. Luijten
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Małgorzata Marjańska
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Andrew A. Maudsley
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Dieter J. Meyerhoff
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Carolyn E. Mountford
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Sarah J. Nelson
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - M. Necmettin Pamir
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jullie W. Pan
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Andrew C. Peet
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Harish Poptani
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Stefan Posse
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Petra J. W. Pouwels
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Eva-Maria Ratai
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Brian D. Ross
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Tom W. J. Scheenen
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Christian Schuster
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ian C. P. Smith
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Brian J. Soher
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ivan Tkáč
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Daniel B. Vigneron
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | | |
Collapse
|
20
|
Pan JW, Duckrow RB, Gerrard J, Ong C, Hirsch LJ, Resor SR, Zhang Y, Petroff O, Spencer S, Hetherington HP, Spencer DD. 7T MR spectroscopic imaging in the localization of surgical epilepsy. Epilepsia 2013; 54:1668-78. [PMID: 23895497 DOI: 10.1111/epi.12322] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE With the success that surgical approaches can provide for localization-related epilepsy, accurate seizure localization remains important. Although magnetic resonance (MR) spectroscopy has had success in earlier studies in medial temporal lobe epilepsy, there have been fewer studies evaluating its use in a broader range of localization-related epilepsy. With improvements in signal-to-noise with ultra-high field MR, we report on the use of high resolution 7T MR spectroscopic imaging (MRSI) in 25 surgically treated patients studied over a 3.5-year period. METHODS Patients were included in this analysis if the region of MRSI study included the surgical resection region. Concordance between region of MRSI abnormalities and of surgical resection was classified into three groups (complete, partial, or no agreement) and outcome was dichotomized by International League Against Epilepsy (ILAE) I-III and IV-VI groups. MRSI was performed with repetition time/echo time 1.5 s/40 msec in two-dimensional (2D) or three-dimensional (3D) encoding for robust detection of singlets N-acetyl aspartate (NAA), creatine (Cr), and choline with abnormalities in NAA/Cr determined with correction for tissue content of gray matter. KEY FINDINGS The concordance between MRSI-determined abnormality and surgical resection region was significantly related to outcome: Outcome was better if the resected tissue was metabolically abnormal. All 14 patients with complete resection of the region with the most severe metabolic abnormality had good outcome, including five requiring intracranial electroencephalography (EEG) analysis, whereas only 3/11 without complete resection of the most severe metabolic abnormality had good outcome (p < 0.001). SIGNIFICANCE This is consistent with the seizure-onset zone being characterized by metabolic dysfunction and suggests that high resolution MRSI can help define these regions for the purposes of outcome prediction.
Collapse
Affiliation(s)
- Jullie W Pan
- Department of Neurology and Radiology, University of Pittsburg, Pittsburg, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Spur EM, Decelle EA, Cheng LL. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry. Eur J Nucl Med Mol Imaging 2013; 40 Suppl 1:S60-71. [PMID: 23549758 DOI: 10.1007/s00259-013-2379-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 12/14/2022]
Abstract
Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases.
Collapse
Affiliation(s)
- Eva-Margarete Spur
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, CNY-6, 149 13th Street, Charlestown, Boston, MA 02129, USA
| | | | | |
Collapse
|
22
|
Maudsley AA, Govind V, Arheart KL. Associations of age, gender and body mass with 1H MR-observed brain metabolites and tissue distributions. NMR IN BIOMEDICINE 2012; 25:580-93. [PMID: 21858879 PMCID: PMC3313016 DOI: 10.1002/nbm.1775] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 05/11/2023]
Abstract
Recent reports have indicated that a measure of adiposity, the body mass index (BMI), is associated with MR-observed brain metabolite concentrations and tissue volume measures. In addition to indicating possible associations between brain metabolism, BMI and cognitive function, the inclusion of BMI as an additional subject selection criterion could potentially improve the detection of metabolic and structural differences between subjects and study groups. In this study, a retrospective analysis of 140 volumetric MRSI datasets was carried out to investigate the value of including BMI in the subject selection relative to age and gender. The findings replicate earlier reports of strong associations of N-acetylaspartate, creatine, choline and gray matter with age and gender, with additional observations of slightly increased spectral linewidth with age and in female relative to male subjects. Associations of metabolite levels, linewidth and gray matter volume with BMI were also observed, although only in some regions. Using voxel-based analyses, it was also observed that the patterns of the relative changes of metabolites with BMI matched those of linewidth with BMI or weight, and that residual magnetic field inhomogeneity and measures of spectral quality were influenced by body weight. It is concluded that, although associations of metabolite levels and tissue distributions with BMI occur, these may be attributable to issues associated with data acquisition and analysis; however, an organic origin for these findings cannot be specifically excluded. There is, however, sufficient evidence to warrant the inclusion of body weight as a subject selection parameter, secondary to age, and as a factor in data analysis for MRS studies of some brain regions.
Collapse
Affiliation(s)
- A A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | | | |
Collapse
|
23
|
Noh GJ, Jane Tavyev Asher Y, Graham JM. Clinical review of genetic epileptic encephalopathies. Eur J Med Genet 2012; 55:281-98. [PMID: 22342633 DOI: 10.1016/j.ejmg.2011.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/27/2011] [Indexed: 11/29/2022]
Abstract
Seizures are a frequently encountered finding in patients seen for clinical genetics evaluations. The differential diagnosis for the cause of seizures is quite diverse and complex, and more than half of all epilepsies have been attributed to a genetic cause. Given the complexity of such evaluations, we highlight the more common causes of genetic epileptic encephalopathies and emphasize the usefulness of recent technological advances. The purpose of this review is to serve as a practical guide for clinical geneticists in the evaluation and counseling of patients with genetic epileptic encephalopathies. Common syndromes will be discussed, in addition to specific seizure phenotypes, many of which are refractory to anti-epileptic agents. Divided by etiology, we overview the more common causes of infantile epileptic encephalopathies, channelopathies, syndromic, metabolic, and chromosomal entities. For each condition, we will outline the diagnostic evaluation and discuss effective treatment strategies that should be considered.
Collapse
Affiliation(s)
- Grace J Noh
- Clinical Genetics and Dysmorphology, Medical Genetics Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
24
|
|
25
|
Andronesi OC, Gagoski BA, Sorensen AG. Neurologic 3D MR spectroscopic imaging with low-power adiabatic pulses and fast spiral acquisition. Radiology 2011; 262:647-61. [PMID: 22187628 DOI: 10.1148/radiol.11110277] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To improve clinical three-dimensional (3D) MR spectroscopic imaging with more accurate localization and faster acquisition schemes. MATERIALS AND METHODS Institutional review board approval and patient informed consent were obtained. Data were acquired with a 3-T MR imager and a 32-channel head coil in phantoms, five healthy volunteers, and five patients with glioblastoma. Excitation was performed with localized adiabatic spin-echo refocusing (LASER) by using adiabatic gradient-offset independent adiabaticity wideband uniform rate and smooth truncation (GOIA-W[16,4]) pulses with 3.5-msec duration, 20-kHz bandwidth, 0.81-kHz amplitude, and 45-msec echo time. Interleaved constant-density spirals simultaneously encoded one frequency and two spatial dimensions. Conventional phase encoding (PE) (1-cm3 voxels) was performed after LASER excitation and was the reference standard. Spectra acquired with spiral encoding at similar and higher spatial resolution and with shorter imaging time were compared with those acquired with PE. Metabolite levels were fitted with software, and Bland-Altman analysis was performed. RESULTS Clinical 3D MR spectroscopic images were acquired four times faster with spiral protocols than with the elliptical PE protocol at low spatial resolution (1 cm3). Higher-spatial-resolution images (0.39 cm3) were acquired twice as fast with spiral protocols compared with the low-spatial-resolution elliptical PE protocol. A minimum signal-to-noise ratio (SNR) of 5 was obtained with spiral protocols under these conditions and was considered clinically adequate to reliably distinguish metabolites from noise. The apparent SNR loss was not linear with decreasing voxel sizes because of longer local T2* times. Improvement of spectral line width from 4.8 Hz to 3.5 Hz was observed at high spatial resolution. The Bland-Altman agreement between spiral and PE data is characterized by narrow 95% confidence intervals for their differences (0.12, 0.18 of their means). GOIA-W(16,4) pulses minimize chemical-shift displacement error to 2.1%, reduce nonuniformity of excitation to 5%, and eliminate the need for outer volume suppression. CONCLUSION The proposed adiabatic spiral 3D MR spectroscopic imaging sequence can be performed in a standard clinical MR environment. Improvements in image quality and imaging time could enable more routine acquisition of spectroscopic data than is possible with current pulse sequences.
Collapse
Affiliation(s)
- Ovidiu C Andronesi
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Suite 2301, Boston, MA 02129, USA.
| | | | | |
Collapse
|
26
|
Widespread extrahippocampal NAA/(Cr+Cho) abnormalities in TLE with and without mesial temporal sclerosis. J Neurol 2010; 258:603-12. [PMID: 20976465 PMCID: PMC3065637 DOI: 10.1007/s00415-010-5799-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/29/2010] [Accepted: 10/07/2010] [Indexed: 12/11/2022]
Abstract
MR spectroscopy has demonstrated extrahippocampal NAA/(Cr+Cho) reductions in medial temporal lobe epilepsy with (TLE-MTS) and without (TLE-no) mesial temporal sclerosis. Because of the limited brain coverage of those previous studies, it was, however, not possible to assess differences in the distribution and extent of these abnormalities between TLE-MTS and TLE-no. This study used a 3D whole brain echoplanar spectroscopic imaging (EPSI) sequence to address the following questions: (1) Do TLE-MTS and TLE-no differ regarding severity and distribution of extrahippocampal NAA/(Cr+Cho) reductions? (2) Do extrahippocampal NAA/(Cr+Cho) reductions provide additional information for focus lateralization? Forty-three subjects (12 TLE-MTS, 13 TLE-no, 18 controls) were studied with 3D EPSI. Statistical parametric mapping (SPM2) was used to identify regions of significantly decreased NAA/(Cr+Cho) in TLE groups and in individual patients. TLE-MTS and TLE-no had widespread extrahippocampal NAA/(Cr+Cho) reductions. NAA/(Cr+Cho) reductions had a bilateral fronto-temporal distribution in TLE-MTS and a more diffuse, less well defined distribution in TLE-no. Extrahippocampal NAA/(Cr+Cho) decreases in the single subject analysis showed a large inter-individual variability and did not provide additional focus lateralizing information. Extrahippocampal NAA/(Cr+Cho) reductions in TLE-MTS and TLE-no are neither focal nor homogeneous. This reduces their value for focus lateralization and suggests a heterogeneous etiology of extrahippocampal spectroscopic metabolic abnormalities in TLE.
Collapse
|