1
|
Rifaai RA, El-Tahawy NFG, Abozaid SMM, Abdelwahab A. Intermittent Fasting Ameliorates Age-Induced Morphological Changes in Aged Albino Rat Kidney via Autophagy Activation and Reduction of Apoptosis and Inflammation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozae102. [PMID: 39405416 DOI: 10.1093/mam/ozae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 02/26/2025]
Abstract
Aging is a biological process with gradual decrease of cell function. Kidneys are one of the organs with higher susceptibility to the development of age-dependent tissue damage. Intermittent fasting has several beneficial effects on age-related degenerative changes. The aim of this study was to investigate the possible beneficial effect of intermittent fasting in delaying age-related renal changes and the possible mechanisms of this effect. Thirty male albino rats were classified into three groups: control, adult rats aged 3 months; aged group, 15-month-old rats and maintained until the age of 18 months; and intermittent fasting-aged groups, 15-month-old rats maintained on intermittent fasting for 3 months. Kidneys were processed for histological and immunohistochemical study. Aging resulted in a significant reduction in renal function and significant several degenerative changes in renal corpuscles and tubules which showed abnormal histological structure with increased collagen deposition. Aging caused significant reduction in the expression of autophagic marker light chain 3 with increased expression of active caspase-3 and inducible nitric oxide synthase. Intermittent fasting significantly improved these age-related renal changes. Intermittent fasting effectively prevents age-related renal changes through the reduction of age-related oxidative stress, inflammation, apoptosis, and activation of autophagy.
Collapse
Affiliation(s)
- Rehab Ahmed Rifaai
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Cairo Aswan Agricultural Rd, Minia, 61519, Egypt
| | - Nashwa Fathy Gamal El-Tahawy
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Cairo Aswan Agricultural Rd, Minia, 61519, Egypt
| | - Samah Mohammed Mahmoud Abozaid
- Department of Human Anatomy and Embryology, Faculty of Medicine, Minia University, Cairo Aswan Agricultural Rd, 61519, Egypt
| | - Alzahraa Abdelwahab
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Cairo Aswan Agricultural Rd, Minia, 61519, Egypt
| |
Collapse
|
2
|
Golpour-Hamedani S, Askari G, Khorvash F, Kesharwani P, Bagherniya M, Sahebkar A. The potential protective effects and mechanisms of fasting on neurodegenerative disorders: A narrative review. Brain Res 2025; 1849:149348. [PMID: 39581525 DOI: 10.1016/j.brainres.2024.149348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
This study aimed to review the potential neuroprotective effects and underlying mechanisms of fasting in neurodegenerative disorders by synthesizing the existing literature. Research indicates that fasting may induce substantial modifications in both brain structure and function through diverse metabolic and cellular pathways. Preclinical studies utilizing animal models have elucidated several key mechanisms mediating these effects. The other significant proposed mechanism involves the modulation of gut microbiota during fasting periods. The intestinal microbiome functions as a crucial intermediary in the complex interplay between feeding patterns, circadian rhythms, and immune responses. These microbiome alterations may subsequently exert considerable influence on central nervous system functionality. Moreover, by reducing glucose availability, fasting has been shown to enhance the survival and resistance of healthy cells to adjuvant treatments in central nervous system tumors. Fasting presents a promising non-pharmacological intervention for neurodegenerative disorders, potentially offering both preventive and therapeutic benefits. However, the current evidence base remains preliminary, warranting extensive further investigation to validate these initial findings and establish robust clinical protocols for both efficacy and safety.
Collapse
Affiliation(s)
- Sahar Golpour-Hamedani
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Zhang A, Wang J, Zhao Y, He Y, Sun N. Intermittent fasting, fatty acid metabolism reprogramming, and neuroimmuno microenvironment: mechanisms and application prospects. Front Nutr 2024; 11:1485632. [PMID: 39512520 PMCID: PMC11541237 DOI: 10.3389/fnut.2024.1485632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Intermittent fasting (IF) has demonstrated extensive health benefits through the regulation of fatty acid metabolism and modulation of the neuroimmune microenvironment, primarily via the activation of key signaling pathways such as AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1). IF not only facilitates fatty acid oxidation and improves metabolic health, but also enhances mitochondrial function, mitigates oxidative stress, promotes autophagy, and inhibits apoptosis and ferroptosis. These mechanisms contribute to its substantial preventive and therapeutic potential in various conditions, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, autoimmune diseases, and neurotraumatic conditions. While supportive evidence has been obtained from animal models and preliminary clinical studies, further large-scale, long-term randomized controlled trials are imperative to establish its safety and evaluate its clinical efficacy comprehensively.
Collapse
Affiliation(s)
- Anren Zhang
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junyu Wang
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yinuo Zhao
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu He
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Nianyi Sun
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Pedrón Giner CC. [Fourteenth Jesús Culebras Lecture. Ketogenic diet, a half-discovered treatment]. NUTR HOSP 2024; 41:477-488. [PMID: 38450481 DOI: 10.20960/nh.05171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Introduction The ketogenic diet was an amazing approach to treating epilepsy from its beginning. The body undergoes a change in obtaining energy, going from depending on carbohydrates to depending on fats, and then a whole series of biochemical routes are launched that, independently but also complementary, give rise to a set of effects that benefit the patient. This search for its mechanism of action, of devising how to improve compliance and take advantage of it for other diseases has marked its trajectory. This article briefly reviews these aspects, emphasizing the importance of continuing to carry out basic and clinical research so that this treatment can be applied with solid scientific bases.
Collapse
Affiliation(s)
- Consuelo Carmen Pedrón Giner
- Sección de Gastroenterología y Nutrición. Servicio de Pediatría. Hospital Infantil Universitario Niño Jesús. Departamento de Pediatría. Universidad Autónoma de Madrid
| |
Collapse
|
5
|
Chasseigneaux S, Cochois-Guégan V, Lecorgne L, Lochus M, Nicolic S, Blugeon C, Jourdren L, Gomez-Zepeda D, Tenzer S, Sanquer S, Nivet-Antoine V, Menet MC, Laplanche JL, Declèves X, Cisternino S, Saubaméa B. Fasting upregulates the monocarboxylate transporter MCT1 at the rat blood-brain barrier through PPAR δ activation. Fluids Barriers CNS 2024; 21:33. [PMID: 38589879 PMCID: PMC11003008 DOI: 10.1186/s12987-024-00526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) is pivotal for the maintenance of brain homeostasis and it strictly regulates the cerebral transport of a wide range of endogenous compounds and drugs. While fasting is increasingly recognized as a potential therapeutic intervention in neurology and psychiatry, its impact upon the BBB has not been studied. This study was designed to assess the global impact of fasting upon the repertoire of BBB transporters. METHODS We used a combination of in vivo and in vitro experiments to assess the response of the brain endothelium in male rats that were fed ad libitum or fasted for one to three days. Brain endothelial cells were acutely purified and transcriptionaly profiled using RNA-Seq. Isolated brain microvessels were used to assess the protein expression of selected BBB transporters through western blot. The molecular mechanisms involved in the adaptation to fasting were investigated in primary cultured rat brain endothelial cells. MCT1 activity was probed by in situ brain perfusion. RESULTS Fasting did not change the expression of the main drug efflux ATP-binding cassette transporters or P-glycoprotein activity at the BBB but modulated a restrictive set of solute carrier transporters. These included the ketone bodies transporter MCT1, which is pivotal for the brain adaptation to fasting. Our findings in vivo suggested that PPAR δ, a major lipid sensor, was selectively activated in brain endothelial cells in response to fasting. This was confirmed in vitro where pharmacological agonists and free fatty acids selectively activated PPAR δ, resulting in the upregulation of MCT1 expression. Moreover, dosing rats with a specific PPAR δ antagonist blocked the upregulation of MCT1 expression and activity induced by fasting. CONCLUSIONS Altogether, our study shows that fasting affects a selected set of BBB transporters which does not include the main drug efflux transporters. Moreover, we describe a previously unknown selective adaptive response of the brain vasculature to fasting which involves PPAR δ and is responsible for the up-regulation of MCT1 expression and activity. Our study opens new perspectives for the metabolic manipulation of the BBB in the healthy or diseased brain.
Collapse
Affiliation(s)
- Stéphanie Chasseigneaux
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Véronique Cochois-Guégan
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Lucas Lecorgne
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Murielle Lochus
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Sophie Nicolic
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Corinne Blugeon
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Laurent Jourdren
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - David Gomez-Zepeda
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON Mainz), A Hemlholtz Institute of the DKFZ, Mainz, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, 69120, Heidelberg, Germany
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON Mainz), A Hemlholtz Institute of the DKFZ, Mainz, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, 69120, Heidelberg, Germany
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | | | - Valérie Nivet-Antoine
- AP-HP Biochimie générale, Hôpital Necker Enfants Malades, Université Paris Cité, Inserm, Innovations Thérapeutiques en Hémostase, Paris, France
| | - Marie-Claude Menet
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, 91400, Orsay, France
| | - Jean-Louis Laplanche
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Xavier Declèves
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Salvatore Cisternino
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Bruno Saubaméa
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
6
|
Panda PK, Chakrabarty B, Jauhari P, Sharawat IK, Agarwal A, Jain V, Pandey RM, Gulati S. Efficacy of daily versus intermittent low glycemic index therapy diet in children with drug-resistant epilepsy: A randomized controlled trial. Epilepsy Res 2024; 201:107322. [PMID: 38402708 DOI: 10.1016/j.eplepsyres.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/06/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION The predominant reason for the discontinuation of low glycemic index therapy (LGIT) in children with epilepsy is the dietary restrictions imposed therein. This trial intended to compare the efficacy of daily and intermittent LGIT in children with drug-resistant epilepsy (DRE). METHODS This study was performed between February 2018 and January 2019 to compare the efficacy of daily and intermittent LGIT in children aged 1-15 years with DRE following 24 weeks of dietary therapy. Compliance, the difficulty faced by caregivers, adverse effects, impact on behaviour, and social quotient in both arms were compared. Children in the intermittent LGIT arm received a liberalized diet for two days every week (Saturday and Sunday), which also allowed medium glycemic index foods. Carbohydrate calories were allowed up to 20% of the total caloric requirement in the liberalized diet, as compared to only 10% in standard LGIT. RESULTS Out of 132 children randomized (66 in each group), 122 completed 24 weeks follow up. Mean weekly seizure frequency reduction at 24 weeks in the intermittent LGIT group was comparable with that of the daily LGIT group in both intention-to-treat (ITT) and per-protocol analysis (-50.95%± 22.34% vs -47.16%± 23.41%, p=0.36 in ITT and -53.88%±20.54% vs -49.20%±21.87%, p=0.23) in per-protocol analysis for intermittent and daily LGIT group respectively). The proportion with ≥50% reduction in seizure frequency was also comparable between both groups (p=0.73 and 0.56 in ITT and per protocol analysis respectively). The proportion of patients with adverse events and satisfactory compliance rate also had a trend towards favoring intermittent LGIT (p=0.06 and 0.51, respectively), while caregiver difficulty was lower with intermittent LGIT (p=0.001). CONCLUSIONS Intermittent LGIT is comparable to daily LGIT in terms of seizure frequency reduction after 24 weeks of dietary therapy. TRIAL REGISTRATION ClinicalTrials.gov (Registration number- NCT03464487, https://clinicaltrials.gov/ct2/show/NCT03464487).
Collapse
Affiliation(s)
- Prateek Kumar Panda
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand 249203, India
| | - Biswaroop Chakrabarty
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Prashant Jauhari
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Indar Kumar Sharawat
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand 249203, India
| | - Anuja Agarwal
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vandana Jain
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ravindra M Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sheffali Gulati
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
7
|
Galali Y, Zebari SMS, Aj. Jabbar A, Hashm Balaky H, Sadee BA, Hassanzadeh H. The impact of ketogenic diet on some metabolic and non-metabolic diseases: Evidence from human and animal model experiments. Food Sci Nutr 2024; 12:1444-1464. [PMID: 38455178 PMCID: PMC10916642 DOI: 10.1002/fsn3.3873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
The ketogenic diet (KD) is recognized as minimum carbohydrate and maximum fat intakes, which leads to ketosis stimulation, a state that is thought to metabolize fat more than carbohydrates for energy supply. KD has gained more interest in recent years and is for many purposes, including weight loss and managing serious diseases like type 2 diabetes. On the other hand, many believe that KD has safety issues and are uncertain about the health drawbacks. Thus, the outcomes of the effect of KD on metabolic and non-metabolic disease remain disputable. The current narrative review aims to evaluate the effect of KD on several diseases concerning the human health. To our best knowledge, the first report aims to investigate the efficacy of KD on multiple human health issues including type 2 diabetes and weight loss, cardiovascular disease, kidney failure and hypertension, non-alcoholic fatty liver, mental problem, oral health, libido, and osteoporosis. The literature searches were performed in Databases, PubMed, Scopus, and web of Science looking for both animal and human model designs. The results heterogeneity seems to be explained by differences in diet composition and duration. Also, the available findings may show that proper control of carbohydrates, a significant reduction in glycemic control and glycated hemoglobin, and weight loss by KD can be an approach to improve diabetes and obesity, hypertension, non-alcoholic fatty liver, PCOS, libido, oral health, and mental problem if isocaloric is considered. However, for some other diseases like cardiovascular disease and osteoporosis, more robust data are needed. Therefore, there is robust data to support the notion that KD can be effective for some metabolic and non-metabolic diseases but not for all of them. So they have to be followed cautiously and under the supervision of health professionals.
Collapse
Affiliation(s)
- Yaseen Galali
- Food Technology DepartmentCollege of Agricultural Engineering Sciences, Salahaddin University‐ErbilErbilIraq
| | - Salih M. S. Zebari
- Department of Nutrition and DieteticsCihan University‐ErbilErbilIraq
- Animal Resource DepartmentCollege of Agricultural Engineering Sciences, Salahaddin University‐ErbilErbilIraq
| | - Ahmed Aj. Jabbar
- Department of Medical Laboratory TechnologyErbil Technical Health and Medical College, Erbil Polytechnic UniversityErbilIraq
| | - Holem Hashm Balaky
- General Science Department, Faculty of EducationSoran UniversityErbilIraq
- Mergasor Technical InstituteErbil Polytechnic UniversityErbilIraq
| | - Bashdar Abuzed Sadee
- Food Technology DepartmentCollege of Agricultural Engineering Sciences, Salahaddin University‐ErbilErbilIraq
- Department of Nutrition and DieteticsCihan University‐ErbilErbilIraq
| | - Hamed Hassanzadeh
- Department of Food Science and Technology, Faculty of Para‐veterinaryIlam UniversityIlamIran
| |
Collapse
|
8
|
Hosseini E, Ammar A, Josephson JK, Gibson DL, Askari G, Bragazzi NL, Trabelsi K, Schöllhorn WI, Mokhtari Z. Fasting diets: what are the impacts on eating behaviors, sleep, mood, and well-being? Front Nutr 2024; 10:1256101. [PMID: 38264193 PMCID: PMC10803520 DOI: 10.3389/fnut.2023.1256101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Fasting diets (FDs) have drawn great attention concerning their contribution to health and disease over the last decade. Despite considerable interest in FDs, the effect of fasting diets on eating behaviors, sleep, and mood-essential components of diet satisfaction and mental health- has not been addressed comprehensively. Understanding the critical role that fasting plays in these elements will open up potential treatment avenues that have not yet been explored. The aim of the present paper was to conduct a comprehensive critical review exploring the effects of fasting on eating behaviors, sleep, and mood. There is currently a lack of clarity regarding which fasting option yields the most advantageous effects, and there is also a scarcity of consistent trials that assess the effects of FDs in a comparable manner. Similarly, the effects and/or treatment options for utilizing FDs to modify eating and sleep behaviors and enhance mood are still poorly understood. Further researches aiming at understanding the impacts of various fasting regimes, providing new insights into the gut-brain axis and offering new treatment avenues for those with resistant anxiety and depression, are warranted. Alteration of eating behaviors can have lasting effects on various physiological parameters. The use of fasting cures can underpin ancient knowledge with scientific evidence to form a new approach to the prevention and treatment of problems associated with co-morbidities or challenges pertaining to eating behaviors. Therefore, a thorough examination of the various fasting regimens and how they impact disease patterns is also warranted.
Collapse
Affiliation(s)
- Elham Hosseini
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | | | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
- Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nicola L. Bragazzi
- Human Nutrition Unit (HNU), Department of Food and Drugs, University of Parma, Parma, Italy
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Wolfgang I. Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Zeinab Mokhtari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Li Z, Huang L, Luo Y, Yu B, Tian G. Effects and possible mechanisms of intermittent fasting on health and disease: a narrative review. Nutr Rev 2023; 81:1626-1635. [PMID: 36940184 DOI: 10.1093/nutrit/nuad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The imbalance between energy intake and expenditure in an environment of continuous food availability can lead to metabolic disturbances in the body and increase the risk of obesity and a range of chronic noncommunicable diseases. Intermittent fasting (IF) is one of the most popular nonpharmacological interventions to combat obesity and chronic noncommunicable diseases. The 3 most widely studied IF regimens are alternate-day fasting, time-restricted feeding, and the 5:2 diet. In rodents, IF helps optimize energy metabolism, prevent obesity, promote brain health, improve immune and reproductive function, and delay aging. In humans, IF's benefits are relevant for the aging global population and for increasing human life expectancy. However, the optimal model of IF remains unclear. In this review, the possible mechanisms of IF are summarized and its possible drawbacks are discussed on the basis of the results of existing research, which provide a new idea for nonpharmaceutical dietary intervention of chronic noncommunicable diseases.
Collapse
Affiliation(s)
- Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Liansu Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
10
|
Salehi N, Walters M. When and what to eat? A scoping review of health outcomes of fasting in conjunction with a low-carbohydrate diet. Br J Nutr 2023; 129:1677-1692. [PMID: 35764420 DOI: 10.1017/s0007114522001854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Over the last several decades, there has been an increase in chronic diseases such as neurodegenerative, inflammatory, cardiovascular disease (CVD) and cancer. Two eating patterns, a low-carbohydrate diet (LCD) and fasting, have been researched independently over this period and found to be beneficial in reducing many of these chronic diseases' detrimental effects. However, there have been limited studies about the synergy of these eating patterns. This current scoping review aims to explore the evidence of the health outcomes of using a LCD in conjunction with fasting. Four databases were searched, and fifteen articles were found that fit the inclusion criteria. The articles reported positive effects of combining the two eating patterns for type 2 diabetes, CVD, inflammatory conditions and weight reduction and maintenance. LCD and fasting together provide synergy in decreasing metabolic syndrome (as the key causes of chronic illnesses), such as insulin levels, fasting glucose, blood pressure, TAG and regulating lipid profile. Due to the paucity of research, further high-quality studies are needed to substantiate this evidence.
Collapse
Affiliation(s)
- Nasim Salehi
- Faculty of Health, Southern Cross University, Gold Coast Campus, QLD, Australia
| | | |
Collapse
|
11
|
Arora N, Pulimamidi S, Yadav H, Jain S, Glover J, Dombrowski K, Hernandez B, Sarma AK, Aneja R. Intermittent fasting with ketogenic diet: A combination approach for management of chronic diseases. Clin Nutr ESPEN 2023; 54:166-174. [PMID: 36963859 DOI: 10.1016/j.clnesp.2023.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/30/2023]
Abstract
Intermittent Fasting (IF) is the consumption of food and drinks within a defined time, while the ketogenic diet (KD) switches the metabolism from glucose to fats. Continuation of intermittent fasting leads to the generation of ketones, the exact mechanism for a ketogenic diet. This article discusses the types of IF and KD, the monitoring required, and the mechanisms underlying IF and KD, followed by disorders in which the combination strategy could be applied. The strategies for successfully applying combination therapy are included, along with recommendations for the primary care physicians (PCP) which could serve as a handy guide for patient management. This opinion article could serve as the baseline for future clinical studies since there is an utmost need for developing new wholesome strategies for managing chronic disorders.
Collapse
Affiliation(s)
- Niraj Arora
- Department of Neurology, University of Missouri, Columbia, MO, United States.
| | - Shruthi Pulimamidi
- Department of Neurology, University of Missouri, Columbia, MO, United States
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, United States
| | - Shalini Jain
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Jennifer Glover
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Keith Dombrowski
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Beverly Hernandez
- Clinical Nutrition Services, Tampa General Hospital, Tampa, FL, United States
| | - Anand Karthik Sarma
- Department of Neurology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Rachna Aneja
- Department of Neurology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
12
|
The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients 2022; 14:nu14235086. [PMID: 36501116 PMCID: PMC9740746 DOI: 10.3390/nu14235086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Dietary interventions can ameliorate age-related neurological decline. Decades of research of in vitro studies, animal models, and clinical trials support their ability and efficacy to improve behavioral outcomes by inducing biochemical and physiological changes that lead to a more resilient brain. Dietary interventions including calorie restriction, alternate day fasting, time restricted feeding, and fasting mimicking diets not only improve normal brain aging but also slow down, or even reverse, the progression of neurological diseases. In this review, we focus on the effects of intermittent and periodic fasting on improving phenotypic outcomes, such as cognitive and motor-coordination decline, in the normal aging brain through an increase in neurogenesis and synaptic plasticity, and decrease in neuroinflammation, mitochondrial dysfunction, and oxidative stress. We summarize the results of various dietary interventions in animal models of age-related neurological diseases such as Alzheimer's disease, Parkinson's disease, epilepsy, and Multiple Sclerosis and discuss the results of clinical trials that explore the feasibility of dietary interventions in the prevention and treatment of these diseases.
Collapse
|
13
|
Fasting in mood disorders and its potential therapeutic aspects -narrative review. CURRENT PROBLEMS OF PSYCHIATRY 2022. [DOI: 10.2478/cpp-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Introduction: Fasting is defined as a period of voluntary abstinence from eating food for religious, therapeutic or political reasons, which is associated with a reduction in the supply of sources (kilocalories) to the body. There are different types of fasting, including short, long or intermittent fasting. It has been shown that the use of different types of fasting can influence the occurrence of mood disorders. The aim of this review was to search for the relationship between the use of fasting and mood disorders and its potential use as a therapeutic method.
Material and method: The available literature was reviewed by searching the PubMed and Google Scholar databases using the following keywords: fasting, intermittent fasting, mood disorders, depression, Ramadan, for studies listed from database inception to November 2021.
Results: A review of the collected scientific articles indicates that the dietary restrictions, including both daily restriction of caloric consumption and the use of intermittent fasting (IF), has potentially numerous health benefits in the co-treatment of mental diseases. However, due to conflicting results, further clinical trials in mentally ill people should be conducted. It is worth remembering that among patients with mental illnesses there are somatically ill. IF in these people may require additional nutritional modifications or discontinuation of therapy.
Conclusions: Dietary restriction and fasting are promising methods in co-therapy of mood disorders treatment. However, implementing therapy needs earlier individual evaluation of their benefits and risk, the same as patient’s feasibility of implementing this type of intervention.
Collapse
|
14
|
Caron JP, Kreher MA, Mickle AM, Wu S, Przkora R, Estores IM, Sibille KT. Intermittent Fasting: Potential Utility in the Treatment of Chronic Pain across the Clinical Spectrum. Nutrients 2022; 14:nu14122536. [PMID: 35745266 PMCID: PMC9228511 DOI: 10.3390/nu14122536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Dietary behavior can have a consequential and wide-ranging influence on human health. Intermittent fasting, which involves intermittent restriction in energy intake, has been shown to have beneficial cellular, physiological, and system-wide effects in animal and human studies. Despite the potential utility in preventing, slowing, and reversing disease processes, the clinical application of intermittent fasting remains limited. The health benefits associated with the simple implementation of a 12 to 16 h fast suggest a promising role in the treatment of chronic pain. A literature review was completed to characterize the physiologic benefits of intermittent fasting and to relate the evidence to the mechanisms underlying chronic pain. Research on different fasting regimens is outlined and an overview of research demonstrating the benefits of intermittent fasting across diverse health conditions is provided. Data on the physiologic effects of intermittent fasting are summarized. The physiology of different pain states is reviewed and the possible implications for intermittent fasting in the treatment of chronic pain through non-invasive management, prehabilitation, and rehabilitation following injury and invasive procedures are presented. Evidence indicates the potential utility of intermittent fasting in the comprehensive management of chronic pain and warrants further investigation.
Collapse
Affiliation(s)
- Jesse P. Caron
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Margaret Ann Kreher
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Angela M. Mickle
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Stanley Wu
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Rene Przkora
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
- Department of Anesthesiology, Division of Pain Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Irene M. Estores
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Kimberly T. Sibille
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
- Department of Anesthesiology, Division of Pain Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
15
|
Chen S, Ali I, Li X, Long D, Zhang Y, Long R, Huang X. Shifts in Fecal Metabolite Profiles Associated With Ramadan Fasting Among Chinese and Pakistani Individuals. Front Nutr 2022; 9:845086. [PMID: 35600819 PMCID: PMC9113920 DOI: 10.3389/fnut.2022.845086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
The human gut microbiota has been proposed to serve as a multifunctional organ in host metabolism, contributing effects to nutrient acquisition, immune response, and digestive health. Fasting during Ramadan may alter the composition of gut microbiota through changes in dietary behavior, which ultimately affects the contents of various metabolites in the gut. Here, we used liquid chromatography–mass spectrometry-based metabolomics to investigate the composition of fecal metabolites in Chinese and Pakistani individuals before and after Ramadan fasting. Principal component analysis showed distinct separation of metabolite profiles among ethnic groups as well as between pre- and post-fasting samples. After Ramadan fasting, the Chinese and Pakistani groups showed significant differences in their respective contents of various fecal metabolites. In particular, L-histidine, lycofawcine, and cordycepin concentrations were higher after Ramadan fasting in the Chinese group, while brucine was enriched in the Pakistani group. The KEGG analysis suggested that metabolites related to purine metabolism, 2-oxocarboxylic acid metabolism, and lysine degradation were significantly enriched in the total subject population pre-fasting vs. post-fasting comparisons. Several bacterial taxa were significantly correlated with specific metabolites unique to each ethnic group, suggesting that changes in fecal metabolite profiles related to Ramadan fasting may be influenced by associated shifts in gut microbiota. The fasting-related differences in fecal metabolite profile, together with these group-specific correlations between taxa and metabolites, support our previous findings that ethnic differences in dietary composition also drive variation in gut microbial composition and diversity. This landscape view of interconnected dietary behaviors, microbiota, and metabolites contributes to the future development of personalized, diet-based therapeutic strategies for gut-related disorders.
Collapse
Affiliation(s)
- Siyu Chen
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Ikram Ali
- School of Public Health, Lanzhou University, Lanzhou, China
- College of Ecology, Lanzhou University, Lanzhou, China
| | - Xin Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Ruijun Long
- College of Ecology, Lanzhou University, Lanzhou, China
- Ruijun Long
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, China
- *Correspondence: Xiaodan Huang
| |
Collapse
|
16
|
Cao S, Li M, Sun Y, Wu P, Yang W, Dai H, Guo Y, Ye Y, Wang Z, Xie X, Chen X, Liang W. Intermittent fasting enhances hippocampal NPY expression to promote neurogenesis after traumatic brain injury. Nutrition 2022; 97:111621. [PMID: 35255397 DOI: 10.1016/j.nut.2022.111621] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Interventions for preventing cognitive dysfunction after traumatic brain injury (TBI) are limited. Given that adult hippocampal neurogenesis after brain injury contributes to cognitive recovery, and hippocampal neurogenesis is potentially affected by nutritional factors, the aim of this study was to examine whether fasting could promote hippocampal neurogenesis and thus ameliorate the cognitive defects after TBI. METHODS The present study used 8- to 10-wk-old C57 BL/6 N mice weighing 23 g, half males and half females. The mice were randomly assigned to each group, with 10 to 18 mice per group. All mice were housed in an approved animal facility with a 12-h light/dark cycle. In the metabolic study (food intake, body weight, blood glucose, triacylglycerol, total cholesterol, and β-hydroxybutyric acid ), 54 mice (male:female = 1:1) were randomized to the ad libitum (AL) group (n = 18) and the intermittent fasting (IF) group (n = 36). In the neurogenesis study, 45 mice (male:female = 1:1) were randomized to AL (n = 18), IF (n = 9), IF + scramble (n = 9), and the IF + neuropeptide Y (NPY)_siRNA (n = 9) groups. In the Morris water maze test, 48 mice (male:female = 1:1) were randomized to AL (n = 12), IF (n = 12), IF + scramble (n = 12), and the IF + NPY_siRNA (n = 12) groups. RESULTS We showed that a 1-mo-long IF regimen enhanced the proliferation of neural stem cells in the subgranular zone of the hippocampus 3 d after TBI, in addition to improving the cognitive performance in the Morris water maze test. Furthermore, an increase in the hippocampal NPY expression was detected in the IF group after the injury, compared with the mice fed AL, and local knockdown of NPY in vivo attenuated the effects of IF on TBI. CONCLUSIONS These findings suggest that IF promotes hippocampal neurogenesis after TBI by a mechanism that involves enhancement of NPY expression, to alleviate cognitive dysfunction caused by injury.
Collapse
Affiliation(s)
- Shuqiang Cao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuwen Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Peiyan Wu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenjie Yang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hao Dai
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yi Ye
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoqi Xie
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Hernandez AR, Kemp KM, Burke SN, Buford TW, Carter CS. Influence of Aging, Macronutrient Composition and Time-Restricted Feeding on the Fischer344 x Brown Norway Rat Gut Microbiota. Nutrients 2022; 14:nu14091758. [PMID: 35565725 PMCID: PMC9105022 DOI: 10.3390/nu14091758] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Both ketogenic diets (KD) and time-restricted feeding (TRF) regimens have the ability to influence several parameters of physical health, including gut microbiome composition and circulating cytokine concentration. Moreover, both of these dietary interventions prevent common impairments associated with the aging process. However, significantly altering macronutrient intake, which is required for a KD, may be unappealing to individuals and decrease compliance to dietary treatments. In contrast to a KD, TRF allows individuals to continue eating the foods they are used to, and only requires a change in the time of day at which they eat. Therefore, we investigated both a KD and a diet with a more Western-like macronutrient profile in the context of TRF, and compared both diets to animals allowed access to standard chow ad libitum in young adult and aged rats. While limited effects on cytokine levels were observed, both methods of microbiome analysis (16S sequencing and metagenomics) indicate that TRF and KDs significantly altered the gut microbiome in aged rats. These changes were largely dependent on changes to feeding paradigm (TRF vs. ad libitum) alone regardless of macronutrient content for many gut microbiota, but there were also macronutrient-specific changes. Specifically, functional analysis indicates significant differences in several pathways, including those involved in the tricarboxylic acid (TCA) cycle, carbohydrate metabolism and neurodegenerative disease. These data indicate that age- and disease-related gut dysbiosis may be ameliorated through the use of TRF with both standard diets and KDs.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.W.B.); (C.S.C.)
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence:
| | - Keri M. Kemp
- CardioRenal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Sara N. Burke
- Center for Cognitive Aging and Memory, Department of Neuroscience and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Thomas W. Buford
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.W.B.); (C.S.C.)
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, AL 35294, USA
| | - Christy S. Carter
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.W.B.); (C.S.C.)
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
18
|
Xu Y, Liu Z, Xu S, Li C, Li M, Cao S, Sun Y, Dai H, Guo Y, Chen X, Liang W. Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature. Nutrients 2022; 14:1431. [PMID: 35406044 PMCID: PMC9002547 DOI: 10.3390/nu14071431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
It has widely been accepted that food restriction (FR) without malnutrition has multiple health benefits. Various calorie restriction (CR) and intermittent fasting (IF) regimens have recently been reported to exert neuroprotective effects in traumatic brain injury (TBI) through variable mechanisms. However, the evidence connecting CR or IF to neuroprotection in TBI as well as current issues remaining in this research field have yet to be reviewed in literature. The objective of our review was therefore to weigh the evidence that suggests the connection between CR/IF with recovery promotion following TBI. Medline, Google Scholar and Web of Science were searched from inception to 25 February 2022. An overwhelming number of results generated suggest that several types of CR/IF play a promising role in promoting post-TBI recovery. This recovery is believed to be achieved by alleviating mitochondrial dysfunction, promoting hippocampal neurogenesis, inhibiting glial cell responses, shaping neural cell plasticity, as well as targeting apoptosis and autophagy. Further, we represent our views on the current issues and provide thoughts on the future direction of this research field.
Collapse
Affiliation(s)
- Yang Xu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.X.); (S.X.); (C.L.); (Y.S.)
| | - Zejie Liu
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Z.L.); (H.D.)
| | - Shuting Xu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.X.); (S.X.); (C.L.); (Y.S.)
| | - Chengxian Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.X.); (S.X.); (C.L.); (Y.S.)
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (M.L.); (S.C.)
| | - Shuqiang Cao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (M.L.); (S.C.)
| | - Yuwen Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.X.); (S.X.); (C.L.); (Y.S.)
| | - Hao Dai
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Z.L.); (H.D.)
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Z.L.); (H.D.)
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (M.L.); (S.C.)
| |
Collapse
|
19
|
Brocchi A, Rebelos E, Dardano A, Mantuano M, Daniele G. Effects of Intermittent Fasting on Brain Metabolism. Nutrients 2022; 14:nu14061275. [PMID: 35334932 PMCID: PMC8954770 DOI: 10.3390/nu14061275] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
We are facing an obesity epidemic, and obesity itself and its close companion, type 2 diabetes, are independent risk factors for neurodegeneration. While most medical treatments fail to induce a clinically meaningful improvement in neurodegenerative disorders, lifestyle interventions have emerged in the spotlight. A recently rediscovered approach is intermittent fasting (IF), which, compared to the classic caloric restriction regimens, limits only the time of eating, rather than the number of calories allowed per day. There is already a large amount of evidence from preclinical and clinical studies showing the beneficial effects of IF. In this review, we specifically focus on the effects of IF on brain metabolism. Key molecular players modified during IF and involved in its beneficial central effects (ketone bodies, BDNF, GABA, GH/IGF-1, FGF2, sirtuin-3, mTOR, and gut microbiota) are identified and discussed. Studies suggest that IF induces several molecular and cellular adaptations in neurons, which, overall, enhance cellular stress resistance, synaptic plasticity, and neurogenesis. Still, the absence of guidelines regarding the application of IF to patients hampers its broad utilization in clinical practice, and further studies are needed to improve our knowledge on the different IF protocols and long-term effects of IF on brain metabolism before it can be widely prescribed.
Collapse
Affiliation(s)
- Alex Brocchi
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
| | - Eleni Rebelos
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy;
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
| | - Michele Mantuano
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
| | - Giuseppe Daniele
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
- Correspondence: ; Tel.: +39-3404618257
| |
Collapse
|
20
|
Effect of Intermittent Fasting (18/6) on Energy Expenditure, Nutritional Status, and Body Composition in Healthy Adults. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7809611. [PMID: 34961821 PMCID: PMC8710159 DOI: 10.1155/2021/7809611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
Objective This study was aimed at evaluating the effect of intermittent fasting of Ramadan on resting energy expenditure (REE), body composition, and nutritional status. Methods The study was conducted on a total of 27 adults (16 females, 11 males) who were fasting (18 h) in the Ramadan month (May 6–June 3) of 2019. REE was measured using the indirect calorimeter. Dietary energy and nutrient intakes were evaluated by 3-day food records in baseline and post-Ramadan. Body composition and some metabolic parameters were analyzed simultaneously with REE measurements. All measurements were performed two times at baseline, and post-Ramadan. Results Body weight (−2.9% vs. −1.4%), body mass index (BMI) (−3.1% vs. −2.1%), fat-free mass (−2.7% vs. −1.4%), and hydration status were decreased in both males and females after the Ramadan fasting (p < 0.05). REEs (kcal/d) of the participants were 1708.1 ± 262.50 kcal/d and 1596.5 ± 302.27 kcal/d at baseline and post-Ramadan, respectively (6.5%) (p < 0.05). This decrease in REE (kcal/d) in females was greater than that in males (−8.1% vs. −4.6%). However, no statistically significant difference was found in sleep duration (h), physical activity levels, dietary energy and nutrient intakes, and blood pressures (mm Hg) of both genders compared to baseline (p > 0.05). Conclusion Intermittent circadian fasting may lead to a decreased energy expenditure and a change in fat-free mass in healthy individuals, and this effect is interpreted as gender-dependent.
Collapse
|
21
|
Gudden J, Arias Vasquez A, Bloemendaal M. The Effects of Intermittent Fasting on Brain and Cognitive Function. Nutrients 2021; 13:nu13093166. [PMID: 34579042 PMCID: PMC8470960 DOI: 10.3390/nu13093166] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
The importance of diet and the gut-brain axis for brain health and cognitive function is increasingly acknowledged. Dietary interventions are tested for their potential to prevent and/or treat brain disorders. Intermittent fasting (IF), the abstinence or strong limitation of calories for 12 to 48 h, alternated with periods of regular food intake, has shown promising results on neurobiological health in animal models. In this review article, we discuss the potential benefits of IF on cognitive function and the possible effects on the prevention and progress of brain-related disorders in animals and humans. We do so by summarizing the effects of IF which through metabolic, cellular, and circadian mechanisms lead to anatomical and functional changes in the brain. Our review shows that there is no clear evidence of a positive short-term effect of IF on cognition in healthy subjects. Clinical studies show benefits of IF for epilepsy, Alzheimer’s disease, and multiple sclerosis on disease symptoms and progress. Findings from animal studies show mechanisms by which Parkinson’s disease, ischemic stroke, autism spectrum disorder, and mood and anxiety disorders could benefit from IF. Future research should disentangle whether positive effects of IF hold true regardless of age or the presence of obesity. Moreover, variations in fasting patterns, total caloric intake, and intake of specific nutrients may be relevant components of IF success. Longitudinal studies and randomized clinical trials (RCTs) will provide a window into the long-term effects of IF on the development and progress of brain-related diseases.
Collapse
Affiliation(s)
- Jip Gudden
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (J.G.); (A.A.V.)
| | - Alejandro Arias Vasquez
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (J.G.); (A.A.V.)
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mirjam Bloemendaal
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (J.G.); (A.A.V.)
- Correspondence:
| |
Collapse
|
22
|
Schreck KC, Hsu FC, Berrington A, Henry-Barron B, Vizthum D, Blair L, Kossoff EH, Easter L, Whitlow CT, Barker PB, Cervenka MC, Blakeley JO, Strowd RE. Feasibility and Biological Activity of a Ketogenic/Intermittent-Fasting Diet in Patients With Glioma. Neurology 2021; 97:e953-e963. [PMID: 34233941 DOI: 10.1212/wnl.0000000000012386] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To examine the feasibility, safety, systemic biological activity, and cerebral activity of a ketogenic dietary intervention in patients with glioma. METHODS 25 patients with biopsy-confirmed WHO Grade 2-4 astrocytoma with stable disease following adjuvant chemotherapy were enrolled in an 8-week GLioma Atkins-based Diet (GLAD). GLAD consisted of 2 fasting days (calories<20% calculated estimated needs) interleaved between 5 modified Atkins diet days (net carbohydrates≤20 gm/day) each week. The primary outcome was dietary adherence by food records. Markers of systemic and cerebral activity included weekly urine ketones, serum insulin, glucose, hemoglobin A1c, IGF-1, and MR spectroscopy at baseline and week 8. RESULTS 21 patients completed the study (84%). 80% of patients reached ≥40 mg/dL urine acetoacetate during the study. 48% of patients were adherent by food record. The diet was well-tolerated with two grade 3 adverse events (neutropenia, seizure). Measures of systemic activity including hemoglobin A1c, insulin, and fat body mass decreased significantly, while lean body mass increased. MR spectroscopy demonstrated increased ketone concentrations (β-hydroxybutyrate (bHB) and acetone (Ace)) in both lesional and contralateral brain, compared to baseline. Average ketonuria correlated with cerebral ketones in lesional (tumor) and contralateral brain (bHB Rs 0.52, p=0.05). Sub-group analysis of IDH-mutant glioma showed no differences in cerebral metabolites after controlling for ketonuria. CONCLUSIONS The GLAD dietary intervention, while demanding, produced meaningful ketonuria, and significant systemic and cerebral metabolic changes in participants. Ketonuria in participants correlated with cerebral ketone concentration and appear to be a better indicator of systemic activity than patient-reported food records.
Collapse
Affiliation(s)
- Karisa C Schreck
- Departments of Neurology, Oncology, and Neurosurgery Johns Hopkins University School of Medicine, Baltimore, MD
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science Wake Forest School of Medicine, Winston-Salem, NC
| | - Adam Berrington
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD.,Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, UK
| | - Bobbie Henry-Barron
- Institute for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Diane Vizthum
- Institute for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lindsay Blair
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eric H Kossoff
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Linda Easter
- Clinical Research Unit, Wake Forest School of Medicine, Winston-Salem, NC
| | - Christopher T Whitlow
- Departments of Radiology, Biostatistics and Data Science, Biomedical Engineering, and Clinical and Translational Science Institute, Wake Forest School of Medicine, Winston-Salem, NC
| | - Peter B Barker
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mackenzie C Cervenka
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jaishri O Blakeley
- Departments of Neurology, Oncology, and Neurosurgery Johns Hopkins University School of Medicine, Baltimore, MD
| | - Roy E Strowd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; .,Departments of Neurology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
23
|
High-Protein, Low-Glycaemic Meal Replacement Decreases Fasting Insulin and Inflammation Markers-A 12-Month Subanalysis of the ACOORH Trial. Nutrients 2021; 13:nu13051433. [PMID: 33922802 PMCID: PMC8145939 DOI: 10.3390/nu13051433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Lifestyle interventions, including meal replacement, are effective in the prevention and treatment of type-2-diabetes and obesity. Since insulin is the key weight regulator, we hypothesised that the addition of meal replacement to a lifestyle intervention reduces insulin levels more effectively than lifestyle intervention alone. In the international multicentre randomised controlled ACOORH (Almased Concept against Overweight and Obesity and Related Health Risk) trial, overweight or obese persons who meet the criteria for metabolic syndrome (n = 463) were randomised into two groups. Both groups received nutritional advice focusing on carbohydrate restriction and the use of telemonitoring devices. The intervention group substituted all three main meals per day in week 1, two meals per day in weeks 2–4, and one meal per day in weeks 5–26 with a protein-rich, low-glycaemic meal replacement. Data were collected at baseline and after 1, 3, 6 and 12 months. All datasets providing insulin data (n = 446) were included in this predefined subanalysis. Significantly higher reductions in insulin (−3.3 ± 8.7 µU/mL vs. −1.6 ± 9.8 µU/mL), weight (−6.1 ± 5.2 kg vs. −3.2 ± 4.6 kg), and inflammation markers were observed in the intervention group. Insulin reduction correlated with weight reduction and the highest amount of weight loss (−7.6 ± 4.9 kg) was observed in those participants with an insulin decrease > 2 µU/mL. These results underline the potential for meal replacement-based lifestyle interventions in diabetes prevention, and measurement of insulin levels may serve as an indicator for adherence to carbohydrate restriction.
Collapse
|
24
|
Magdy R, Kishk NA, Fouad AM, Alsayyad E. Risk estimation of SUDEP during COVID-19 pandemic era in a tertiary referral center. Epilepsy Res 2021; 173:106625. [PMID: 33819756 PMCID: PMC7989065 DOI: 10.1016/j.eplepsyres.2021.106625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022]
Abstract
Objective No data exist regarding the impact of the lockdown due to the COVID-19 pandemic on the risk factors of sudden unexpected death in epilepsy (SUDEP). This study aimed to stratify risk factors of SUDEP in relation to COVID-19 lockdown, among patients with epilepsy (PWE) in Cairo University epilepsy unit (CUEU). Therefore, we can detect risk factors and mitigate such factors in the second wave of the virus. Methods an observational, cross-sectional study carried on 340 Egyptian patients with active epilepsy. Individual risk identification and stratification was done by using The SUDEP and seizure Safety Checklist, after which sharing risk knowledge to PWE and their caregivers was undertaken. Results The mean age of patients was 29.72 ± 12.12. The median of the static factors was 4 (IQR 3–5) whereas, the median of the modifiable factors was 2 (IQR 1–3). Epilepsy emergencies (serial seizures or status epilepticus) were reported in 24.1 % of patients, for which non-compliance was the commonest cause, followed by deferral of epilepsy surgery for patients with drug resistant epilepsy (DRE). Stepwise logistic regression analysis showed that use of anxiolytic medications, non-compliance, keeping patients with DRE on dual anti-seizure medications (ASMs), or adding third medication increased the odds of increased seizure frequency by 2.7, 3.5, 16.6 and 6.1 times, respectively. Conclusion Some COVID-19 related issues had influenced the risk of seizure worsening including postponing epilepsy surgery for patients with DRE, non-compliance, and psychiatric comorbidities. Special attention should be paid to these issues to mitigate the risk of SUDEP.
Collapse
Affiliation(s)
- Rehab Magdy
- Department of Neurology, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Nirmeen A Kishk
- Department of Neurology, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amr M Fouad
- Department of Neurology, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Enas Alsayyad
- Department of Neurology, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
25
|
Merlotti D, Cosso R, Eller-Vainicher C, Vescini F, Chiodini I, Gennari L, Falchetti A. Energy Metabolism and Ketogenic Diets: What about the Skeletal Health? A Narrative Review and a Prospective Vision for Planning Clinical Trials on this Issue. Int J Mol Sci 2021; 22:ijms22010435. [PMID: 33406758 PMCID: PMC7796307 DOI: 10.3390/ijms22010435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
The existence of a common mesenchymal cell progenitor shared by bone, skeletal muscle, and adipocytes cell progenitors, makes the role of the skeleton in energy metabolism no longer surprising. Thus, bone fragility could also be seen as a consequence of a “poor” quality in nutrition. Ketogenic diet was originally proven to be effective in epilepsy, and long-term follow-up studies on epileptic children undergoing a ketogenic diet reported an increased incidence of bone fractures and decreased bone mineral density. However, the causes of such negative impacts on bone health have to be better defined. In these subjects, the concomitant use of antiepileptic drugs and the reduced mobilization may partly explain the negative effects on bone health, but little is known about the effects of diet itself, and/or generic alterations in vitamin D and/or impaired growth factor production. Despite these remarks, clinical studies were adequately designed to investigate bone health are scarce and bone health related aspects are not included among the various metabolic pathologies positively influenced by ketogenic diets. Here, we provide not only a narrative review on this issue, but also practical advice to design and implement clinical studies on ketogenic nutritional regimens and bone health outcomes. Perspectives on ketogenic regimens, microbiota, microRNAs, and bone health are also included.
Collapse
Affiliation(s)
- Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (D.M.); (L.G.)
| | - Roberta Cosso
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
| | - Cristina Eller-Vainicher
- Unit of Endocrinology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico Milano, 20122 Milano, Italy;
| | - Fabio Vescini
- Endocrinology and Metabolism Unit, University-Hospital S. Maria della Misericordia of Udine, 33100 Udine, Italy;
| | - Iacopo Chiodini
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milano, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (D.M.); (L.G.)
| | - Alberto Falchetti
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
- Correspondence:
| |
Collapse
|
26
|
Magdy R, Kishk NA, Abokrysha NT, Ramzy GM, Rizk HI, Hussein M. Fasting and post fasting effect of Ramadan on different seizure types in patients with active epilepsy. Nutr Neurosci 2020; 25:1100-1104. [PMID: 33151136 DOI: 10.1080/1028415x.2020.1840048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Fasting is the basis for the ketogenic diet, and intermittent fasting is emerging as a treatment for epilepsy. There are no available data about the role of Islamic fasting on seizure control. This study aims to assess the effect of Ramadan fasting on the frequency of different seizure types. METHODS This was a prospective observational study on Muslim patients with active epilepsy intending to fast during Ramadan in the year 2019, with an average of 16 fasting hours per day. Seizure frequency for each seizure type was followed over three months, one month before (Shaaban), during Ramadan and one month after (Shawwal), after ensuring drug compliance. RESULTS Three hundred and twenty one Muslim patients with active epilepsy with median age of 33 years were included (some patients had more than one type of seizure). In Ramadan, 86 out of 224 patients with focal seizures, 17 out of 38 patients with myoclonic seizures and 6 out of 10 patients with absence seizures showed ≥ 50% reduction. In Shawaal, such improvement continued to include 83, 13 and 4 patients with focal, myoclonic and absence seizures. Focal and myoclonic seizures were significantly improved in the months of Ramadan and Shawaal compared to Shaaban. However, absence seizures were significantly improved only in Ramadan compared with Shaaban. The frequency of generalized tonic-clonic seizures did not significantly differ between the three months. DISCUSSION Ramadan fasting may have an improving effect, as well as a post-fasting effect, on active focal, myoclonic and absence seizures.
Collapse
Affiliation(s)
- Rehab Magdy
- Department of Neurology, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nirmeen A Kishk
- Department of Neurology, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha T Abokrysha
- Department of Neurology, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Gihan M Ramzy
- Department of Neurology, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hoda Ibrahim Rizk
- Department of Public Health and Community Medicine, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona Hussein
- Department of Neurology, Beni-suef University, Beni-suef, Egypt
| |
Collapse
|
27
|
Darwish AH. Epileptic Adolescents and Ramadan Fasting: A Prospective Cohort Study. JOURNAL OF PEDIATRIC NEUROLOGY 2020. [DOI: 10.1055/s-0040-1718776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThis study aimed to evaluate the effect of Ramadan fasting on seizure control in epileptic adolescents. A prospective cohort study that included 56 epileptic patients aged 11 to 18 years. Patients were followed-up in the pediatric neurology clinic at Tanta University Children's Hospital during Ramadan 2019. Seizures frequency and severity, measured by Chalfont seizure severity scale, during Ramadan fasting were compared with those in the month before Ramadan. Before Ramadan, 43/56 patients were controlled and seizure free. Meanwhile, 13/56 patients were uncontrolled and had seizure frequency of one to six seizures in the month before Ramadan. There was no significant difference in seizure frequency during Ramadan compared with before Ramadan (p = 0.132), whereas seizure severity was significantly reduced during Ramadan (p = 0.028). Both seizure frequency and severity were significantly lower during Ramadan in uncontrolled epileptic patients compared with before Ramadan (p = 0.02 and 0.005). Ramadan fasting is safe in adolescents with epilepsy. Fasting is not a precipitating factor for seizures in epileptic adolescents, provided compliance to antiepileptic drugs, and could be beneficial for seizure control in uncontrolled epilepsy.
Collapse
Affiliation(s)
- Amira Hamed Darwish
- Pediatric Neurology Unit, Department of Pediatrics, Faculty of Medicine, Tanta University Hospital, Tanta, Egypt
| |
Collapse
|
28
|
Spehar K, Pan A, Beerman I. Restoring aged stem cell functionality: Current progress and future directions. Stem Cells 2020; 38:1060-1077. [PMID: 32473067 PMCID: PMC7483369 DOI: 10.1002/stem.3234] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
Stem cell dysfunction is a hallmark of aging, associated with the decline of physical and cognitive abilities of humans and other mammals [Cell 2013;153:1194]. Therefore, it has become an active area of research within the aging and stem cell fields, and various techniques have been employed to mitigate the decline of stem cell function both in vitro and in vivo. While some techniques developed in model organisms are not directly translatable to humans, others show promise in becoming clinically relevant to delay or even mitigate negative phenotypes associated with aging. This review focuses on diet, treatment, and small molecule interventions that provide evidence of functional improvement in at least one type of aged adult stem cell.
Collapse
Affiliation(s)
- Kevin Spehar
- Epigenetics and Stem Cell Aging Unit, Translational Gerontology Branch, National Institute on Aging, NIH, BRC, Baltimore, Maryland
| | - Andrew Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Isabel Beerman
- Epigenetics and Stem Cell Aging Unit, Translational Gerontology Branch, National Institute on Aging, NIH, BRC, Baltimore, Maryland
| |
Collapse
|
29
|
Blackford R. Not your parents’ ketogenic diet – Flexibility in 2020. Epilepsy Res 2020; 162:106307. [DOI: 10.1016/j.eplepsyres.2020.106307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
|
30
|
Abstract
As the ketogenic diet approaches 100 years of continuous use, we reflect on its successes and consider new avenues of research for the next century. One controversial question is regarding whether ketogenic dietary therapies could be successful first-line treatments for epilepsy. Second, is it possible to mimic the mechanisms of action of ketogenic dietary therapy with a drug (eg, a tablet formulation)? A third controversy worthy of future study involves its expanded usage in adults with refractory epilepsy and its role in treating women of childbearing age. Finally, as flexible, alternative diets have recently become widely available, is it feasible and safe to have families and patients start ketogenic dietary therapy successfully on their own with limited medical supervision?
Collapse
Affiliation(s)
- Eric Kossoff
- Department of Neurology, Johns Hopkins University,
Baltimore, MD, USA
| | | |
Collapse
|
31
|
Liu K, Liu B, Heilbronn LK. Intermittent fasting: What questions should we be asking? Physiol Behav 2020; 218:112827. [PMID: 32014525 DOI: 10.1016/j.physbeh.2020.112827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
Obesity and overweight are contributing factors to chronic disease. Lifestyle management, which incorporates advice on moderate daily caloric restriction (CR) and physical activity to reduce body weight, is the cornerstone treatment in practice. Intermittent fasting (IF) is a popular alternative that cycles fasting with unrestricted eating periods. IF appears to be an equivalent approach to CR to induce weight loss, although as yet there is limited long-term evidence. Some controversy exists as to whether IF yields superior health benefits to CR. Discrepancies between studies may be due to the heterogeneity in the design of IF protocols. There is also still some concerns around the safety and feasibility of IF compared to CR, which has not been well-studied to date. Moreover, the underlying cellular pathways that are differentially activated in IF in comparison to CR requires further investigation in humans. This review summarises trials that have compared IF with CR, and discusses evidence from animal studies to raise questions for future research in humans.
Collapse
Affiliation(s)
- Kai Liu
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Lifelong Health Theme, South Australia Health and Medical Research Institute Adelaide, South Australia, Australia.
| | - Bo Liu
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Lifelong Health Theme, South Australia Health and Medical Research Institute Adelaide, South Australia, Australia
| | - Leonie K Heilbronn
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Lifelong Health Theme, South Australia Health and Medical Research Institute Adelaide, South Australia, Australia
| |
Collapse
|
32
|
Manville RW, Papanikolaou M, Abbott GW. M-Channel Activation Contributes to the Anticonvulsant Action of the Ketone Body β-Hydroxybutyrate. J Pharmacol Exp Ther 2020; 372:148-156. [PMID: 31757819 PMCID: PMC6994816 DOI: 10.1124/jpet.119.263350] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022] Open
Abstract
Ketogenic diets are effective therapies for refractory epilepsy, yet the underlying mechanisms are incompletely understood. The anticonvulsant efficacy of ketogenic diets correlates positively to the serum concentration of β-hydroxybutyrate (BHB), the primary ketone body generated by ketosis. Voltage-gated potassium channels generated by KCNQ2-5 subunits, especially KCNQ2/3 heteromers, generate the M-current, a therapeutic target for synthetic anticonvulsants. Here, we report that BHB directly activates KCNQ2/3 channels (EC50 = 0.7 µM), via a highly conserved S5 tryptophan (W265) on KCNQ3. BHB was also acutely effective as an anticonvulsant in the pentylene tetrazole (PTZ) seizure assay in mice. Strikingly, coadministration of γ-amino-β-hydroxybutyric acid, a high-affinity KCNQ2/3 partial agonist that also acts via KCNQ3-W265, similarly reduced the efficacy of BHB in KCNQ2/3 channel activation in vitro and in the PTZ seizure assay in vivo. Our results uncover a novel, unexpected molecular basis for anticonvulsant effects of the major ketone body induced by ketosis. SIGNIFICANCE STATEMENT: Ketogenic diets are used to treat refractory epilepsy but the therapeutic mechanism is not fully understood. Here, we show that clinically relevant concentrations of β-hydroxybutyrate, the primary ketone body generated during ketogenesis, activates KCNQ2/3 potassium channels by binding to a specific site on KCNQ3, an effect known to reduce neuronal excitability. We provide evidence using a mouse chemoconvulsant model that KCNQ2/3 activation contributes to the antiepileptic action of β-hydroxybutyrate.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Maria Papanikolaou
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
33
|
Fasting as a Therapy in Neurological Disease. Nutrients 2019; 11:nu11102501. [PMID: 31627405 PMCID: PMC6836141 DOI: 10.3390/nu11102501] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
Fasting is deeply entrenched in evolution, yet its potential applications to today’s most common, disabling neurological diseases remain relatively unexplored. Fasting induces an altered metabolic state that optimizes neuron bioenergetics, plasticity, and resilience in a way that may counteract a broad array of neurological disorders. In both animals and humans, fasting prevents and treats the metabolic syndrome, a major risk factor for many neurological diseases. In animals, fasting probably prevents the formation of tumors, possibly treats established tumors, and improves tumor responses to chemotherapy. In human cancers, including cancers that involve the brain, fasting ameliorates chemotherapy-related adverse effects and may protect normal cells from chemotherapy. Fasting improves cognition, stalls age-related cognitive decline, usually slows neurodegeneration, reduces brain damage and enhances functional recovery after stroke, and mitigates the pathological and clinical features of epilepsy and multiple sclerosis in animal models. Primarily due to a lack of research, the evidence supporting fasting as a treatment in human neurological disorders, including neurodegeneration, stroke, epilepsy, and multiple sclerosis, is indirect or non-existent. Given the strength of the animal evidence, many exciting discoveries may lie ahead, awaiting future investigations into the viability of fasting as a therapy in neurological disease.
Collapse
|
34
|
Alam I, Gul R, Chong J, Tan CTY, Chin HX, Wong G, Doggui R, Larbi A. Recurrent circadian fasting (RCF) improves blood pressure, biomarkers of cardiometabolic risk and regulates inflammation in men. J Transl Med 2019; 17:272. [PMID: 31426866 PMCID: PMC6700786 DOI: 10.1186/s12967-019-2007-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Background The effects of fasting on health in non-human models have been widely publicised for a long time and emerging evidence support the idea that these effects can be applicable to human practice. Methods In an open label longitudinal follow-up, a cohort of 78 adult men (aged 20 to 85 years) who fasted for 29 consecutive days from sunrise to sunset (16 h fasting—referred to as recurrent circadian fasting) in Pakistan, were studied. The primary outcomes of the fasting study was weight loss/recovery and the associated changes in blood pressure and circulating levels of surrogate markers linked to organ and system functions—including cardiovascular, metabolic and inflammation. Post-fasting outcomes include the regulation of physiological biomarkers. Results Recurrent circadian fasting with weight loss reduced blood pressure (140.6 vs. 124.2 mmHg) and markers of cardiovascular risk (~ 4-fold for resistin; triglycerides: p < 0.0001). Reduced glycemia (p < 0.0001) and the associated changes in the regulation of ketosis (β-hydroxybutyrate) were accompanied by a metabolic shift (PPARβ, osteoprotegerin), suggesting the involvement of the different physiological systems tested. Elevated orexin-A levels (p = 0.0183) in participants indicate sleep disturbance and circadian adaptation. All participants had CRP level < 2 mg/l during the fasting period and a similar trend was observed for TNFα. While most SASP molecules were decreased after the fasting period, heightened levels of IL-8 and IL-6 suggest that some inflammatory markers may be elevated by recurrent circadian fasting. Importantly, older adults reveal similar or more substantial benefits from fasting. Conclusions Recurrent circadian fasting is beneficial at the cardiometabolic and inflammatory levels, especially for at-risk individuals—this is contingent on compliance towards the recommended dietary behaviour, which controls carbohydrate and caloric intake. These benefits from fasting may be particularly beneficial to older adults as they often exhibit abnormal cardiovascular, metabolic and inflammatory signatures. Electronic supplementary material The online version of this article (10.1186/s12967-019-2007-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iftikhar Alam
- Department of Community Health Sciences, Clinical Nutrition Program, College of Applied Medical Sciences, King Saud University, King Abdullah Street, Riyadh, Kingdom of Saudi Arabia.,Department of Human Nutrition and Dietetics, Bacha Khan University, Charsaddah, KPK, Pakistan
| | - Rahmat Gul
- Department of Human Nutrition and Dietetics, Bacha Khan University, Charsaddah, KPK, Pakistan
| | - Joni Chong
- Biology of Aging Laboratory, Singapore Immunology Network, Agency for Science Technology and Research, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Crystal Tze Ying Tan
- Biology of Aging Laboratory, Singapore Immunology Network, Agency for Science Technology and Research, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Hui Xian Chin
- Biology of Aging Laboratory, Singapore Immunology Network, Agency for Science Technology and Research, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Glenn Wong
- Biology of Aging Laboratory, Singapore Immunology Network, Agency for Science Technology and Research, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Radhouene Doggui
- SURVEN (Nutrition Surveillance and Epidemiology in Tunisia) Research Laboratory, National Institute of Nutrition and Food Technology (INNTA), Tunis, Tunisia
| | - Anis Larbi
- Biology of Aging Laboratory, Singapore Immunology Network, Agency for Science Technology and Research, 8A Biomedical Grove, Singapore, 138648, Singapore. .,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
35
|
History of dietary treatment: Guelpa & Marie first report of intermittent fasting for epilepsy in 1911. Epilepsy Behav 2019; 94:277-280. [PMID: 30999258 DOI: 10.1016/j.yebeh.2019.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/22/2022]
Abstract
We analyzed the article of Guelpa & Marie, published in 1911 and often quoted in the history of dietary treatment, as the basis for the use of ketogenic diet to mimic fasting. In this paper, the authors treated 21 patients with a diet consisting of daily administration of 30 g of sodium sulphate for 4 days, with unlimited aqueous beverage and no food, followed by a vegetarian diet restricted to half of the ordinary intake. This is the first report of intermittent fasting as treatment strategy for epilepsy. In this case series, 15 patients did not follow properly the diet while 2 improved temporary before they quitted the diet and 4 presented an improvement.
Collapse
|
36
|
Xu X, Ding J, Wu X, Huang Z, Kong G, Liu Q, Yang Z, Huang Z, Zhu Q. Bone microstructure and metabolism changes under the combined intervention of ketogenic diet with intermittent fasting: an in vivo study of rats. Exp Anim 2019; 68:371-380. [PMID: 30944267 PMCID: PMC6699973 DOI: 10.1538/expanim.18-0084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ketogenic diet (KD) has been used in epilepsy for decades, but previous studies found it
may cause severe bone loss. Every-other-day ketogenic diet (EODKD), the combination of KD
with intermittent fasting, showed better potential for seizure control recently, while its
effects on bone remain unknown. This study aims to establish different ketogenic rat
models and compare the influence of EODKD with KD on bone microstructure and metabolism.
Thirty male Sprague-Dawley rats were divided into Control, KD and EODKD groups, fed with
standard diet, continuous and intermittent ketogenic diet respectively. After 12 weeks,
bone mineral density (BMD) and body fat percentage were obtained by dual energy X-ray
absorptiometry. Micro-CT and three-point bending test were used to evaluate the bone
microstructure and mechanical properties. Activities of serum alkaline phosphatase (ALP)
and tartrate-resistant acid phosphatase (TRAP) were measured, together with the osteogenic
capabilities of bone marrow stromal cells (BMSCs) tested by ALP activities and alizarin
red stain in different osteogenic stage. Both EODKD and KD induced higher ketone and more
fat percentage, but led to lower body weight compared with Control group. They both
compromised bone mass and mechanical properties. Compared with KD, EODKD demonstrated
higher ketone levels, but it also inhibited osteoclastic process as well as early
osteogenic differentiation. In general, EODKD accelerated ketosis, but may not deteriorate
bone microstructure and strength than KD.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Jianyang Ding
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Xiuhua Wu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Zucheng Huang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Ganggang Kong
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Qi Liu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Zhou Yang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Zhiping Huang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Qingan Zhu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| |
Collapse
|
37
|
Shao LR, Habela CW, Stafstrom CE. Pediatric Epilepsy Mechanisms: Expanding the Paradigm of Excitation/Inhibition Imbalance. CHILDREN-BASEL 2019; 6:children6020023. [PMID: 30764523 PMCID: PMC6406372 DOI: 10.3390/children6020023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
Mechanisms underlying seizures and epilepsy have traditionally been considered to involve abnormalities of ion channels or synaptic function. Those considerations gave rise to the excitation/inhibition (E/I) imbalance theory, whereby increased excitation, decreased inhibition, or both favor a hyperexcitable state and an increased propensity for seizure generation and epileptogenesis. Several recent findings warrant reconsideration and expansion of the E/I hypothesis: novel genetic mutations have been identified that do not overtly affect E/I balance; neurotransmitters may exert paradoxical effects, especially during development; anti-seizure medications do not necessarily work by decreasing excitation or increasing inhibition; and metabolic factors participate in the regulation of neuronal and network excitability. These novel conceptual and experimental advances mandate expansion of the E/I paradigm, with the expectation that new and exciting therapies will emerge from this broadened understanding of how seizures and epilepsy arise and progress.
Collapse
Affiliation(s)
- Li-Rong Shao
- Division of Pediatric Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Christa W Habela
- Division of Pediatric Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
38
|
Tiulganova DA, Nasaev SS, Chugreev IA, Rodionova MA, Zavyalov GA. [Mechanisms of ketogenic diet action]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:72-75. [PMID: 30698548 DOI: 10.17116/jnevro201811810272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paper considers the necessity of using ketogenic diet and its efficacy in epilepsy. Direct and indirect effects of ketones on brain cells and molecular mechanisms of their action are discussed in detail.
Collapse
Affiliation(s)
- D A Tiulganova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Sh Sh Nasaev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I A Chugreev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M A Rodionova
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - G A Zavyalov
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
39
|
Shao LR, Rho JM, Stafstrom CE. Glycolytic inhibition: A novel approach toward controlling neuronal excitability and seizures. Epilepsia Open 2018; 3:191-197. [PMID: 30564778 PMCID: PMC6293058 DOI: 10.1002/epi4.12251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Conventional antiseizure medications reduce neuronal excitability through effects on ion channels or synaptic function. In recent years, it has become clear that metabolic factors also play a crucial role in the modulation of neuronal excitability. Indeed, metabolic regulation of neuronal excitability is pivotal in seizure pathogenesis and control. The clinical effectiveness of a variety of metabolism‐based diets, especially for children with medication‐refractory epilepsy, underscores the applicability of metabolic approaches to the control of seizures and epilepsy. Such diets include the ketogenic diet, the modified Atkins diet, and the low‐glycemic index treatment (among others). A promising avenue to alter cellular metabolism, and hence excitability, is by partial inhibition of glycolysis, which has been shown to reduce seizure susceptibility in a variety of animal models as well as in cellular systems in vitro. One such glycolytic inhibitor, 2‐deoxy‐d‐glucose (2DG), increases seizure threshold in vivo and reduces interictal and ictal epileptiform discharges in hippocampal slices. Here, we review the role of glucose metabolism and glycolysis on neuronal excitability, with specific reference to 2DG, and discuss the potential use of 2DG and similar agents in the clinical arena for seizure management.
Collapse
Affiliation(s)
- Li-Rong Shao
- Division of Pediatric Neurology Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland U.S.A
| | - Jong M Rho
- Departments of Pediatrics, Clinical Neurosciences, Physiology and Pharmacology Alberta Children's Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Carl E Stafstrom
- Division of Pediatric Neurology Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland U.S.A
| |
Collapse
|
40
|
Hanjani NA, Vafa M. Protein Restriction, Epigenetic Diet, Intermittent Fasting as New Approaches for Preventing Age-associated Diseases. Int J Prev Med 2018; 9:58. [PMID: 30050669 PMCID: PMC6036773 DOI: 10.4103/ijpvm.ijpvm_397_16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022] Open
Abstract
Data from epidemiological and experimental studies have shown that diet and eating patterns have a major role in the pathogenesis of many age-associated diseases. Since 1935, calorie restriction (CR) has been identified as one of the most effective nongenetic dietary interventions that can increase lifespan. It involves reducing calorie intake by about 20%–40% below ad libitum, without malnutrition. Restricting food intake has been observed to increase lifespan and prevent many age-associated diseases in rats, mice, and many other species. Understanding the metabolic, molecular, and cellular mechanisms involved in the anti-aging effects of CR can help us to find dietary interventions that can mimic its effects. Recently, different studies have shown that intermittent fasting, protein restriction, and an epigenetic diet can have similar effects to those of CR. These approaches were selected because it has been indicated that they act through a similar molecular pathway and also, are safe and effective in delaying or preventing diseases. In this review, we focus on the mechanistic pathway involved in CR. Then, we review the mimicking interventions through the mechanistic approach. For this purpose, we reviewed both animal and human articles, mainly available through the PubMed online database. We then selected the most relevant full texts which are summarized in this article.
Collapse
Affiliation(s)
- Nazanin Asghari Hanjani
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Dolce A, Santos P, Chen W, Hoke A, Hartman AL. Different ketogenesis strategies lead to disparate seizure outcomes. Epilepsy Res 2018; 143:90-97. [PMID: 29723773 DOI: 10.1016/j.eplepsyres.2018.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/28/2018] [Accepted: 04/25/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Despite the introduction of new medicines to treat epilepsy over the last 50 years, the number of patients with poorly-controlled seizures remains unchanged. Metabolism-based therapies are an underutilized treatment option for this population. We hypothesized that two different means of systemic ketosis, the ketogenic diet and intermittent fasting, would differ in their acute seizure test profiles and mitochondrial respiration. METHODS Male NIH Swiss mice (aged 3-4 weeks) were fed for 12-13 days using one of four diet regimens: ketogenic diet (KD), control diet matched to KD for protein content and micronutrients (CD), or CD with intermittent fasting (24 h feed/24 h fast) (CD-IF), tested post-feed or post-fast. Mice were subject to the 6 Hz threshold test or, in separate cohorts, after injection of kainic acid in doses based on their weight (Cohort I) or a uniform dose regardless of weight (Cohort II). Mitochondrial respiration was tested in brain tissue isolated from similarly-fed seizure-naïve mice. RESULTS KD mice were protected against 6 Hz-induced seizures but had more severe seizure scores in the kainic acid test (Cohorts I & II), the opposite of CD-IF mice. No differences were noted in mitochondrial respiration between diet regimens. INTERPRETATION KD and CD-IF do not share identical antiseizure mechanisms. These differences were not explained by differences in mitochondrial respiration. Nevertheless, both KD and CD-IF regimens protected against different types of seizures, suggesting that mechanisms underlying CD-IF seizure protection should be explored further.
Collapse
Affiliation(s)
- Alison Dolce
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Departments of Pediatrics, Neurology & Neurotherapeutics, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | - Polan Santos
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | - Weiran Chen
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | - Adam L Hartman
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
42
|
Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 2018; 19:63-80. [PMID: 29321682 PMCID: PMC5913738 DOI: 10.1038/nrn.2017.156] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During evolution, individuals whose brains and bodies functioned well in a fasted state were successful in acquiring food, enabling their survival and reproduction. With fasting and extended exercise, liver glycogen stores are depleted and ketones are produced from adipose-cell-derived fatty acids. This metabolic switch in cellular fuel source is accompanied by cellular and molecular adaptations of neural networks in the brain that enhance their functionality and bolster their resistance to stress, injury and disease. Here, we consider how intermittent metabolic switching, repeating cycles of a metabolic challenge that induces ketosis (fasting and/or exercise) followed by a recovery period (eating, resting and sleeping), may optimize brain function and resilience throughout the lifespan, with a focus on the neuronal circuits involved in cognition and mood. Such metabolic switching impacts multiple signalling pathways that promote neuroplasticity and resistance of the brain to injury and disease.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Nathaniel Ghena
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Maggie Schmaedick
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| |
Collapse
|
43
|
Rittschof CC, Vekaria HJ, Palmer JH, Sullivan PG. Brain mitochondrial bioenergetics change with rapid and prolonged shifts in aggression in the honey bee, Apis mellifera. J Exp Biol 2018; 221:jeb.176917. [DOI: 10.1242/jeb.176917] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
Neuronal function demands high-level energy production, and as such, a decline in mitochondrial respiration characterizes brain injury and disease. A growing number of studies, however, link brain mitochondrial function to behavioral modulation in non-diseased contexts. In the honey bee, we show for the first time that an acute social interaction, which invokes an aggressive response, may also cause a rapid decline in brain mitochondrial bioenergetics. The degree and speed of this decline has only been previously observed in the context of brain injury. Furthermore, in the honey bee, age-related increases in aggressive tendency are associated with increased baseline brain mitochondrial respiration, as well as increased plasticity in response to metabolic fuel type in vitro. Similarly, diet restriction and ketone body feeding, which commonly enhance mammalian brain mitochondrial function in vivo, cause increased aggression. Thus, even in normal behavioral contexts, brain mitochondria show a surprising degree of variation in function over both rapid and prolonged timescales, with age predicting both baseline function and plasticity in function. These results suggest that mitochondrial function is integral to modulating aggression-related neuronal signaling. We hypothesize that variation in function reflects mitochondrial calcium buffering activity, and that shifts in mitochondrial function signal to the neuronal soma to regulate gene expression and neural energetic state. Modulating brain energetic state is emerging as a critical component of the regulation of behavior in non-diseased contexts.
Collapse
Affiliation(s)
- Clare C. Rittschof
- Department of Entomology, University of Kentucky, S-225 Ag. Science Center North, Lexington, KY, 40546, USA
| | - Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center and the Department of Neuroscience, University of Kentucky, 741 South Limestone Street, 475 BBSRB, Lexington, KY 40536-0509, USA
| | - Joseph H. Palmer
- Department of Entomology, University of Kentucky, S-225 Ag. Science Center North, Lexington, KY, 40546, USA
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center and the Department of Neuroscience, University of Kentucky, 741 South Limestone Street, 475 BBSRB, Lexington, KY 40536-0509, USA
| |
Collapse
|
44
|
Wei M, Brandhorst S, Shelehchi M, Mirzaei H, Cheng CW, Budniak J, Groshen S, Mack WJ, Guen E, Di Biase S, Cohen P, Morgan TE, Dorff T, Hong K, Michalsen A, Laviano A, Longo VD. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med 2017; 9:9/377/eaai8700. [PMID: 28202779 DOI: 10.1126/scitranslmed.aai8700] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/23/2016] [Accepted: 12/20/2016] [Indexed: 12/28/2022]
Abstract
Calorie restriction or changes in dietary composition can enhance healthy aging, but the inability of most subjects to adhere to chronic and extreme diets, as well as potentially adverse effects, limits their application. We randomized 100 generally healthy participants from the United States into two study arms and tested the effects of a fasting-mimicking diet (FMD)-low in calories, sugars, and protein but high in unsaturated fats-on markers/risk factors associated with aging and age-related diseases. We compared subjects who followed 3 months of an unrestricted diet to subjects who consumed the FMD for 5 consecutive days per month for 3 months. Three FMD cycles reduced body weight, trunk, and total body fat; lowered blood pressure; and decreased insulin-like growth factor 1 (IGF-1). No serious adverse effects were reported. After 3 months, control diet subjects were crossed over to the FMD program, resulting in a total of 71 subjects completing three FMD cycles. A post hoc analysis of subjects from both FMD arms showed that body mass index, blood pressure, fasting glucose, IGF-1, triglycerides, total and low-density lipoprotein cholesterol, and C-reactive protein were more beneficially affected in participants at risk for disease than in subjects who were not at risk. Thus, cycles of a 5-day FMD are safe, feasible, and effective in reducing markers/risk factors for aging and age-related diseases. Larger studies in patients with diagnosed diseases or selected on the basis of risk factors are warranted to confirm the effect of the FMD on disease prevention and treatment.
Collapse
Affiliation(s)
- Min Wei
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sebastian Brandhorst
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Mahshid Shelehchi
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hamed Mirzaei
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Chia Wei Cheng
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Julia Budniak
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Susan Groshen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Esra Guen
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Stefano Di Biase
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Pinchas Cohen
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Todd E Morgan
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tanya Dorff
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kurt Hong
- Department of Internal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andreas Michalsen
- Department of Internal and Complementary Medicine, Charité University Medical Center, 10117 Berlin, Germany
| | | | - Valter D Longo
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA. .,FIRC Institute of Molecular Oncology, Italian Foundation for Cancer Research Institute of Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|
45
|
Practice Paper of the Academy of Nutrition and Dietetics: Classic and Modified Ketogenic Diets for Treatment of Epilepsy. J Acad Nutr Diet 2017; 117:1279-1292. [DOI: 10.1016/j.jand.2017.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Indexed: 12/19/2022]
|
46
|
Landgrave-Gómez J, Vargas-Romero F, Mercado-Gómez OF, Guevara-Guzmán R. The Emerging Role of Epigenetics on Dietary Treatment for Epilepsy. Curr Nutr Rep 2017. [DOI: 10.1007/s13668-017-0189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Lin A, Turner Z, Doerrer SC, Stanfield A, Kossoff EH. Complications During Ketogenic Diet Initiation: Prevalence, Treatment, and Influence on Seizure Outcomes. Pediatr Neurol 2017; 68:35-39. [PMID: 28188074 DOI: 10.1016/j.pediatrneurol.2017.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Many centers still admit children for several days to start the ketogenic diet. The exact incidence of adverse effects during the admission and their potential later impact on seizure reduction has not been widely studied. METHODS We performed a retrospective study of children with intractable epilepsy electively admitted for ketogenic diet initiation at our institution from 2011 to 2016. Charts were reviewed for adverse effects during the admission period and then examined for seizure reduction and compliance at three months. A rating scale (1 to 4) was created for severity of any adverse events. RESULTS A total of 158 children were included, with the mean age 4.6 years. Potentially attributable adverse effects occurred in 126 (80%) children, most commonly emesis, food refusal, and hypoglycemia. Seventy-three (46%) children received some form of intervention by the medical team, most commonly the administration of juice (24%). Younger age was correlated with an increased likelihood of moderate to severe adverse effects during admission, often repeated hypoglycemia (3.6 versus 4.9 years, P = 0.04). Fasting was more likely to result in lethargy and a single blood glucose in the 30 to 40 mg/dL range, but it was not correlated with emesis, repeated hypoglycemia, or higher adverse effect scores. There was no statistically significant correlation between the severity of adverse effects and the three-month seizure reduction. CONCLUSIONS Mild easily treated adverse effects occurred in most children admitted for the ketogenic diet. Younger children were at greater risk for significant difficulties and should be monitored closely. Because fasting led to more lethargy and hypoglycemia, it may be prudent to avoid this in younger children.
Collapse
Affiliation(s)
- Abigail Lin
- School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Zahava Turner
- Department of Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland; Department of Neurology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Sarah C Doerrer
- Department of Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland; Department of Neurology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Anthony Stanfield
- Department of Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland; Department of Neurology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Eric H Kossoff
- Department of Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland; Department of Neurology, The Johns Hopkins Hospital, Baltimore, Maryland.
| |
Collapse
|
48
|
Wang X, Liu Q, Zhou J, Wu X, Zhu Q. β hydroxybutyrate levels in serum and cerebrospinal fluid under ketone body metabolism in rats. Exp Anim 2017; 66:177-182. [PMID: 28100888 PMCID: PMC5411304 DOI: 10.1538/expanim.16-0090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A high-fat, low-carbohydrate diet (KD) or calorie restriction in the form of every-other-day fasting (EODF) results in ketone body metabolism with an increasing β-hydroxybutyrate (βOHB) level. Previous studies have supported that a KD and EODF have a neuroprotective effect. However, the βOHB levels in the cerebrospinal fluid (CSF) resulting from a KD and EODF remain unknown. The aim of this study was to detect βOHB levels in rats fed a KD, EODF diet, and every-other-day ketogenic diet (EODKD) and to compare the serum βOHB level with the CSF βOHB level. Twenty-four male Sprague-Dawley rats were randomly divided into KD, EODF, EODKD, and standard diet (SD) groups. A customized food with a ratio of carbohydrates to fats of 1:4 was used in the KD and EODKD groups. The βOHB level was measured using ELISA kits in 200 µl serum and 100 µl CSF samples for each rat after feeding for 2 weeks. The KD, EODF, and EODKD resulted in a significant increase in βOHB levels in both the serum and CSF. The βOHB levels in the EODKD group were the highest. The CSF βOHB level was, on average, 69% of the serum βOHB level. There was a positive correlation between the overall βOHB levels in serum and that in cerebrospinal fluid. This study demonstrated that the KD, EODF, and EODKD resulted in ketone body metabolism, as the βOHB levels increased significantly compared with those resulting from the standard diet. Our results suggested that the serum βOHB level was an indicator of the CSF βOHB level, and that the EODKD was an effective diet to enhance ketogenic metabolism.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Department of Spinal Surgery, Longyan First Hospital, Fujian, P.R.China
| | - Qi Liu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jian Zhou
- Department of Spinal Surgery, Nanchang Hongdu Hospital of TCM, Jiangxi, P.R.China
| | - Xiuhua Wu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Qingan Zhu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
49
|
Pasca L, De Giorgis V, Macasaet JA, Trentani C, Tagliabue A, Veggiotti P. The changing face of dietary therapy for epilepsy. Eur J Pediatr 2016; 175:1267-76. [PMID: 27586246 DOI: 10.1007/s00431-016-2765-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/07/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Ketogenic diet is an established and effective non-pharmacologic treatment for drug-resistant epilepsy. Ketogenic diet represents the treatment of choice for GLUT-1 deficiency syndrome and pyruvate dehydrogenase complex deficiency. Infantile spasms, Dravet syndrome and myoclonic-astatic epilepsy are epilepsy syndromes for which ketogenic diet should be considered early in the therapeutic pathway. Recently, clinical indications for ketogenic diet have been increasing, as there is emerging evidence regarding safety and effectiveness. Specifically, ketogenic diet response has been investigated in refractory status epilepticus and encephalopathy with status epilepticus during sleep. New targets in neuropharmacology, such as mitochondrial permeability transition, are being studied and might lead to using it effectively in other neurological diseases. But, inefficient connectivity and impaired ketogenic diet proposal limit ideal availability of this therapeutic option. Ketogenic diet in Italy is not yet considered as standard of care, not even as a therapeutic option for many child neurologists and epileptologists. CONCLUSIONS The aim of this review is to revisit ketogenic diet effectiveness and safety in order to highlight its importance in drug-resistant epilepsy and other neurological disorders. WHAT IS KNOWN • Ketogenic diet efficacy is now described in large case series, with adequate diet compliance and side effects control. • Ketogenic diet is far from being attempted as a first line therapy. Its availability varies worldwide. What is New: • New pharmacological targets such as mitochondrial permeability transition and new epileptic syndromes and etiologies responding to the diet such as refractory status epilepticus are being pointed out. • Ketogenic diet can function at its best when used as a tailor-made therapy. Fine tuning is crucial.
Collapse
Affiliation(s)
- Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS "C. Mondino" National Neurological Institute, Pavia, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS "C. Mondino" National Neurological Institute, Pavia, Italy.,Brain and Behaviour Department, University of Pavia, Via Mondino, 2, 27100, Pavia, Italy
| | | | - Claudia Trentani
- Human nutrition and eating disorder center, department of public health, experimental and forensic medicine, University of Pavia, Pavia, Italy
| | - Anna Tagliabue
- Human nutrition and eating disorder center, department of public health, experimental and forensic medicine, University of Pavia, Pavia, Italy
| | - Pierangelo Veggiotti
- Department of Child Neurology and Psychiatry, IRCCS "C. Mondino" National Neurological Institute, Pavia, Italy. .,Brain and Behaviour Department, University of Pavia, Via Mondino, 2, 27100, Pavia, Italy.
| |
Collapse
|
50
|
Control of seizures by ketogenic diet-induced modulation of metabolic pathways. Amino Acids 2016; 49:1-20. [PMID: 27683025 DOI: 10.1007/s00726-016-2336-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022]
Abstract
Epilepsy is too complex to be considered as a disease; it is more of a syndrome, characterized by seizures, which can be caused by a diverse array of afflictions. As such, drug interventions that target a single biological pathway will only help the specific individuals where that drug's mechanism of action is relevant to their disorder. Most likely, this will not alleviate all forms of epilepsy nor the potential biological pathways causing the seizures, such as glucose/amino acid transport, mitochondrial dysfunction, or neuronal myelination. Considering our current inability to test every individual effectively for the true causes of their epilepsy and the alarming number of misdiagnoses observed, we propose the use of the ketogenic diet (KD) as an effective and efficient preliminary/long-term treatment. The KD mimics fasting by altering substrate metabolism from carbohydrates to fatty acids and ketone bodies (KBs). Here, we underscore the need to understand the underlying cellular mechanisms governing the KD's modulation of various forms of epilepsy and how a diverse array of metabolites including soluble fibers, specific fatty acids, and functional amino acids (e.g., leucine, D-serine, glycine, arginine metabolites, and N-acetyl-cysteine) may potentially enhance the KD's ability to treat and reverse, not mask, these neurological disorders that lead to epilepsy.
Collapse
|