1
|
Surina NM, Fedotova IB, Nikolaev GM, Grechenko VV, Gankovskaya LV, Ogurtsova AD, Poletaeva II. Neuroinflammation in Pathogenesis of Audiogenic Epilepsy: Altered Proinflammatory Cytokine Levels in the Rats of Krushinsky-Molodkina Seizure-Prone Strain. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:481-490. [PMID: 37080934 DOI: 10.1134/s0006297923040041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Neuroinflammation plays an important role in epileptogenesis, however, most studies are performed using pharmacological models of epilepsy, while there are only few data available for non-invasive, including genetic, models. The levels of a number of pro-inflammatory cytokines were examined in the Krushinsky-Molodkina (KM) rat strain with high audiogenic epilepsy (AE) proneness (intense tonic seizure fit in response to loud sound) and in the control strain "0" (not predisposed to AE) using multiplex immunofluorescence magnetic assay (MILLIPLEX map Kit). Cytokine levels were determined in the dorsal striatum tissue and in the brain stem. Background levels of IL-1β, IL-6, and TNF-α in the dorsal striatum of the KM rats were significantly lower than in the rats "0" (by 32.31, 27.84, and 38.87%, respectively, p < 0.05, 0.05, and 0.01), whereas no inter-strain differences in the levels of these metabolites were detected in the brain stem in the "background" state. Four hours after sound exposure, the TNF-α level in the dorsal striatum of the KM rats was significantly lower (by 38.34%, p < 0.01) than in the "0" rats. In the KM rats, the dorsal striatal levels of IL-1β and IL-6 were significantly higher after the sound exposure and subsequent seizure fit, compared to the background (35.29 and 50.21% increase, p < 0.05, 0.01, respectively). In the background state the IL-2 level in the KM rats was not detected, whereas after audiogenic seizures its level was 14.01 pg/ml (significant difference, p < 0.01). In the KM rats the brain stem levels of IL-1β and TNF-α after audiogenic seizures were significantly lower than in the background (13.23 and 23.44% decrease, respectively, p < 0.05). In the rats of the "0" strain, the levels of cytokines in the dorsal striatum after the action of sound (which did not induce AE seizures) were not different from those of the background, while in the brain stem of the "0" strain the levels of IL-1β were lower than in the background (40.28%, p < 0.01). Thus, the differences between the background levels of cytokines and those after the action of sound were different in the rats with different proneness to AE. These data suggest involvement of the analyzed cytokines in pathophysiology of the seizure state, namely in AE seizures.
Collapse
Affiliation(s)
- Natalia M Surina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Irina B Fedotova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Georgy M Nikolaev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | | | | | - Inga I Poletaeva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
2
|
Rodent Models of Audiogenic Epilepsy: Genetic Aspects, Advantages, Current Problems and Perspectives. Biomedicines 2022; 10:biomedicines10112934. [PMID: 36428502 PMCID: PMC9687921 DOI: 10.3390/biomedicines10112934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.
Collapse
|
3
|
Wang Y, Wei P, Yan F, Luo Y, Zhao G. Animal Models of Epilepsy: A Phenotype-oriented Review. Aging Dis 2022; 13:215-231. [PMID: 35111370 PMCID: PMC8782545 DOI: 10.14336/ad.2021.0723] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Epilepsy is a serious neurological disorder characterized by abnormal, recurrent, and synchronous discharges in the brain. Long-term recurrent seizure attacks can cause serious damage to brain function, which is usually observed in patients with temporal lobe epilepsy. Controlling seizure attacks is vital for the treatment and prognosis of epilepsy. Animal models, such as the kindling model, which was the most widely used model in the past, allow the understanding of the potential epileptogenic mechanisms and selection of antiepileptic drugs. In recent years, various animal models of epilepsy have been established to mimic different seizure types, without clear merits and demerits. Accordingly, this review provides a summary of the views mentioned above, aiming to provide a reference for animal model selection.
Collapse
Affiliation(s)
- Yilin Wang
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Feng Yan
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Guoguang Zhao
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Chuvakova LN, Funikov SY, Rezvykh AP, Davletshin AI, Evgen'ev MB, Litvinova SA, Fedotova IB, Poletaeva II, Garbuz DG. Transcriptome of the Krushinsky-Molodkina Audiogenic Rat Strain and Identification of Possible Audiogenic Epilepsy-Associated Genes. Front Mol Neurosci 2021; 14:738930. [PMID: 34803604 PMCID: PMC8600260 DOI: 10.3389/fnmol.2021.738930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Audiogenic epilepsy (AE), inherent to several rodent strains is widely studied as a model of generalized convulsive epilepsy. The molecular mechanisms that determine the manifestation of AE are not well understood. In the present work, we compared transcriptomes from the corpora quadrigemina in the midbrain zone, which are crucial for AE development, to identify genes associated with the AE phenotype. Three rat strains without sound exposure were compared: Krushinsky-Molodkina (KM) strain (100% AE-prone); Wistar outbred rat strain (non-AE prone) and “0” strain (partially AE-prone), selected from F2 KM × Wistar hybrids for their lack of AE. The findings showed that the KM strain gene expression profile exhibited a number of characteristics that differed from those of the Wistar and “0” strain profiles. In particular, the KM rats showed increased expression of a number of genes involved in the positive regulation of the MAPK signaling cascade and genes involved in the positive regulation of apoptotic processes. Another characteristic of the KM strain which differed from that of the Wistar and “0” rats was a multi-fold increase in the expression level of the Ttr gene and a significant decrease in the expression of the Msh3 gene. Decreased expression of a number of oxidative phosphorylation-related genes and a few other genes was also identified in the KM strain. Our data confirm the complex multigenic nature of AE inheritance in rodents. A comparison with data obtained from other independently selected AE-prone rodent strains suggests some common causes for the formation of the audiogenic phenotype.
Collapse
Affiliation(s)
- Lyubov N Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Artem I Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - David G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Bosque JR, Gómez-Nieto R, Hormigo S, Herrero-Turrión MJ, Díaz-Casado E, Sancho C, López DE. Molecular tools for the characterization of seizure susceptibility in genetic rodent models of epilepsy. Epilepsy Behav 2021; 121:106594. [PMID: 31685382 DOI: 10.1016/j.yebeh.2019.106594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Epilepsy is a chronic neurological disorder characterized by abnormal neuronal activity that arises from imbalances between excitatory and inhibitory synapses, which are highly correlated to functional and structural changes in specific brain regions. The difference between the normal and the epileptic brain may harbor genetic alterations, gene expression changes, and/or protein alterations in the epileptogenic nucleus. It is becoming increasingly clear that such differences contribute to the development of distinct epilepsy phenotypes. The current major challenges in epilepsy research include understanding the disease progression and clarifying epilepsy classifications by searching for novel molecular biomarkers. Thus, the application of molecular techniques to carry out comprehensive studies at deoxyribonucleic acid, messenger ribonucleic acid, and protein levels is of utmost importance to elucidate molecular dysregulations in the epileptic brain. The present review focused on the great diversity of technical approaches available and new research methodology, which are already being used to study molecular alterations underlying epilepsy. We have grouped the different techniques according to each step in the flow of information from DNA to RNA to proteins, and illustrated with specific examples in animal models of epilepsy, some of which are our own. Separately and collectively, the genomic and proteomic techniques, each with its own strengths and limitations, provide valuable information on molecular mechanisms underlying seizure susceptibility and regulation of neuronal excitability. Determining the molecular differences between genetic rodent models of epilepsy and their wild-type counterparts might be a key in determining mechanisms of seizure susceptibility and epileptogenesis as well as the discovery and development of novel antiepileptic agents. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- José Ramón Bosque
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain
| | - Ricardo Gómez-Nieto
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain; Department of Neurobiology and Anatomy, Drexel University College of Medicine, United States of America
| | - Sebastián Hormigo
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| | - M Javier Herrero-Turrión
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; INCYL Neurological Tissue Bank (BTN-INCYL), Spain
| | - Elena Díaz-Casado
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain
| | - Consuelo Sancho
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain
| | - Dolores E López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain; Department of Neurobiology and Anatomy, Drexel University College of Medicine, United States of America.
| |
Collapse
|
6
|
Damasceno S, Fonseca PADS, Rosse IC, Moraes MFD, de Oliveira JAC, Garcia-Cairasco N, Brunialti Godard AL. Putative Causal Variant on Vlgr1 for the Epileptic Phenotype in the Model Wistar Audiogenic Rat. Front Neurol 2021; 12:647859. [PMID: 34177758 PMCID: PMC8220163 DOI: 10.3389/fneur.2021.647859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Wistar Audiogenic Rat is an epilepsy model whose animals are predisposed to develop seizures induced by acoustic stimulation. This model was developed by selective reproduction and presents a consistent genetic profile due to the several generations of inbreeding. In this study, we performed an analysis of WAR RNA-Seq data, aiming identified at genetic variants that may be involved in the epileptic phenotype. Seventeen thousand eighty-five predicted variants were identified as unique to the WAR model, of which 15,915 variants are SNPs and 1,170 INDELs. We filter the predicted variants by pre-established criteria and selected five for validation by Sanger sequencing. The genetic variant c.14198T>C in the Vlgr1 gene was confirmed in the WAR model. Vlgr1 encodes an adhesion receptor that is involved in the myelination process, in the development of stereocilia of the inner ear, and was already associated with the audiogenic seizures presented by the mice Frings. The transcriptional quantification of Vlgr1 revealed the downregulation this gene in the corpus quadrigeminum of WAR, and the protein modeling predicted that the mutated residue alters the structure of a domain of the VLGR1 receptor. We believe that Vlgr1 gene may be related to the predisposition of WAR to seizures and suggest the mutation Vlgr1/Q4695R as putative causal variant, and the first molecular marker of the WAR strain.
Collapse
Affiliation(s)
- Samara Damasceno
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Augusto de Souza Fonseca
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izinara Cruz Rosse
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Márcio Flávio Dutra Moraes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Norberto Garcia-Cairasco
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Lúcia Brunialti Godard
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Dong X, Hao X, Xu P, Fan M, Wang X, Huang X, Jiang P, Zeng L, Xie Y. RNA sequencing analysis of cortex and hippocampus in a kainic acid rat model of temporal lobe epilepsy to identify mechanisms and therapeutic targets related to inflammation, immunity and cognition. Int Immunopharmacol 2020; 87:106825. [DOI: 10.1016/j.intimp.2020.106825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 01/31/2023]
|
8
|
Zhang Y, Zhao J, Afzal O, Kazmi I, Al-Abbasi FA, Altamimi ASA, Yang Z. Neuroprotective role of chrysin-loaded poly(lactic-co-glycolic acid) nanoparticle against kindling-induced epilepsy through Nrf2/ARE/HO-1 pathway. J Biochem Mol Toxicol 2020; 35:e22634. [PMID: 32991785 DOI: 10.1002/jbt.22634] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/23/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Chrysin is the major bioactive compound of blue passionflower, an important medicinal plant used in traditional herbal formulations since ancient times. In the present study, we report that chrysin nanoparticles (chrysin NPs) protect Wistar rats against kindling-induced epilepsy. Nanoparticles of sizes less than 150 nm with a spherical shape were prepared using poly(d,l-lactic-co-glycolic acid) and polyvinyl alcohol, respectively, as polymer and stabilizer. Rats were injected with subconvulsive doses of pentylenetetrazole (PTZ) (35 mg/kg, intraperitoneal) every second day, with 22 injections in total, and on the same days, they received protective doses of the chrysin NPs (5 and 10 µg/mL, PO), respectively, 45 min before each PTZ injection. After the last PTZ injection, an average of thirteen seizure scores was recorded. Animals were killed by decapitation 24 h after a seizure. The cortex and hippocampus were removed and stored in liquid nitrogen for determining oxidative stress terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, histopathology, and reverse transcription-polymerase chain reaction for messenger RNA expression. The result showed chrysin NPs treatment has counteracted oxidative stress, reduced neuronal apoptosis, and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase 1. In conclusion, our findings demonstrate that the neuroprotective effect of chrysin NPs against kindling-induced epilepsy might be escorted by the alleviation of oxidative stress through the Nrf2/antioxidant response element/HO-1 pathway signal pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurology, Ninth Hospital of Xi'an, Xi'an, Shaanxi, China
| | - Jing Zhao
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong, China.,Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong, China
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Zhen Yang
- Department of Neurology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Díaz-Casado E, Gómez-Nieto R, de Pereda JM, Muñoz LJ, Jara-Acevedo M, López DE. Analysis of gene variants in the GASH/Sal model of epilepsy. PLoS One 2020; 15:e0229953. [PMID: 32168507 PMCID: PMC7069730 DOI: 10.1371/journal.pone.0229953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is a complex neurological disorder characterized by sudden and recurrent seizures, which are caused by various factors, including genetic abnormalities. Several animal models of epilepsy mimic the different symptoms of this disorder. In particular, the genetic audiogenic seizure hamster from Salamanca (GASH/Sal) animals exhibit sound-induced seizures similar to the generalized tonic seizures observed in epileptic patients. However, the genetic alterations underlying the audiogenic seizure susceptibility of the GASH/Sal model remain unknown. In addition, gene variations in the GASH/Sal might have a close resemblance with those described in humans with epilepsy, which is a prerequisite for any new preclinical studies that target genetic abnormalities. Here, we performed whole exome sequencing (WES) in GASH/Sal animals and their corresponding controls to identify and characterize the mutational landscape of the GASH/Sal strain. After filtering the results, moderate- and high-impact variants were validated by Sanger sequencing, assessing the possible impact of the mutations by “in silico” reconstruction of the encoded proteins and analyzing their corresponding biological pathways. Lastly, we quantified gene expression levels by RT-qPCR. In the GASH/Sal model, WES showed the presence of 342 variations, in which 21 were classified as high-impact mutations. After a full bioinformatics analysis to highlight the high quality and reliable variants, the presence of 3 high-impact and 15 moderate-impact variants were identified. Gene expression analysis of the high-impact variants of Asb14 (ankyrin repeat and SOCS Box Containing 14), Msh3 (MutS Homolog 3) and Arhgef38 (Rho Guanine Nucleotide Exchange Factor 38) genes showed a higher expression in the GASH/Sal than in control hamsters. In silico analysis of the functional consequences indicated that those mutations in the three encoded proteins would have severe functional alterations. By functional analysis of the variants, we detected 44 significantly enriched pathways, including the glutamatergic synapse pathway. The data show three high-impact mutations with a major impact on the function of the proteins encoded by these genes, although no mutation in these three genes has been associated with some type of epilepsy until now. Furthermore, GASH/Sal animals also showed gene variants associated with different types of epilepsy that has been extensively documented, as well as mutations in other genes that encode proteins with functions related to neuronal excitability, which could be implied in the phenotype of the GASH/Sal. Our findings provide valuable genetic and biological pathway data associated to the genetic burden of the audiogenic seizure susceptibility and reinforce the need to validate the role of each key mutation in the phenotype of the GASH/Sal model.
Collapse
Affiliation(s)
- Elena Díaz-Casado
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
- Salamanca Institute for Biomedical Research, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
- Salamanca Institute for Biomedical Research, Salamanca, Spain
- Department of Cell Biology and Pathology, School Medicine, University of Salamanca, Salamanca, Spain
| | - José M. de Pereda
- Institute of Molecular and Cellular Biology of Cancer, CSIC.—University of Salamanca, Salamanca, Spain
| | - Luis J. Muñoz
- Animal facilities, University of Salamanca, Salamanca, Spain
| | | | - Dolores E. López
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
- Salamanca Institute for Biomedical Research, Salamanca, Spain
- Department of Cell Biology and Pathology, School Medicine, University of Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
10
|
Damasceno S, Gómez-Nieto R, Garcia-Cairasco N, Herrero-Turrión MJ, Marín F, Lopéz DE. Top Common Differentially Expressed Genes in the Epileptogenic Nucleus of Two Strains of Rodents Susceptible to Audiogenic Seizures: WAR and GASH/Sal. Front Neurol 2020; 11:33. [PMID: 32117006 PMCID: PMC7031349 DOI: 10.3389/fneur.2020.00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
The Wistar Audiogenic Rat (WAR) and the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) strains are audiogenic epilepsy models, in which seizures are triggered by acoustic stimulation. These strains were developed by selective reproduction and have a genetic background with minimal or no variation. In the current study, we evaluated the transcriptome of the inferior colliculus, the epileptogenic nucleus, of both audiogenic models, in order to get insights into common molecular aspects associated to their epileptic phenotype. Based on GASH/Sal RNA-Seq and WAR microarray data, we performed a comparative analysis that includes selection and functional annotation of differentially regulated genes in each model, transcriptional evaluation by quantitative reverse transcription PCR of common genes identified in both transcriptomes and immunohistochemistry. The microarray data revealed 71 genes with differential expression in WAR, and the RNA-Seq data revealed 64 genes in GASH/Sal, showing common genes in both models. Analysis of transcripts showed that Egr3 was overexpressed in WAR and GASH/Sal after audiogenic seizures. The Npy, Rgs2, Ttr, and Abcb1a genes presented the same transcriptional profile in the WAR, being overexpressed in the naïve and stimulated WAR in relation to their controls. Npy appeared overexpressed only in the naïve GASH/Sal compared to its control, while Rgs2 and Ttr genes appeared overexpressed in naïve GASH/Sal and overexpressed after audiogenic seizure. No statistical difference was observed in the expression of Abcb1a in the GASH/Sal model. Compared to control animals, the immunohistochemical analysis of the inferior colliculus showed an increased immunoreactivity for NPY, RGS2, and TTR in both audiogenic models. Our data suggest that WAR and GASH/Sal strains have a difference in the timing of gene expression after seizure, in which GASH/Sal seems to respond more quickly. The transcriptional profile of the Npy, Rgs2, and Ttr genes under free-seizure conditions in both audiogenic models indicates an intrinsic expression already established in the strains. Our findings suggest that these genes may be causing small changes in different biological processes involved in seizure occurrence and response, and indirectly contributing to the susceptibility of the WAR and GASH/Sal models to audiogenic seizures.
Collapse
Affiliation(s)
- Samara Damasceno
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| | | | - Manuel Javier Herrero-Turrión
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,INCYL Neurological Tissue Bank (BTN-INCYL), Salamanca, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Dolores E Lopéz
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| |
Collapse
|