1
|
Herrera-Bravo J, Belén LH, Reyes ME, Silva V, Fuentealba S, Paz C, Loren P, Salazar LA, Sharifi-Rad J, Calina D. Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8259-8284. [PMID: 38847831 DOI: 10.1007/s00210-024-03196-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 10/30/2024]
Abstract
Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme (Thymus vulgaris) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol's anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol's impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/β-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol's broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols.
Collapse
Affiliation(s)
- Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - María Elena Reyes
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de La Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Victor Silva
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de La Salud, Universidad Católica de Temuco, Temuco, Chile
| | - Soledad Fuentealba
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Department of Basic Sciences, Faculty of Medicine, Center CEBIM, Universidad de La Frontera, Temuco, Chile
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Javad Sharifi-Rad
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| |
Collapse
|
2
|
Ashrafi AM, Selcuk O, Mukherjee A, Unal DN, Kurbanoglu S, Uslu B, Jurica J, Pekarkova J, Richtera L, Adam V. Rapid determination of uracil in biological fluids at mercury thin film electrode for early detection of potential 5-fluorouracil toxicity due to dihydropyrimidine dehydrogenase deficiency. Biosens Bioelectron 2024; 262:116545. [PMID: 38971040 DOI: 10.1016/j.bios.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Determination of plasma uracil was reported as a method for evaluation of Dihydropyrimidine dehydrogenase (DPD) activity that is highly demanded to ensure the safe administration of 5-fluorouracil (5-FU)-based therapies to cancer patients. This work reports the development of a simple electroanalytical method based on adsorptive stripping square wave voltammetry (AdSWV) at mercury film-coated glassy carbon electrode (MF/GCE) for the highly sensitive determination of uracil in biological fluids that can be used for diagnosis of decreased DPD activity. Due to the formation of the HgII-Uracil complex at the electrode surface, the accuracy of the measurement was not affected by the complicated matrices in biological fluids including human serum, plasma, and urine. The high sensitivity of the developed method results in a low limit of detection (≈1.3 nM) in human plasma samples, falling below the practical cut-off level of 15 ng mL-1 (≈0.14 μM). This threshold concentration is crucial for predicting 5-FU toxicity, as reported in buffer, and ≤1.15% in biological samples), and accuracy (recovery percentage close to 100%).
Collapse
Affiliation(s)
- Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czech Republic.
| | - Ozge Selcuk
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Mersin University, Faculty of Pharmacy, Department of Analytical Chemistry, 33169, Mersin, Turkey.
| | - Atripan Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnicí 835, 252 41, Dolní Břežany, Czech Republic.
| | - Didem Nur Unal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Ankara University, The Graduate School of Health Sciences, 06110, Ankara, Turkey.
| | - Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| | - Jan Jurica
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic; Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Jana Pekarkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
| |
Collapse
|
3
|
Pandey P, Arya DK, Deepak P, Ali D, Alarifi S, Srivastava S, Lavasanifar A, Rajinikanth PS. αvβ3 Integrin and Folate-Targeted pH-Sensitive Liposomes with Dual Ligand Modification for Metastatic Breast Cancer Treatment. Bioengineering (Basel) 2024; 11:800. [PMID: 39199757 PMCID: PMC11352135 DOI: 10.3390/bioengineering11080800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The advent of pH-sensitive liposomes (pHLips) has opened new opportunities for the improved and targeted delivery of antitumor drugs as well as gene therapeutics. Comprising fusogenic dioleylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS), these nanosystems harness the acidification in the tumor microenvironment and endosomes to deliver drugs effectively. pH-responsive liposomes that are internalized through endocytosis encounter mildly acidic pH in the endosomes and thereafter fuse or destabilize the endosomal membrane, leading to subsequent cargo release into the cytoplasm. The extracellular tumor matrix also presents a slightly acidic environment that can lead to the enhanced drug release and improved targeting capabilities of the nano-delivery system. Recent studies have shown that folic acid (FA) and iRGD-coated nanocarriers, including pH-sensitive liposomes, can preferentially accumulate and deliver drugs to breast tumors that overexpress folate receptors and αvβ3 and αvβ5 integrins. This study focuses on the development and characterization of 5-Fluorouracil (5-FU)-loaded FA and iRGD surface-modified pHLips (FA-iRGD-5-FU-pHLips). The novelty of this research lies in the dual targeting mechanism utilizing FA and iRGD peptides, combined with the pH-sensitive properties of the liposomes, to enhance selective targeting and uptake by cancer cells and effective drug release in the acidic tumor environment. The prepared liposomes were small, with an average diameter of 152 ± 3.27 nm, uniform, and unilamellar, demonstrating efficient 5-FU encapsulation (93.1 ± 2.58%). Despite surface functionalization, the liposomes maintained their pH sensitivity and a neutral zeta potential, which also conferred stability and reduced aggregation. Effective pH responsiveness was demonstrated by the observation of enhanced drug release at pH 5.5 compared to physiological pH 7.4. (84.47% versus 46.41% release at pH 5.5 versus pH 7.4, respectively, in 72 h). The formulations exhibited stability for six months and were stable when subjected to simulated biological settings. Blood compatibility and cytotoxicity studies on MDA-MB-231 and SK-BR3 breast cancer cell lines revealed an enhanced cytotoxicity of the liposomal formulation that was modified with FA and iRGD compared to free 5-FU and minimal hemolysis. Collectively, these findings support the potential of FA and iRGD surface-camouflaged, pH-sensitive liposomes as a promising drug delivery strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Payal Deepak
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada
| | | |
Collapse
|
4
|
Lingaratnam S, Shah M, Nicolazzo J, Michael M, Seymour JF, James P, Lazarakis S, Loi S, Kirkpatrick CMJ. A systematic review and meta-analysis of the impacts of germline pharmacogenomics on severe toxicity and symptom burden in adult patients with cancer. Clin Transl Sci 2024; 17:e13781. [PMID: 38700261 PMCID: PMC11067509 DOI: 10.1111/cts.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024] Open
Abstract
The clinical application of Pharmacogenomics (PGx) has improved patient safety. However, comprehensive PGx testing has not been widely adopted in clinical practice, and significant opportunities exist to further optimize PGx in cancer care. This systematic review and meta-analysis aim to evaluate the safety outcomes of reported PGx-guided strategies (Analysis 1) and identify well-studied emerging pharmacogenomic variants that predict severe toxicity and symptom burden (Analysis 2) in patients with cancer. We searched MEDLINE, EMBASE, CENTRAL, clinicaltrials.gov, and International Clinical Trials Registry Platform from inception to January 2023 for clinical trials or comparative studies evaluating PGx strategies or unconfirmed pharmacogenomic variants. The primary outcomes were severe adverse events (SAE; ≥ grade 3) or symptom burden with pain and vomiting as defined by trial protocols and assessed by trial investigators. We calculated pooled overall relative risk (RR) and 95% confidence interval (95%CI) using random effects models. PROSPERO, registration number CRD42023421277. Of 6811 records screened, six studies were included for Analysis 1, 55 studies for Analysis 2. Meta-analysis 1 (five trials, 1892 participants) showed a lower absolute incidence of SAEs with PGx-guided strategies compared to usual therapy, 16.1% versus 34.0% (RR = 0.72, 95%CI 0.57-0.91, p = 0.006, I2 = 34%). Meta-analyses 2 identified nine medicine(class)-variant pairs of interest across the TYMS, ABCB1, UGT1A1, HLA-DRB1, and OPRM1 genes. Application of PGx significantly reduced rates of SAEs in patients with cancer. Emergent medicine-variant pairs herald further research into the expansion and optimization of PGx to improve systemic anti-cancer and supportive care medicine safety and efficacy.
Collapse
Affiliation(s)
- Senthil Lingaratnam
- Pharmacy DepartmentPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| | - Mahek Shah
- Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Joseph Nicolazzo
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| | - Michael Michael
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Medical OncologyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - John F. Seymour
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Clinical HaematologyPeter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Paul James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Smaro Lazarakis
- Health Sciences LibraryRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Sherene Loi
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Carl M. J. Kirkpatrick
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
5
|
Martin JH, Galettis P, Flynn A, Schneider J. Phenotype versus genotype to optimize cancer dosing in the clinical setting-focus on 5-fluorouracil and tyrosine kinase inhibitors. Pharmacol Res Perspect 2024; 12:e1182. [PMID: 38429945 PMCID: PMC10907881 DOI: 10.1002/prp2.1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 03/03/2024] Open
Abstract
Cancer medicines often have narrow therapeutic windows; toxicity can be severe and sometimes fatal, but inadequate dose intensity reduces efficacy and survival. Determining the optimal dose for each patient is difficult, with body-surface area used most commonly for chemotherapy and flat dosing for tyrosine kinase inhibitors, despite accumulating evidence of a wide range of exposures in individual patients with many receiving a suboptimal dose with these strategies. Therapeutic drug monitoring (measuring the drug concentration in a biological fluid, usually plasma) (TDM) is an accepted and well validated method to guide dose adjustments for individual patients to improve this. However, implementing TDM in routine care has been difficult outside a research context. The development of genotyping of various proteins involved in drug elimination and activity has gained prominence, with several but not all Guideline groups recommending dose reductions for particular variant genotypes. However, there is increasing concern that dosing recommendations are based on limited data sets and may lead to unnecessary underdosing and increased cancer mortality. This Review discusses the evidence surrounding genotyping and TDM to guide decisions around best practice.
Collapse
Affiliation(s)
- Jennifer H. Martin
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Peter Galettis
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Alex Flynn
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Jennifer Schneider
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
6
|
De Metz C, Hennart B, Aymes E, Cren P, Martignène N, Penel N, Barthoulot M, Carnot A. Complete DPYD genotyping combined with dihydropyrimidine dehydrogenase phenotyping to prevent fluoropyrimidine toxicity: A retrospective study. Cancer Med 2024; 13:e7066. [PMID: 38523525 PMCID: PMC10961597 DOI: 10.1002/cam4.7066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 03/26/2024] Open
Abstract
INTRODUCTION In April 2019, French authorities mandated dihydropyrimidine dehydrogenase (DPD) screening, specifically testing uracilemia, to mitigate the risk of toxicity associated with fluoropyrimidine-based chemotherapy. However, this subject is still of debate as there is no consensus on a standardized DPD deficiency screening test. We conducted a real-life retrospective study with the aim of assessing the impact of DPD screening on the occurrence of severe toxicity and exploring the potential benefits of complete genotyping using next-generation sequencing. METHODS All adult patients consecutively treated with 5-fluorouracil (5-FU) or its oral prodrug at six cancer centers between March 2018 and February 2019 were considered for inclusion. Dihydropyrimidine dehydrogenase deficiency screening included gene encoding DPD (DPYD) genotyping using complete genome sequencing and DPD phenotyping (uracilemia or dihydrouracilemia/uracilemia ratio) or both tests. Associations between each DPD screening method and (i) severe (grade ≥3) early toxicity and (ii) fluoropyrimidine dose reduction in the second chemotherapy cycle were evaluated using multivariable logistic regression analysis. Furthermore, we assessed the concordance between DPD genotype and phenotype using Cohen's kappa. RESULTS A total of 551 patients were included. Most patients were tested for DPD deficiency (86%) including DPYD genotyping only (6%), DPD phenotyping only (8%), or both (72%). Complete DPD deficiency was not detected in the study population. Severe early toxicity events were observed in 73 patients (13%), with two patients (0.30%) presenting grade 5 toxicity. Despite the numerically higher toxicity rate in untested patients, the occurrence of severe toxicity was not significantly associated with the DPD screening method (p = 0.69). Concordance between the DPD genotype and phenotype was weak (Cohen's kappa of 0.14). CONCLUSION Due to insufficient numbers, our study was not able to demonstrate any added value of DPYD genotyping using complete genome sequencing to prevent 5-FU toxicity. The optimal strategy for DPD screening before fluoropyrimidine-based chemotherapy requires further clinical evaluation.
Collapse
Affiliation(s)
- Côme De Metz
- Department of Medical OncologyCentre Oscar LambretLilleFrance
| | - Benjamin Hennart
- Toxicology Unit, Biology and Pathology CentreLille University Medical CentreLilleFrance
| | - Estelle Aymes
- Department of BiostatisticsCentre Oscar LambretLilleFrance
| | - Pierre‐Yves Cren
- Department of Medical OncologyCentre Oscar LambretLilleFrance
- Department of BiostatisticsCentre Oscar LambretLilleFrance
| | | | - Nicolas Penel
- Department of Medical OncologyCentre Oscar LambretLilleFrance
- Univ. Lille, CHU Lille, ULR 2694 ‐ Metrics: Evaluation des technologies de santé et des pratiques médicalesLilleFrance
| | | | - Aurélien Carnot
- Department of Medical OncologyCentre Oscar LambretLilleFrance
| |
Collapse
|
7
|
Banerjee S, Hatimuria M, Sarkar K, Das J, Pabbathi A, Sil PC. Recent Contributions of Mass Spectrometry-Based "Omics" in the Studies of Breast Cancer. Chem Res Toxicol 2024; 37:137-180. [PMID: 38011513 DOI: 10.1021/acs.chemrestox.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Breast cancer (BC) is one of the most heterogeneous groups of cancer. As every biotype of BC is unique and presents a particular "omic" signature, they are increasingly characterized nowadays with novel mass spectrometry (MS) strategies. BC therapeutic approaches are primarily based on the two features of human epidermal growth factor receptor 2 (HER2) and estrogen receptor (ER) positivity. Various strategic MS implementations are reported in studies of BC also involving data independent acquisitions (DIAs) of MS which report novel differential proteomic, lipidomic, proteogenomic, phosphoproteomic, and metabolomic characterizations associated with the disease and its therapeutics. Recently many "omic" studies have aimed to identify distinct subsidiary biotypes for diagnosis, prognosis, and targets of treatment. Along with these, drug-induced-resistance phenotypes are characterized by "omic" changes. These identifying aspects of the disease may influence treatment outcomes in the near future. Drug quantifications and characterizations are also done regularly and have implications in therapeutic monitoring and in drug efficacy assessments. We report these studies, mentioning their implications toward the understanding of BC. We briefly provide the MS instrumentation principles that are adopted in such studies as an overview with a brief outlook on DIA-MS strategies. In all of these, we have chosen a model cancer for its revelations through MS-based "omics".
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Physiology, Surendranath College, University of Calcutta, Kolkata 700009, India
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Madushmita Hatimuria
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Kasturi Sarkar
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Joydeep Das
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ashok Pabbathi
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Parames C Sil
- Department of Molecular Medicine Bose Institute, Kolkata 700054, India
| |
Collapse
|
8
|
Wu A, Anderson H, Hughesman C, Young S, Lohrisch C, Ross CJD, Carleton BC. Implementation of pharmacogenetic testing in oncology: DPYD-guided dosing to prevent fluoropyrimidine toxicity in British Columbia. Front Pharmacol 2023; 14:1257745. [PMID: 37745065 PMCID: PMC10515725 DOI: 10.3389/fphar.2023.1257745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Fluoropyrimidine toxicity is often due to variations in the gene (DPYD) encoding dihydropyrimidine dehydrogenase (DPD). DPYD genotyping can be used to adjust doses to reduce the likelihood of fluoropyrimidine toxicity while maintaining therapeutically effective drug levels. Methods: A multiplex QPCR assay was locally developed to allow genotyping for six DPYD variants. The test was offered prospectively for all patients starting on fluoropyrimidines at the BC Cancer Centre in Vancouver and then across B.C., Canada as well as retrospectively for patients suspected to have had an adverse reaction to therapy. Dose adjustments were made for variant carriers. The incidence of toxicity in the first three cycles was compared between DPYD variant allele carriers and non-variant carriers. Subsequent to an initial implementation phase, this test was made available province-wide. Results: In 9 months, 186 patients were tested and 14 were found to be heterozygous variant carriers. Fluoropyrimidine-related toxicity was higher in DPYD variant carriers. Of 127 non-variant carriers who have completed chemotherapy, 18 (14%) experienced severe (grade ≥3, Common Terminology Criteria for Adverse Events version 5.0). Of note, 22% (3 patients) of the variant carriers experienced severe toxicity even after DPYD-guided dose reductions. For one of these carriers who experienced severe thrombocytopenia within the first week, DPYD testing likely prevented lethal toxicity. In DPYD variant carriers who tolerate reduced doses, a later 25% increase led to chemotherapy discontinuation. As a result, a recommendation was made to clinicians based on available literature and expert opinion specifying that variant carriers who tolerated two cycles without toxicity can have a dose escalation of only 10%. Conclusion: DPYD-guided dose reductions were a feasible and acceptable method of preventing severe toxicity in DPYD variant carriers. Even with dose reductions, there were variant carriers who still experienced severe fluoropyrimidine toxicity, highlighting the importance of adhering to guideline-recommended dose reductions. Following the completion of the pilot phase of this study, DPYD genotyping was made available province-wide in British Columbia.
Collapse
Affiliation(s)
- Angela Wu
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Helen Anderson
- Medical Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
| | - Curtis Hughesman
- Cancer Genetics and Genomics Laboratory, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
| | - Sean Young
- Cancer Genetics and Genomics Laboratory, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Caroline Lohrisch
- Medical Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
| | - Colin J. D. Ross
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Bruce C. Carleton
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Therapeutic Evaluation Unit, Provincial Health Services Authority, Vancouver, BC, Canada
| |
Collapse
|
9
|
Schmitt A, Royer B, Boidot R, Berthier J, Ghiringhelli F. Case report: 5-Fluorouracil treatment in patient with an important partial DPD deficiency. Front Oncol 2023; 13:1187052. [PMID: 37409256 PMCID: PMC10319454 DOI: 10.3389/fonc.2023.1187052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Esophageal cancer is a cancer with poor prognosis and the standard 1st line treatment for metastatic or recurrent EC is systemic chemotherapy with doublet chemotherapy based on platinum and 5-fluorouracil (5-FU). However, 5-FU could be a source of severe treatment-related toxicities due to deficiency of dihydropyrimidine dehydrogenase (DPD). In this case report, a 74-year-old man with metastatic esophageal cancer was found to have partial DPD deficiency based on uracilemia measurements (about 90 ng/mL). Despite this, 5-FU was safely administered thanks to therapeutic drug monitoring (TDM). The case report highlights the importance of TDM in administering 5-FU to patients with partial DPD deficiency, as it allows individualized dosing and prevents severe toxicity.
Collapse
Affiliation(s)
- Antonin Schmitt
- Pharmacy Department, Centre Georges-François Leclerc, Dijon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1231, University of Burgundy Franche-Comté, Dijon, France
| | - Bernard Royer
- Pharmacology and Toxicology Laboratory, Besançon University Hospital, Dijon, France
| | - Romain Boidot
- Unit of Molecular Biology, Centre Georges-François Leclerc, Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 6302, Dijon, France
| | - Joseph Berthier
- Pharmacology and Toxicology Laboratory, Dijon University Hospital, Dijon, France
| | - François Ghiringhelli
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1231, University of Burgundy Franche-Comté, Dijon, France
- Medical Oncology Department, Centre Georges-François Leclerc, Dijon, France
| |
Collapse
|
10
|
Royer B, Launay M, Ciccolini J, Derain L, Parant F, Thomas F, Guitton J. Impact of renal impairment on dihydropyrimidine dehydrogenase (DPD) phenotyping. ESMO Open 2023; 8:101577. [PMID: 37267808 DOI: 10.1016/j.esmoop.2023.101577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND The chemotherapeutic agent 5-fluorouracil (5-FU) is catabolized by dihydropyrimidine dehydrogenase (DPD), the deficiency of which may lead to severe toxicity or death. Since 2019, DPD deficiency testing, based on uracilemia, is mandatory in France and recommended in Europe before initiating fluoropyrimidine-based regimens. However, it has been recently shown that renal impairment may impact uracil concentration and thus DPD phenotyping. PATIENTS AND METHODS The impact of renal function on uracilemia and DPD phenotype was studied on 3039 samples obtained from three French centers. We also explored the influence of dialysis and measured glomerular filtration rate (mGFR) on both parameters. Finally, using patients as their own controls, we assessed as to what extent modifications in renal function impacted uracilemia and DPD phenotyping. RESULTS We observed that uracilemia and DPD-deficient phenotypes increased concomitantly to the severity of renal impairment based on the estimated GFR, independently and more critically than hepatic function. This observation was confirmed with the mGFR. The risk of being classified 'DPD deficient' based on uracilemia was statistically higher in patients with renal impairment or dialyzed if uracilemia was measured before dialysis but not after. Indeed, the rate of DPD deficiency decreased from 86.4% before dialysis to 13.7% after. Moreover, for patients with transient renal impairment, the rate of DPD deficiency dropped dramatically from 83.3% to 16.7% when patients restored their renal function, especially in patients with an uracilemia close to 16 ng/ml. CONCLUSIONS DPD deficiency testing using uracilemia could be misleading in patients with renal impairment. When possible, uracilemia should be reassessed in case of transient renal impairment. For patients under dialysis, testing of DPD deficiency should be carried out on samples taken after dialysis. Hence, 5-FU therapeutic drug monitoring would be particularly helpful to guide dose adjustments in patients with elevated uracil and renal impairment.
Collapse
Affiliation(s)
- B Royer
- Laboratoire de Pharmacologie Clinique et Toxicologie, CHU Besançon, Besançon; Univ. Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon.
| | - M Launay
- Pôle de Biologie-Pathologie, Hôpital Nord-CHU Saint Etienne, Saint Etienne
| | - J Ciccolini
- SMARTc Unit, Centre de Recherche en Cancérologie de Marseille Inserm U1068 Aix Marseille Université and Assistance Publique Hôpitaux de Marseille, Marseille
| | - L Derain
- Service de Néphrologie, Dialyse, Hypertension et Exploration Fonctionnelle Rénale, Hospices Civils de Lyon, Hôpital E. Herriot, Lyon F-69003; University of Lyon 1; CNRS UMR 5305, Lyon
| | - F Parant
- Laboratoire de Biochimie et Toxicologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite
| | - F Thomas
- Laboratoire de Pharmacologie, Institut Claudius Regaud, Inserm CRCT, Université de Toulouse, Toulouse Cedex 9
| | - J Guitton
- Laboratoire de Biochimie et Toxicologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite; Laboratoire de Toxicologie, ISPB, Faculté de Pharmacie, Université Lyon 1, Université de Lyon, Lyon; Inserm U1052, CNRS UMR5286 Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
11
|
Kim SJ, Puranik N, Yadav D, Jin JO, Lee PCW. Lipid Nanocarrier-Based Drug Delivery Systems: Therapeutic Advances in the Treatment of Lung Cancer. Int J Nanomedicine 2023; 18:2659-2676. [PMID: 37223276 PMCID: PMC10202211 DOI: 10.2147/ijn.s406415] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
Although various treatments are currently being developed, lung cancer still has a very high mortality rate. Moreover, while various strategies for the diagnosis and treatment of lung cancer are being used in clinical settings, in many cases, lung cancer does not respond to treatment and presents reducing survival rates. Cancer nanotechnology, also known as nanotechnology in cancer, is a relatively new topic of study that brings together scientists from a variety of fields, including chemistry, biology, engineering, and medicine. The use of lipid-based nanocarriers to aid drug distribution has already had a significant impact in several scientific fields. Lipid-based nanocarriers have been demonstrated to help stabilize therapeutic compounds, overcome barriers to cellular and tissue absorption, and improve in vivo drug delivery to specific target areas. For this reason, lipid-based nanocarriers are being actively researched and used for lung cancer treatment and vaccine development. This review discusses the improvements in drug delivery achieved with lipid-based nanocarriers, the obstacles that still exist with in vivo applications, and the current clinical and experimental applications of lipid-based nanocarriers in lung cancer treatment and management.
Collapse
Affiliation(s)
- So-Jung Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Nidhi Puranik
- Department of Biochemistry & Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan, 38541, Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| |
Collapse
|
12
|
Krämer A, Bochtler T, Pauli C, Baciarello G, Delorme S, Hemminki K, Mileshkin L, Moch H, Oien K, Olivier T, Patrikidou A, Wasan H, Zarkavelis G, Pentheroudakis G, Fizazi K. Cancer of unknown primary: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2023; 34:228-246. [PMID: 36563965 DOI: 10.1016/j.annonc.2022.11.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- A Krämer
- Clinical Cooperation Unit Molecular Haematology/Oncology, German Cancer Research Center (DKFZ) Heidelberg, Germany; Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - T Bochtler
- Clinical Cooperation Unit Molecular Haematology/Oncology, German Cancer Research Center (DKFZ) Heidelberg, Germany; Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany; Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - C Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), Zurich, Switzerland; Medical Faculty, University of Zurich (UZH), Zurich, Switzerland
| | - G Baciarello
- Medical Oncology Department, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - S Delorme
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
| | - K Hemminki
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and Biomedical Center, Charles University, Pilsen, Czech Republic
| | - L Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - H Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), Zurich, Switzerland; Medical Faculty, University of Zurich (UZH), Zurich, Switzerland
| | - K Oien
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - T Olivier
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA
| | - A Patrikidou
- Department of Cancer Medicine, Institute Gustave Roussy, University of Paris Saclay, Villejuif, France
| | - H Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - G Zarkavelis
- Department of Medical Oncology, University of Ioannina, Ioannina, Greece
| | | | - K Fizazi
- Department of Cancer Medicine, Institute Gustave Roussy, University of Paris Saclay, Villejuif, France
| |
Collapse
|
13
|
Poumeaud F, Dalenc F, Mathevet Q, Brice A, Eche-Gass A, De Maio D'Esposito E, Brac-de-la-Perriere C, Thomas F. Phenotype/Genotype Discrepancy of DPD Deficiency Screening in a Patient With Severe Capecitabine Toxicity: A Case Report. JCO Precis Oncol 2023; 7:e2200508. [PMID: 36926988 DOI: 10.1200/po.22.00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Affiliation(s)
- François Poumeaud
- Department of Medical Oncology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Florence Dalenc
- Department of Medical Oncology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Quentin Mathevet
- Department of Pharmacology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Aurélie Brice
- Department of Pharmacology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Audrey Eche-Gass
- Department of Medical Oncology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | | | | | - Fabienne Thomas
- Department of Medical Oncology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Université Toulouse III-Paul Sabatier, Toulouse, France
| |
Collapse
|
14
|
Maillard M, Launay M, Royer B, Guitton J, Gautier-Veyret E, Broutin S, Tron C, Le Louedec F, Ciccolini J, Richard D, Alarcan H, Haufroid V, Tafzi N, Schmitt A, Etienne-Grimaldi MC, Narjoz C, Thomas F. Quantitative impact of pre-analytical process on plasma uracil when testing for dihydropyrimidine dehydrogenase deficiency. Br J Clin Pharmacol 2023; 89:762-772. [PMID: 36104927 PMCID: PMC10092089 DOI: 10.1111/bcp.15536] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023] Open
Abstract
AIMS Determining dihydropyrimidine dehydrogenase (DPD) activity by measuring patient's uracil (U) plasma concentration is mandatory before fluoropyrimidine (FP) administration in France. In this study, we aimed to refine the pre-analytical recommendations for determining U and dihydrouracil (UH2 ) concentrations, as they are essential in reliable DPD-deficiency testing. METHODS U and UH2 concentrations were collected from 14 hospital laboratories. Stability in whole blood and plasma after centrifugation, the type of anticoagulant and long-term plasma storage were evaluated. The variation induced by time and temperature was calculated and compared to an acceptability range of ±20%. Inter-occasion variability (IOV) of U and UH2 was assessed in 573 patients double sampled for DPD-deficiency testing. RESULTS Storage of blood samples before centrifugation at room temperature (RT) should not exceed 1 h, whereas cold (+4°C) storage maintains the stability of uracil after 5 hours. For patients correctly double sampled, IOV of U reached 22.4% for U (SD = 17.9%, range = 0-99%). Notably, 17% of them were assigned with a different phenotype (normal or DPD-deficient) based on the analysis of their two samples. For those having at least one non-compliant sample, this percentage increased up to 33.8%. The moment of blood collection did not affect the DPD phenotyping result. CONCLUSION Caution should be taken when interpreting U concentrations if the time before centrifugation exceeds 1 hour at RT, since it rises significantly afterwards. Not respecting the pre-analytical conditions for DPD phenotyping increases the risk of DPD status misclassification.
Collapse
Affiliation(s)
- Maud Maillard
- Laboratoire de Pharmacologie, Institut Claudius Regaud, IUCT-Oncopole et Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Université Paul Sabatier, Toulouse, France
| | - Manon Launay
- Laboratoire de Pharmacologie et Toxicologie, CHU de Saint-Etienne, Saint-Etienne, France
| | - Bernard Royer
- Laboratoire de Pharmacologie Clinique et Toxicologie, CHU Besançon and Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Jérôme Guitton
- Laboratoire de Pharmacologie Toxicologie, CHU de Lyon, Lyon, France
| | - Elodie Gautier-Veyret
- Laboratoire de Pharmacologie, Pharmacogénétique et Toxicologie, CHU Grenoble-Alpes et Université Grenoble-Alpes, laboratoire HP2, INSERM U1300, Grenoble, France
| | - Sophie Broutin
- Département de Biologie et Pathologie Médicale, Service de Pharmacologie, Gustave Roussy, Villejuif, France
| | - Camille Tron
- Laboratoire de pharmacologie CHU de Rennes, Université de Rennes, CHU de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
| | - Félicien Le Louedec
- Laboratoire de Pharmacologie, Institut Claudius Regaud, IUCT-Oncopole et Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Université Paul Sabatier, Toulouse, France
| | - Joseph Ciccolini
- SMARTc Unit, CRCM Inserm U1068 et Laboratoire de Pharmacocinétique, CHU La Timone, Marseille, France
| | - Damien Richard
- Laboratoire de Pharmacologie et Toxicologie, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Hugo Alarcan
- Service de Biochimie et Biologie Moléculaire, CHRU de Tours, Tours, France
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Clinical and Experimental Research Institute (IREC), Université catholique de Louvain, Brussels, Belgium.,Clinical Chemistry Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Naïma Tafzi
- INSERM, Université de Limoge, Service de Pharmacologie et Toxicologie, CHU de Limogess, U1248 IPPRITT, Limoges, France
| | - Antonin Schmitt
- Service Pharmacie, Centre Georges-François Leclerc et INSERM U1231, Université de Bourgogne, Dijon, France
| | | | - Céline Narjoz
- Assistance Publique des Hôpitaux de Paris, Hôpital européen Georges-Pompidou, Service de biochimie, Paris, France
| | - Fabienne Thomas
- Laboratoire de Pharmacologie, Institut Claudius Regaud, IUCT-Oncopole et Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Université Paul Sabatier, Toulouse, France
| | | |
Collapse
|
15
|
Callon S, Brugel M, Botsen D, Royer B, Slimano F, Feliu C, Gozalo C, Konecki C, Devie B, Carlier C, Daire V, Laurés N, Perrier M, Djerada Z, Bouché O. Renal impairment and abnormal liver function tests in pre-therapeutic phenotype-based DPD deficiency screening using uracilemia: a comprehensive population-based study in 1138 patients. Ther Adv Med Oncol 2023; 15:17588359221148536. [PMID: 36643657 PMCID: PMC9837271 DOI: 10.1177/17588359221148536] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Background Dihydropyrimidine dehydrogenase (DPD) deficiency screening is a pre-therapeutic standard to prevent severe fluoropyrimidine-related toxicity. Although several screening methods exist, the accuracy of their results remains debatable. In France, the uracilemia measurement is considered the standard in DPD deficiency screening. The objective of this study was to describe the hyperuracilemia (⩾16 ng/mL) rate and investigate the influence of hepatic and renal impairment in uracilemia measurements since the guidelines were implemented. Patients and methods Using a cohort of 1138 patients screened between 18 October 2018 and 18 October 2021, basic demographic characteristics, date of blood sampling, and potential biological confounders including liver function tests [aspartate aminotransaminase (AST), alanine aminotransaminase (ALT), gamma-glutamyl transferase (γGT), alkaline phosphatase (ALP), and bilirubin] and estimated glomerular filtration rate (eGFR) were collected. The second same-patient uracilemia analysis was also performed. Temporal change was graphically represented while potential confounders were stratified to show linearity when suspected. Results Hyperuracilemia was diagnosed in 12.7% (n = 150) samples with 6.7%, 5.4%, 0.5%, and 0.08% between 16 and 20 ng/mL, 20 and 50 ng/mL, 50 and 150 ng/mL, and >150 ng/mL, respectively. The median uracilemia concentration was 9.4 ng/mL (range: 1.2 and 172.3 ng/mL) and the monthly hyperuracilemia rate decreased steadily from >30% to around 9%. Older age, normalized AST, γGT, ALP results, bilirubin levels, and decreased eGFR were linearly associated with higher plasma uracil concentrations (all p < 0.001). In the adjusted multivariate linear model, AST, eGFR, and ALP remained associated with uracilemia (p < 0.05). When measured twice in 39 patients, the median uracilemia rate of change was -2.5%, which subsequently changed the diagnosis in nine patients (23.1%). Conclusions Better respect of pre-analytical conditions may explain the steady decrease in monthly hyperuracilemia rates over the 3 years. Elevated AST, ALP levels, and reduced eGFR could induce a false increase in uracilemia and second uracilemia measurements modified the first DPD deficiency diagnosis in almost 25% of the patients.
Collapse
Affiliation(s)
| | | | - Damien Botsen
- Department of Medical Oncology, Godinot Cancer Institute, Reims, France,Department of Digestive Oncology and Gastroenterology, University of Reims Champagne-Ardenne (URCA), CHU Reims, Reims, France
| | - Bernard Royer
- Clinical Pharmacology and Toxicology Laboratory, CHU Besançon, Besançon, France
| | | | - Catherine Feliu
- Pharmacology and Toxicology Department, CHU Reims, Reims, France
| | - Claire Gozalo
- Pharmacology and Toxicology Department, CHU Reims, Reims, France
| | - Céline Konecki
- Pharmacology and Toxicology Department, CHU Reims, Reims, France
| | - Bruno Devie
- Clairmarais Bioxa Medical Biology Laboratory, Reims, France
| | - Claire Carlier
- Department of Medical Oncology, Godinot Cancer Institute, Reims, France,Department of Digestive Oncology and Gastroenterology, University of Reims Champagne-Ardenne (URCA), CHU Reims, Reims, France
| | - Viktor Daire
- Department of Digestive Oncology and Gastroenterology, University of Reims Champagne-Ardenne (URCA), CHU Reims, Reims, France
| | - Nicolas Laurés
- Department of Digestive Oncology and Gastroenterology, University of Reims Champagne-Ardenne (URCA), CHU Reims, Reims, France
| | - Marine Perrier
- Department of Digestive Oncology and Gastroenterology, University of Reims Champagne-Ardenne (URCA), CHU Reims, Reims, France
| | - Zoubir Djerada
- Pharmacology and Toxicology Department, CHU Reims, Reims, France
| | - Olivier Bouché
- Department of Digestive Oncology and Gastroenterology, University of Reims Champagne-Ardenne (URCA), CHU Reims, Reims, France
| |
Collapse
|
16
|
Wang S, Li T, Wang Y, Wang M, Liu Y, Zhang X, Zhang L. 5-Fluorouracil and actinomycin D lead to erythema multiforme drug eruption in chemotherapy of invasive mole: Case report and literature review. Medicine (Baltimore) 2022; 101:e31678. [PMID: 36451432 PMCID: PMC9704884 DOI: 10.1097/md.0000000000031678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
RATIONALE 5-Fluorouracil (5-FU) and actinomycin D (ActD) are often used in chemotherapy for various cancers. Side effects are more common in bone marrow suppression, liver function impairment, and gastrointestinal responses. Skin effects are rare and easy to be ignored by doctors and patients, which can lead to life-threatening consequence. PATIENT CONCERNS We reported a 45-year-old woman patient developed skin erythema and fingernail belt in chemotherapy of 5-FU and ActD. DIAGNOSIS Erythema multiforme drug eruption. INTERVENTIONS Laboratory tests including blood and urine routine, liver and kidney function, electrolytes and coagulation function and close observation. OUTCOMES The rash was gone and the nail change returned. LESSONS Delays in diagnosis or treatment may lead to serious consequence. We should pay attention to the dosage of 5-FU and ActD, monitor adverse reactions strictly, to reduce occurrence of skin malignant events.
Collapse
Affiliation(s)
- Shan Wang
- Departments of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Tengfei Li
- Departments of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Yuan Wang
- Departments of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mengdi Wang
- Departments of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yibin Liu
- Departments of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiaoguang Zhang
- Departments of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Lijuan Zhang
- Departments of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- * Correspondence: Lijuan Zhang, Departments of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China (e-mail: )
| |
Collapse
|
17
|
Iqbal MJ, Javed Z, Herrera-Bravo J, Sadia H, Anum F, Raza S, Tahir A, Shahwani MN, Sharifi-Rad J, Calina D, Cho WC. Biosensing chips for cancer diagnosis and treatment: a new wave towards clinical innovation. Cancer Cell Int 2022; 22:354. [PMCID: PMC9664821 DOI: 10.1186/s12935-022-02777-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractRecent technological advances in nanoscience and material designing have led to the development of point-of-care devices for biomolecule sensing and cancer diagnosis. In situ and portable sensing devices for bedside, diagnosis can effectively improve the patient’s clinical outcomes and reduce the mortality rate. Detection of exosomal RNAs by immuno-biochip with increased sensitivity and specificity to diagnose cancer has raised the understanding of the tumor microenvironment and many other technology-based biosensing devices hold great promise for clinical innovations to conquer the unbeatable fort of cancer metastasis. Electrochemical biosensors are the most sensitive category of biomolecule detection sensors with significantly low concentrations down to the atomic level. In this sense, this review addresses the recent advances in cancer detection and diagnosis by developing significant biological sensing devices that are believed to have better sensing potential than existing facilities.
Collapse
|
18
|
Predicting Dihydropyrimidine Dehydrogenase Deficiency and Related 5-Fluorouracil Toxicity: Opportunities and Challenges of DPYD Exon Sequencing and the Role of Phenotyping Assays. Int J Mol Sci 2022; 23:ijms232213923. [PMID: 36430399 PMCID: PMC9694733 DOI: 10.3390/ijms232213923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Deficiency of dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene, is associated with severe toxicity induced by the anti-cancer drug 5-Fluorouracil (5-FU). DPYD genotyping of four recommended polymorphisms is widely used to predict toxicity, yet their prediction power is limited. Increasing availability of next generation sequencing (NGS) will allow us to screen rare variants, predicting a larger fraction of DPD deficiencies. Genotype−phenotype correlations were investigated by performing DPYD exon sequencing in 94 patients assessed for DPD deficiency by the 5-FU degradation rate (5-FUDR) assay. Association of common variants with 5-FUDR was analyzed with the SNPStats software. Functional interpretation of rare variants was performed by in-silico analysis (using the HSF system and PredictSNP) and literature review. A total of 23 rare variants and 8 common variants were detected. Among common variants, a significant association was found between homozygosity for the rs72728438 (c.1974+75A>G) and decreased 5-FUDR. Haplotype analysis did not detect significant associations with 5-FUDR. Overall, in our sample cohort, NGS exon sequencing allowed us to explain 42.5% of the total DPD deficiencies. NGS sharply improves prediction of DPD deficiencies, yet a broader collection of genotype−phenotype association data is needed to enable the clinical use of sequencing data.
Collapse
|
19
|
Paulsen NH, Qvortrup C, Vojdeman FJ, Plomgaard P, Andersen SE, Ramlov A, Bertelsen B, Rossing M, Nielsen CG, Hoffmann-Lücke E, Greibe E, Spangsberg Holm H, Nielsen HH, Lolas IBY, Madsen JS, Bergmann ML, Mørk M, Fruekilde PBN, Bøttger P, Petersen PC, Nissen PH, Feddersen S, Bergmann TK, Pfeiffer P, Damkier P. Dihydropyrimidine dehydrogenase (DPD) genotype and phenotype among Danish cancer patients: prevalence and correlation between DPYD-genotype variants and P-uracil concentrations. Acta Oncol 2022; 61:1400-1405. [PMID: 36256873 DOI: 10.1080/0284186x.2022.2132117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Niels Herluf Paulsen
- Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark.,Clinical Pharmacology, Pharmacy and Environmental Medicine Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Camilla Qvortrup
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Fie Juhl Vojdeman
- Department of Clinical Biochemistry, Holbaek Hospital, Holbaek, Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Anne Ramlov
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Bertelsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maria Rossing
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Claus Gyrup Nielsen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Elke Hoffmann-Lücke
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus N, Denmark.,Institute for Clinical Medicine, Aarhus University of Health, Aarhus, Denmark
| | - Eva Greibe
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus N, Denmark.,Institute for Clinical Medicine, Aarhus University of Health, Aarhus, Denmark
| | | | - Heidi Hvid Nielsen
- Department of Clinical Biochemistry, Zealand University Hospital, Køge, Denmark
| | | | - Jonna Skov Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital - University Hospital of Southern Denmark, Vejle, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Marianne Lerbaek Bergmann
- Department of Biochemistry and Immunology, Lillebaelt Hospital - University Hospital of Southern Denmark, Vejle, Denmark
| | - Morten Mørk
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark.,Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | | | - Pernille Bøttger
- Department of Biochemistry and Immunology, Lillebaelt Hospital - University Hospital of Southern Denmark, Vejle, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | | | - Peter Henrik Nissen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus N, Denmark.,Denmark and Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Feddersen
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Troels K Bergmann
- Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| | - Per Pfeiffer
- Department of Oncology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Per Damkier
- Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark.,Clinical Pharmacology, Pharmacy and Environmental Medicine Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Paulsen NH, Vojdeman F, Andersen SE, Bergmann TK, Ewertz M, Plomgaard P, Hansen MR, Esbech PS, Pfeiffer P, Qvortrup C, Damkier P. DPYD genotyping and dihydropyrimidine dehydrogenase (DPD) phenotyping in clinical oncology. A clinically focused minireview. Basic Clin Pharmacol Toxicol 2022; 131:325-346. [PMID: 35997509 PMCID: PMC9826411 DOI: 10.1111/bcpt.13782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND In clinical oncology, systemic 5-fluorouracil (5-FU) and its oral pro-drugs are used to treat a broad group of solid tumours. Patients with dihydropyrimidine dehydrogenase (DPD) enzyme deficiency are at elevated risk of toxicity if treated with standard doses of 5-FU. DPYD genotyping and measurements of plasma uracil concentration (DPD phenotyping) can be applied as tests for DPD deficiency. In April 2020, the European Medicines Agency recommended pre-treatment DPD testing to reduce the risk of 5-FU-related toxicity. OBJECTIVES The objective of this study is to present the current evidence for DPD testing in routine oncological practice. METHODS Two systematic literature searches were performed following the PRISMA guidelines. We identified studies examining the possible benefit of DPYD genotyping or DPD phenotyping on the toxicity risk. FINDINGS Nine and 12 studies met the criteria for using DPYD genotyping and DPD phenotyping, respectively. CONCLUSIONS The evidence supporting either DPYD genotyping or DPD phenotyping as pre-treatment tests to reduce 5-FU toxicity is poor. Further evidence is still needed to fully understand and guide clinicians to dose by DPD activity.
Collapse
Affiliation(s)
- Niels Herluf Paulsen
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark,Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Fie Vojdeman
- Department of Clinical BiochemistryHolbaek HospitalHolbaekDenmark
| | | | - Troels K. Bergmann
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark,Department of Regional Health ResearchUniversity of Southern DenmarkEsbjergDenmark
| | - Marianne Ewertz
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Morten Rix Hansen
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark,Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Novo NordiskSøborgDenmark
| | - Peter Skov Esbech
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark
| | - Per Pfeiffer
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of OncologyOdense University HospitalOdenseDenmark
| | - Camilla Qvortrup
- Department of Oncology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Per Damkier
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark,Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
21
|
Laures N, Konecki C, Brugel M, Giffard AL, Abdelli N, Botsen D, Carlier C, Gozalo C, Feliu C, Slimano F, Djerada Z, Bouché O. Impact of Guidelines Regarding Dihydropyrimidine Dehydrogenase (DPD) Deficiency Screening Using Uracil-Based Phenotyping on the Reduction of Severe Side Effect of 5-Fluorouracil-Based Chemotherapy: A Propension Score Analysis. Pharmaceutics 2022; 14:pharmaceutics14102119. [PMID: 36297556 PMCID: PMC9610761 DOI: 10.3390/pharmaceutics14102119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Dihydropyrimidine dehydrogenase (DPD) deficiency is associated with severe fluoropyrimidines-induced toxicity. As of September 2018, French recommendations call for screening for DPD deficiency by plasma uracil quantification prior to all fluoropyrimidine-based chemotherapy. A dose reduction of fluoropyrimidine is recommended when uracil concentration is equal to or greater than 16 ng/mL. This matched retrospective study assessed the impact of DPD screening on the reduction of severe side effects and on the management of DPD-deficient patients. Using a propensity score, we balanced the factors influencing 5-Fluorouracil (5-FU) toxicity. Then, the severity scores (G3 and G4 severity as well as their frequency) of patients who did not benefit from DPD screening were compared with those of patients who benefited from DPD screening for each treatment cycle (from 1 to 4). Among 349 screened patients, 198 treated patients were included. Among them, 31 (15.7%) had DPD deficiency (median uracilemia 19.8 ng/mL (range: 16.1−172.3)). The median toxicity severity score was higher in the unscreened group for each treatment cycle (0 vs. 1, p < 0.001 at each cycle from 1 to 4) as well as the cumulative score during all courses of treatment (p = 0.028). DPD-deficient patients received a significantly lower dose of 5-FU (p < 0.001). This study suggests that pretherapeutic plasmatic uracil assessment, along with 5-FU dosage adjustment, may be beneficial in reducing 5-FU toxicity in real-life patients.
Collapse
Affiliation(s)
- Nicolas Laures
- Department of Gastroenterology and Digestive Oncology, CHU Reims, University of Reims Champagne-Ardenne (URCA), 51100 Reims, France
| | - Céline Konecki
- Department of Medical Pharmacology, University of Reims Champagne-Ardenne (URCA), HERVI EA3801, 51097 Reims, France
- Department of Pharmacology and Toxicology, CHU Reims, 51100 Reims, France
| | - Mathias Brugel
- Department of Gastroenterology and Digestive Oncology, CHU Reims, University of Reims Champagne-Ardenne (URCA), 51100 Reims, France
- Department of Hepato-Gastroenterology and Digestive Oncology, Centre Hospitalier Auban-Moët, 51200 Epernay, France
| | - Anne-Lise Giffard
- Department of Gastroenterology and Digestive Oncology, CHU Reims, University of Reims Champagne-Ardenne (URCA), 51100 Reims, France
| | - Naceur Abdelli
- Department of Hepato-Gastroenterology and Digestive Oncology, Centre Hospitalier de Chalons en Champagne, 51000 Chalons en Champagne, France
| | - Damien Botsen
- Department of Gastroenterology and Digestive Oncology, CHU Reims, University of Reims Champagne-Ardenne (URCA), 51100 Reims, France
| | - Claire Carlier
- Department of Gastroenterology and Digestive Oncology, CHU Reims, University of Reims Champagne-Ardenne (URCA), 51100 Reims, France
| | - Claire Gozalo
- Department of Medical Pharmacology, University of Reims Champagne-Ardenne (URCA), HERVI EA3801, 51097 Reims, France
- Department of Pharmacology and Toxicology, CHU Reims, 51100 Reims, France
| | - Catherine Feliu
- Department of Medical Pharmacology, University of Reims Champagne-Ardenne (URCA), HERVI EA3801, 51097 Reims, France
- Department of Pharmacology and Toxicology, CHU Reims, 51100 Reims, France
| | - Florian Slimano
- Department of Pharmacy, CHU Reims, University of Reims Champagne-Ardenne (URCA), 51100 Reims, France
| | - Zoubir Djerada
- Department of Medical Pharmacology, University of Reims Champagne-Ardenne (URCA), HERVI EA3801, 51097 Reims, France
- Department of Pharmacology and Toxicology, CHU Reims, 51100 Reims, France
- Correspondence:
| | - Olivier Bouché
- Department of Medical Pharmacology, University of Reims Champagne-Ardenne (URCA), HERVI EA3801, 51097 Reims, France
- Department of Pharmacology and Toxicology, CHU Reims, 51100 Reims, France
| |
Collapse
|
22
|
Effect of Ketorolac on Pharmacokinetics and Pharmacodynamics of 5-Fluorouracil: In Vivo and In Vitro Study. J Trop Med 2022; 2022:5267861. [PMID: 36187458 PMCID: PMC9519353 DOI: 10.1155/2022/5267861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Background. This study aimed to evaluate the impact of ketorolac on the pharmacokinetics of 5-FU and its effect on the efficacy of 5-fluorouracil (5-FU) on the HT-29 cell line. Methods. Cell culture: the HT-29 cell line was treated with different concentrations of 5-FU, ketorolac, and combination of 5-FU and ketorolac for 24 and 48 hours. The cell viability (%) was calculated by the MTT assay. Animal study: rats were randomly divided into control and pretreatment groups. The control group received physiological saline, whereas the pretreatment group received ketorolac by intraperitoneal (i.p.) injections on a daily basis for 14 days. On the 15th day, both groups received 5-FU (i.p.). Blood samples were collected at different times for HPLC analysis, and 5-FU pharmacokinetic parameters were calculated. Results. At cell culture study, in a certain concentration range, combination therapy showed synergistic effects (<0.05). However, at concentrations above this range, combination therapy showed antagonistic effects on 5-FU efficacy (<0.05). According to the pharmacokinetic analysis, pretreatment with ketorolac resulted in a significant increase in AUC, Cmax, and Tmax of 5-FU (<0.05) and a significant decrease in V/F and Cl/F of 5-FU (<0.05). Conclusions. Combination therapy with ketorolac and 5-FU, depending on time and concentration, has a synergistic effect on reducing the viability of cancer cells. Also, ketorolac is able to alter the pharmacokinetics of 5-FU. Since there is a close relationship between pharmacokinetic parameters of 5-FU and its effectiveness/toxicity, it seems that these changes are towards creating a synergistic effect on 5-FU cytotoxicity. These results suggest the need to optimize the dose of these drugs in order to increase clinical efficacy and reduce the toxicity associated with them.
Collapse
|
23
|
Carriat L, Quaranta S, Solas C, Rony M, Ciccolini J. Renal impairment and DPD testing: watch out for false-positive results! Br J Clin Pharmacol 2022; 88:4928-4932. [PMID: 35939355 DOI: 10.1111/bcp.15482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Measuring uracil (U) levels in plasma is a convenient surrogate to establish DPD status in patients scheduled with 5-fluorouracil (5-FU) or capecitabine. To what extent renal impairment could impact on U levels and thus be a confounding factor is a rising concern. Here, we report the case of a cancer patient with severe renal impairment scheduled for 5-FU-based regimen. Determination of his DPD status was complicated because of his condition and the influence of intermittent hemodialysis when monitoring U levels. The patient was initially identified as markedly DPD-deficient upon U measurement (i.e., U = 40 ng/ml), but further monitoring between and immediately after dialysis showed mild deficiency only (i.e., U = 34 and U = 19 ng/ml, respectively). Despite this discrepancy, starting dose of 5-FU was cut by 50% upon treatment initiation. Tolerance was good and 5-FU dosing was next shifted to 25% reduction, then further shifted to normal dosing at the 5th course, with still no sign for drug-related toxicities. Further DPYD genotyping showed none of the 4 allelic variants usually associated with loss of DPD activity. Of note, the excellent tolerance upon standard dosing strongly suggests that this patient was actually not DPD-deficient, despite U values always above normal concentrations. This case report highlights how critical is the information regarding the renal function of patients with cancer when phenotyping DPD using U plasma as a surrogate, and that U accumulation in patients with such condition is likely to yield false-positive results.
Collapse
Affiliation(s)
- Laure Carriat
- Laboratoire de Pharmacocinétique et Toxicologie, CHU Timone, APHM, Marseille, France.,SMARTc unit, Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France
| | - Sylvie Quaranta
- Laboratoire de Pharmacocinétique et Toxicologie, CHU Timone, APHM, Marseille, France
| | - Caroline Solas
- Laboratoire de Pharmacocinétique et Toxicologie, CHU Timone, APHM, Marseille, France
| | - Maelle Rony
- Oncologie Digestive, CHU Timone, APHM, Marseille, France
| | - Joseph Ciccolini
- Laboratoire de Pharmacocinétique et Toxicologie, CHU Timone, APHM, Marseille, France.,SMARTc unit, Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France
| |
Collapse
|
24
|
Launay M, Guitton J, Balluet R, Moreau A, Phelip JM, Tholance Y, Gonzalo P. Clinical considerations for DPD deficiency testing in advanced cancer patients: tumor lysis syndrome should be considered as a major interference. Ann Oncol 2022; 33:850-852. [PMID: 35525375 DOI: 10.1016/j.annonc.2022.04.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/01/2022] Open
Affiliation(s)
- M Launay
- Laboratory of Pharmacology, Toxicology and Blood Gazes, University Hospital of Saint Etienne, Saint Etienne.
| | - J Guitton
- Laboratory of Pharmacology and Toxicology, Lyon-Sud University Hospital-Hospices Civil de Lyon, Lyon
| | - R Balluet
- Laboratory of Pharmacology, Toxicology and Blood Gazes, University Hospital of Saint Etienne, Saint Etienne
| | - A Moreau
- Laboratory of Biochemistry, University Hospital of Saint Etienne, Saint Etienne
| | - J-M Phelip
- Department of Gastroenterology and Digestive Oncology, University Hospital of Saint Etienne, Saint Etienne, France
| | - Y Tholance
- Laboratory of Biochemistry, University Hospital of Saint Etienne, Saint Etienne
| | - P Gonzalo
- Laboratory of Biochemistry, University Hospital of Saint Etienne, Saint Etienne
| |
Collapse
|
25
|
Fuereder T. Optimizing the prescription doses and tolerability of systemic therapy in head and neck cancer patients. Curr Opin Oncol 2022; 34:204-211. [PMID: 35266908 DOI: 10.1097/cco.0000000000000832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Squamous cell carcinoma of the head and neck accounts for 330 000 deaths and 650 000 cases worldwide annually. Systemic therapy is an essential pillar of multimodal therapy despite being accompanied with substantial toxicity. This article reviews the latest advances in systemic therapy for the treatment of locoregionally advanced and reccurent/metastatic head and neck cancer from a tolerability perspective. RECENT FINDINGS Multiple recent attempts have been made to optimize tolerability (and efficacy) of systemic therapy utilizing new regimens, modified prescription doses, drugs such as immunotherapies or genotyping to tailor the systemic therapy to the individual patient. SUMMARY Although treatment benefit has to be weighed against potential toxicity, it is reasonable to anticipate potential side effects of systemic therapies. In a vulnerable elderly or Asian patient population upfront dose modifications of cytotoxic chemotherapies might be reasonable. Special attention should be laid on the patient's nutritional status and early intervention recommended. Dihydropyrimidine dehydrogenase genotyping can predict 5-fluorouracil toxicity and identify patients for whom alternative regimens are more suitable. As for immune checkpoint inhibitor therapy, despite being well tolerated, the identification of biomarkers to predict reduced tolerability or severe toxicity would be highly desirable.
Collapse
Affiliation(s)
- Thorsten Fuereder
- Division of Oncology, Department of Medicine I & Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Chakravarty D, Johnson A, Sklar J, Lindeman NI, Moore K, Ganesan S, Lovly CM, Perlmutter J, Gray SW, Hwang J, Lieu C, André F, Azad N, Borad M, Tafe L, Messersmith H, Robson M, Meric-Bernstam F. Somatic Genomic Testing in Patients With Metastatic or Advanced Cancer: ASCO Provisional Clinical Opinion. J Clin Oncol 2022; 40:1231-1258. [PMID: 35175857 DOI: 10.1200/jco.21.02767] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE An ASCO provisional clinical opinion offers timely clinical direction to ASCO's membership following publication or presentation of potentially practice-changing data from major studies. This provisional clinical opinion addresses the appropriate use of tumor genomic testing in patients with metastatic or advanced solid tumors. CLINICAL CONTEXT An increasing number of therapies are approved to treat cancers harboring specific genomic biomarkers. However, there is a lack of clarity as to when tumor genomic sequencing should be ordered, what type of assays should be performed, and how to interpret the results for treatment selection. PROVISIONAL CLINICAL OPINION Patients with metastatic or advanced cancer should undergo genomic sequencing in a certified laboratory if the presence of one or more specific genomic alterations has regulatory approval as biomarkers to guide the use of or exclusion from certain treatments for their disease. Multigene panel-based assays should be used if more than one biomarker-linked therapy is approved for the patient's disease. Site-agnostic approvals for any cancer with a high tumor mutation burden, mismatch repair deficiency, or neurotrophic tyrosine receptor kinase (NTRK) fusions provide a rationale for genomic testing for all solid tumors. Multigene testing may also assist in treatment selection by identifying additional targets when there are few or no genotype-based therapy approvals for the patient's disease. For treatment planning, the clinician should consider the functional impact of the targeted alteration and expected efficacy of genomic biomarker-linked options relative to other approved or investigational treatments.Additional information is available at www.asco.org/assays-and-predictive-markers-guidelines.
Collapse
Affiliation(s)
| | | | | | - Neal I Lindeman
- Brigham and Womens' Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | | - Fabrice André
- PRISM, Precision Medicine Center, Institut Gustave Roussy, Villejuif, France
| | | | | | - Laura Tafe
- Dartmouth-Hitchcock Medical Center and The Geisel School of Medicine at Dartmouth, Darmouth, NH
| | | | - Mark Robson
- Memorial Sloan Kettering Cancer Center, New York City, NY
| | | |
Collapse
|
27
|
Schmulenson E, Zimmermann N, Mikus G, Joerger M, Jaehde U. Current status and future outlooks on therapeutic drug monitoring of fluorouracil. Expert Opin Drug Metab Toxicol 2022; 17:1407-1422. [PMID: 35029518 DOI: 10.1080/17425255.2021.2029403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION : Therapeutic drug monitoring (TDM) of the anticancer drug fluorouracil (5FU) as a method to support dose adjustments has been researched and discussed extensively. Despite manifold evidence of the advantages of 5FU-TDM, traditional body surface area (BSA)-guided dosing is still widely applied. AREAS COVERED : This review covers the latest evidence on 5FU-TDM based on a literature search in PubMed between June and September 2021. It particularly highlights new approaches of implementing 5FU-TDM into precision medicine by combining TDM with pharmacogenetic testing and/or pharmacometric models. This review further discusses remaining obstacles in order to incorporate 5FU-TDM into clinical routine. EXPERT OPINION : New data on 5FU-TDM further strengthen the advantages compared to BSA-guided dosing as it is able to reduce pharmacokinetic variability and thereby improve treatment efficacy and safety. Interprofessional collaboration has the potential to overcome the remaining barriers for its implementation. Pre-emptive pharmacogenetic testing followed by 5FU-TDM can further improve 5FU exposure in a substantial proportion of patients. Developing a model framework integrating pharmacokinetics and pharmacodynamics of 5FU will be crucial to fully advance into the precision medicine era. Model applications can potentially support clinicians in dose finding before starting chemotherapy. Additionally, TDM provides further assistance in continuously improving model predictions.
Collapse
Affiliation(s)
- Eduard Schmulenson
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Nigina Zimmermann
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Gerd Mikus
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany.,Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Joerger
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Morelli C, Formica V, Doldo E, Riondino S, Rofei M, Vergilii L, Palmieri G, Arkenau HT, Roselli M, Orlandi A. OUP accepted manuscript. Oncologist 2022; 27:e420-e421. [PMID: 35325223 PMCID: PMC9075005 DOI: 10.1093/oncolo/oyac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Cristina Morelli
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Vincenzo Formica
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Elena Doldo
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University Hospital, Rome, Italy
| | - Silvia Riondino
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Michela Rofei
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Lorena Vergilii
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University Hospital, Rome, Italy
| | - Giampiero Palmieri
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University Hospital, Rome, Italy
| | - Hendrik-Tobias Arkenau
- Sarah Cannon Research Institute, Cancer Institute, University College London, London, UK
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University Hospital, Rome, Italy
| |
Collapse
|
29
|
Gmeiner WH. A narrative review of genetic factors affecting fluoropyrimidine toxicity. PRECISION CANCER MEDICINE 2021; 4:38. [PMID: 34901834 PMCID: PMC8664072 DOI: 10.21037/pcm-21-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Our objective is to document progress in developing personalized therapy with fluoropyrimidine drugs (FPs) to improve outcomes for cancer patients and to identify areas requiring further investigation. BACKGROUND FPs including 5-fluorouracil (5-FU), are among the most widely used drugs for treating colorectal cancer (CRC) and other gastrointestinal (GI) malignancies. While FPs confer a survival benefit for CRC patients, serious systemic toxicities, including neutropenia, occur in ~30% of patients with lethality in 0.5-1% of patients. While serious systemic toxicities may occur in any patient, patients with polymorphisms in DPYD, which encodes the rate-limiting enzyme for pyrimidine degradation are at very high risk. Other genetic factors affecting risk for 5-FU toxicity, including miR-27a, are under investigation. METHODS Literature used to inform the text of this article was selected from PubMed.gov from the National Library of Medicine while regulatory documents were identified via Google search. CONCLUSIONS Clinical studies to date have validated four DPYD polymorphisms (DPYD*2A, DPYD*13, c.2846A>T, HapB3) associated with serious toxicities in patients treated with 5-FU. Genetic screening for these is being implemented in the Netherlands and the UK and has been shown to be a cost-effective way to improve outcomes. Factors other than DPYD polymorphisms (e.g., miR-27a, TYMS, ENOSF1, p53) also affect 5-FU toxicity. Functional testing for deficient pyrimidine catabolism {defined as [U] >16 ng/mL or [UH2]:[U] <10} is being implemented in France and has demonstrated utility in identifying patients with elevated risk for 5-FU toxicity. Therapeutic drug monitoring (TDM) from plasma levels of 5-FU during first cycle treatment also is being used to improve outcomes and pharmacokinetic-based dosing is being used to increase the percent of patients within optimal area under the curve (AUC) (18-28 mg*h/L) values. Patients maintained in the optimal AUC range experienced significantly reduced systemic toxicities. As understanding the genetic basis for increased risk of 5-FU toxicity becomes more refined, the development of functional-based methods to optimize treatment is likely to become more widespread.
Collapse
Affiliation(s)
- William H Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|