1
|
Wang Y, Li Z, Ji C, Wang Y, Chu Z, Zhang T, Chen C. Synergistic toxic effects and mechanistic insights of beta-cypermethrin and pyraclostrobin exposure on hook snout carp (Opsariichthys bidens): A biochemical, transcriptional, and molecular approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124535. [PMID: 39002748 DOI: 10.1016/j.envpol.2024.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The extensive utilization of pesticides results in their frequent detection in aquatic environments, often as complex mixtures, posing risks to aquatic organisms. The hook snout carp (Opsariichthys bidens) serves as a valuable bioindicator for evaluating the impacts of environmental pollutants in aquatic ecosystems. However, few studies examined the toxic effects of pesticides on O.bidens, let alone the characterization of the combined effects resulting from their mixtures. This study aims to elucidate the toxic effects of beta-cypermethrin and pyraclostrobin on O.bidens, individually and in combination, focusing on biochemical, transcriptional, and molecular responses. By organizing and analyzing the toxicogenomic databases, both pesticides were identified as a contributor to processes such as apoptosis, oxidative stress, and inflammatory responses. The acute toxicity test revealed comparable acute toxicity of beta-cypermethrin and pyraclostrobin on O.bidens, with LC50 being 0.019 and 0.027 mg/L, respectively, whereas the LC50 decreased to 0.0057 and 0.0079 mg/L under the combined exposure, indicating potential synergistic effects. The activities of enzymes involved in oxidative stress and detoxification were significantly altered after exposure, with superoxide dismutase (SOD) and catalase (CAT) increasing, while malondialdehyde (MDA) levels decreased. The activity of CYP450s was significantly changed. Likewise, the expression levels of genes (mn-sod, p53, esr, il-8) associated with oxidative stress, apoptosis, endocrine and immune systems were significantly increased. Combined exposure to the pesticides significantly exacerbated the aforementioned biological processes in O.bidens. Furthermore, both pesticides can modify protein activity by binding to the surface of SOD molecules and altering protein conformation, contributing to the elevated enzyme activity. Through the investigation of the synergistic toxic effects of pesticides and molecular mechanisms in O.bidens, our findings highlight the importance of assessing the combined effects of pesticide mixtures in aquatic environments.
Collapse
Affiliation(s)
- Yihan Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhaoyu Li
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chun Ji
- TongZhou District Comprehensive Inspection and Testing Center, Nantong, 226300, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zunhua Chu
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Tianliang Zhang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Sanpradit P, Niyomdecha S, Masae M, Peerakietkhajorn S. Thermal stress-stimulated ZnO toxicity inhibits reproduction of freshwater crustacean Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123171. [PMID: 38128714 DOI: 10.1016/j.envpol.2023.123171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Elevated temperatures due to climate change pose a variety of environmental risks to the freshwater ecosystem. At the same time, zinc oxide (ZnO) has become widely used and has entered the freshwater environment. As thermal stress may potentially impact the physicochemical properties of ZnO, its toxicity to freshwater organisms in the face of global warming is poorly understood. The potential effects on reproductive performances, including oogenesis, are of particular concern. In this study, we investigate the reproductive performances and related mRNA abundance of the zooplankton Daphnia magna under conditions of ZnO exposure and heat stress. The results revealed that ZnO and elevated temperature delayed maturity and juvenile production of D. magna. Histological observations indicated that oogenesis was inhibited, and the number and size of oocytes were reduced in the condition of ZnO exposure under heat stress. Eventual offspring in the same treatment exhibited decreased numbers, size, and quality. Congenital juvenile anomalies were increased, such as deformed eye, and impaired antenna and tail spine. Moreover, both ZnO and elevated temperature treatments inhibited expression levels of reproduction-related genes (vtg, EcR and VMO1) and induced the dmrt93b gene involved in the production of male offspring. Furthermore, we found that D. magna tried to cope with ZnO and thermal stress by upregulating hsp90, HIF-1α and HIF-1β. ZnO and heat stress inhibited the reproductive capacity of D. magna, produced deleterious effects on reproduction-associated physiological pathways, and damaged reproductive outcomes.
Collapse
Affiliation(s)
- Paweena Sanpradit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Seree Niyomdecha
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Murnee Masae
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
3
|
Man Y, Sun T, Wu C, Liu X, He M. Evaluating the Impact of Individual and Combined Toxicity of Imidacloprid, Cycloxaprid, and Tebuconazole on Daphnia magna. TOXICS 2023; 11:toxics11050428. [PMID: 37235243 DOI: 10.3390/toxics11050428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
The risks posed by chemicals in the environment are typically assessed on a substance-by-substance basis, often neglecting the effects of mixtures. This may lead to an underestimation of the actual risk. In our study, we investigated the effects of three commonly used pesticides-imidacloprid (IMI), cycloxaprid (CYC), and tebuconazole (TBZ)-both individually and in combination, using various biomarkers to assess their impact on daphnia. Our findings indicated that the order of toxicity, from highest to lowest, was TBZ, IMI, and CYC, as determined by acute toxicity as well as reproduction. The effects of the ITmix (IMI and TBZ) and CTmix (CYC and TBZ) combinations on immobilization and reproduction were evaluated by MIXTOX, revealing a higher risk of immobilization at low concentrations for ITmix. The effect on reproduction differed depending on the ration of pesticides in the mixture, with synergism observed, which may be caused mainly by IMI. However, CTmix showed antagonism for acute toxicity, with the effect on reproduction depending upon the composition of the mixture. The response surface also exhibited a switch between antagonism and synergism. Additionally, the pesticides extended the body length and inhibited the development period. The activities of superoxide dismutase (SOD) and catalase (CAT) content was also significantly induced at different dosage points in both the single and combination groups, indicating changes in the metabolic capabilities of detoxifying enzymes and target site sensitivity. These findings highlight the need for more attention to be focused on the effects of pesticide mixtures.
Collapse
Affiliation(s)
- Yanli Man
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tian Sun
- Guangxi SPR Technology Co., Ltd., Nanning 530000, China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingyuan He
- Guangxi SPR Technology Co., Ltd., Nanning 530000, China
| |
Collapse
|
4
|
Sanpradit P, Peerakietkhajorn S. Disturbances in growth, oxidative stress, energy reserves and the expressions of related genes in Daphnia magna after exposure to ZnO under thermal stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161682. [PMID: 36682557 DOI: 10.1016/j.scitotenv.2023.161682] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
The toxicological effects of metal contamination are influenced by the ambient temperature. Therefore, global warming affects the toxicity of metal contamination in aquatic ecosystems. ZnO is widely used as a catalyst in many industries, and causes contamination in aquatic ecosystems. Here, we investigated the effects of ZnO concentration under elevated temperature by observing growth, oxidative stress, energy reserves and related gene expression in exposed Daphnia magna. Body length and growth rate increased in neonates exposed to ZnO for 2 days but decreased at 9 and 21 days under elevated temperature. ZnO concentration and elevated temperature induced oxidative stress in mature D. magna by reducing superoxide dismutase (SOD) activity and increasing malondialdehyde (MDA) levels. In contrast, juveniles were unaffected. Carbohydrate, protein and caloric contents were reduced throughout development in D. magna treated with ZnO and elevated temperature in all exposure periods (2, 9 and 21 days). However, lipid content also decreased in mature D. magna treated with ZnO cultured under elevated temperature, while that of juveniles showed an increase in lipid content. Therefore, energy was perhaps allocated to physiological processes for detoxification and homeostasis. Moreover, expression patterns of genes related to physiological processes changed under elevated temperature and ZnO exposure. Taken together, our results highlight that the combination of temperature and ZnO concentration induced toxicity in D. magna. This conclusion was confirmed by the Integrated Biological Response (IBR) index. This study shows that changes in biological levels of organization could be used to monitor environmental change using D. magna as a bioindicator.
Collapse
Affiliation(s)
- Paweena Sanpradit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
5
|
Toxicity and Starvation Induce Major Trophic Isotope Variation in Daphnia Individuals: A Diet Switch Experiment Using Eight Phytoplankton Species of Differing Nutritional Quality. BIOLOGY 2022; 11:biology11121816. [PMID: 36552325 PMCID: PMC9775432 DOI: 10.3390/biology11121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Stable isotope values can express resource usage by organisms, but their precise interpretation is predicated using a controlled experiment-based validation process. Here, we develop a stable isotope tracking approach towards exploring resource shifts in a key primary consumer species Daphnia magna. We used a diet switch experiment and model fitting to quantify the stable carbon (δ13C) and nitrogen (δ15N) isotope turnover rates and discrimination factors for eight dietary sources of the plankton species that differ in their cellular organization (unicellular or filamentous), pigment and nutrient compositions (sterols and polyunsaturated fatty acids), and secondary metabolite production rates. We also conduct a starvation experiment. We evaluate nine tissue turnover models using Akaike's information criterion and estimate the repetitive trophic discrimination factors. Using the parameter estimates, we calculate the hourly stable isotope turnover rates. We report an exceedingly faster turnover value following dietary switching (72 to 96 h) and a measurable variation in trophic discrimination factors. The results show that toxic stress and the dietary quantity and quality induce trophic isotope variation in Daphnia individuals. This study provides insight into the physiological processes that underpin stable isotope patterns. We explicitly test multiple alternative dietary sources and fasting and discuss the parameters that are fundamental for field- and laboratory-based stable isotope studies.
Collapse
|
6
|
Mondellini S, Schott M, Löder MGJ, Agarwal S, Greiner A, Laforsch C. Beyond microplastics: Water soluble synthetic polymers exert sublethal adverse effects in the freshwater cladoceran Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157608. [PMID: 35901884 DOI: 10.1016/j.scitotenv.2022.157608] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Plastic pollution is considered one of the causes of global change. However, water soluble synthetic polymers (WSSPs) have been neglected so far, although they are used in several industrial, dietary, domestic and biomedical products. Moreover, they are applied in wastewater treatment plants (WWTPs) as flocculants and coagulant agents. Hence, their presence in the aquatic environment as well as their uptake by aquatic organisms is probable, whereas no data are available regarding their potential adverse effects. Here we show in the freshwater key species D. magna exposed to five different WSSPs life history changes along with an altered level of reactive oxygen species, although acute mortality was not observed. Since daphnids act as keystone species in lake ecosystems by controlling phytoplankton biomass, even sublethal effects such as WSSPs induced changes in life history may result in cascading effects, from lower to higher trophic levels, which in turn could affect the whole food web.
Collapse
Affiliation(s)
- Simona Mondellini
- Animal Ecology I, Universitaetsstraße 30, 95447 Bayreuth, Germany; BayCEER, Universitaetsstraße 30, 95447 Bayreuth, Germany.
| | - Matthias Schott
- Animal Ecology I, Universitaetsstraße 30, 95447 Bayreuth, Germany; BayCEER, Universitaetsstraße 30, 95447 Bayreuth, Germany.
| | - Martin G J Löder
- Animal Ecology I, Universitaetsstraße 30, 95447 Bayreuth, Germany; BayCEER, Universitaetsstraße 30, 95447 Bayreuth, Germany.
| | - Seema Agarwal
- Macromolecolar Chemistry II, Universitaetsstraße 30, 95447 Bayreuth, Germany.
| | - Andreas Greiner
- Macromolecolar Chemistry II, Universitaetsstraße 30, 95447 Bayreuth, Germany.
| | - Christian Laforsch
- Animal Ecology I, Universitaetsstraße 30, 95447 Bayreuth, Germany; BayCEER, Universitaetsstraße 30, 95447 Bayreuth, Germany.
| |
Collapse
|
7
|
Carbajal-Hernández AL, Arzate-Cárdenas MA, Valerio-García RC, Martínez-Jerónimo F. Commercial pesticides for urban applications induced population growth and sub-cellular alterations in Raphidocelis subcapitata (Chlorophyceae) at concerning environmental concentrations. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1462-1476. [PMID: 36319920 DOI: 10.1007/s10646-022-02596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Information regarding the safety and environmental risks of pesticides intended for urban use remains limited. This study aimed to assess the effects of four common pesticides on the microalga Raphidocelis subcapitata: DIAZINON® 25% C. E., Roundup®, URBACIN® 20C. E., and VAPODEL® 20% C. E., which are commercial formulations of diazinon, glyphosate, dichlorvos, and cypermethrin, respectively. According to 96-h inhibition of population growth bioassays, the four pesticide toxicities exemplified the following order: DIAZINON® (diazinon) > Roundup® (glyphosate) > VAPODEL® (dichlorvos) > URBACIN® (cypermethrin). Increasing pesticide concentrations elicited alterations in the specific growth rates (µmax). The macromolecule contents and photosynthetic pigments increased in groups exposed to the highest concentrations of DIAZINON® 25%, Roundup®, and URBACIN® 20 compared to the control group, despite these treatments inducing lower population growth rates. VAPODEL® 20% induced higher growth rates and lower macromolecule content compared to the control. Since active ingredients were not quantified, certain comparisons may prove limiting, but it is important to assess the effects of the whole mixtures in the form that they enter the environment, especially for urban-intended applications or generic formulations with higher additive contents. Finally, this study demonstrated that commercial pesticide formulations designed for urban applications might pose a threat to freshwater microalgae due to their underestimated toxic potential, but further studies are required.
Collapse
Affiliation(s)
- Ana Laura Carbajal-Hernández
- Laboratorio de Toxicología Acuática, Departamento de Química, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags, 20134, México
| | - Mario Alberto Arzate-Cárdenas
- Laboratorio de Toxicología Acuática, Departamento de Química, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags, 20134, México.
- Cátedras CONACYT. Consejo Nacional de Ciencia y Tecnología. Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, Ciudad de México, 03940, México.
| | - Roberto Carlos Valerio-García
- Laboratorio de Química Organometálica, Departamento de Química, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags, 20134, México
| | - Fernando Martínez-Jerónimo
- Laboratorio de Hidrobiología Experimental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y, Calle Plan de Ayala s/n, Ciudad de, México, 11340, México
| |
Collapse
|
8
|
Uçkun M. Assessing the toxic effects of bisphenol A in consumed crayfish Astacus leptodactylus using multi biochemical markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25194-25208. [PMID: 34839436 DOI: 10.1007/s11356-021-17701-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA), an endocrine-disrupting chemical (EDC), has strong potential for daily exposure to humans and animals due to its persistence and widespread in the environment, so its effects directly concern public health. Although invertebrates represent important components of aquatic ecosystems and are at significant risk of exposure, there is little information about the biological effects of EDCs in these organisms. Astacus leptodactylus used in this study is one of the most consumed and exported freshwater species in Europe. In this study, the 96-h effect of BPA on A. leptodactylus was examined using various biomarkers. The LC50 value of BPA was determined as 96.45 mg L-1. After 96 h of exposure to BPA, there were increases in superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) activities and levels of malondialdehyde (MDA), and total oxidant status context (TOSC), and there were decreases in the activity of glutathione reductase (GR), carboxylesterase (CaE), acetylcholinesterase (AChE), Na+/K+ ATPase, Mg2+ ATPase, Ca2+ ATPase, and total ATPase and the total antioxidant context (TAC). From the results of this study, it can be concluded that BPA has significant toxic effects on A. leptodactylus based on the selected biochemical parameters of antioxidant, cholinergic, detoxification, and metabolic systems in crayfish even at low doses. Thus, it can be said that BPA can seriously threaten the aquatic ecosystem and public health.
Collapse
Affiliation(s)
- Miraç Uçkun
- Department of Food Engineering, Faculty of Engineering, Adıyaman University, Altınşehir neighborhood, Ataturk Boulevard, No. 1, Central Campus, 02040, Central, Adiyaman, Turkey.
| |
Collapse
|
9
|
Ma C, Liu X, Zuo D. Cloning and characterization of AMP-activated protein kinase genes in Daphnia pulex: Modulation of AMPK gene expression in response to polystyrene nanoparticles. Biochem Biophys Res Commun 2021; 583:114-120. [PMID: 34735872 DOI: 10.1016/j.bbrc.2021.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022]
Abstract
Energy metabolism is essential for almost all organisms. At the molecular level, adenosine monophosphate activated protein kinase (AMPK) plays a vital role in cellular energy homeostasis. Its molecular characterization in invertebrates, including Daphnia pulex, and the understanding of its role in response to environmental contaminants is limited. In this study, three subunits of AMPK (AMPKα, β, and γ) were cloned in D. pulex, and assigned the GenBank accession numbers MT536758, MT536759, and MT536760, respectively. Their full lengths were 2,000, 1,384, and 2594 bp, respectively, and contained open reading frames of 526, 274, and 580 amino acids, respectively. Bioinformatic analysis revealed that the three AMPK subunits all have features representative of the AMPK superfamily, and were correspondingly clustered with each orthologue branch. The three AMPK subunit genes, AMPKα, β, and γ, had the highest similarity to those of other organisms at 82%, 94%, and 71%, respectively. Nanoplastics significantly increased AMPKα expression, but decreased that of AMPKβ and γ. These results identified AMPKα, β, and γ in D. pulex, and showed that they all encode proteins with conserved functional domains. This study provides basic information on how three types of AMPK in aquatic organisms respond to environmental contaminants.
Collapse
Affiliation(s)
- Changan Ma
- School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, 201415, China
| | - Xiaojie Liu
- School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, 201415, China
| | - Di Zuo
- School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, 201415, China.
| |
Collapse
|
10
|
Uçkun M, Özmen M. Evaluating Multiple Biochemical Markers in Xenopus laevis Tadpoles Exposed to the Pesticides Thiacloprid and Trifloxystrobin in Single and Mixed Forms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2846-2860. [PMID: 34255878 DOI: 10.1002/etc.5158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Pesticide exposure is thought to be one of the common reasons for the decline in amphibian populations, a phenomenon that is a major threat to global biodiversity. Although the single effects of pesticides on amphibians have been well studied, the effects of mixtures are not well known. The present study aimed to evaluate the acute toxicity of the insecticide thiacloprid and the fungicide trifloxystrobin on early developmental stages of Xenopus laevis using various biochemical markers (glutathione S-transferase, glutathione reductase, acetylcholinesterase, carboxylesterase, glutathione peroxidase, catalase, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, Na+ K+ -adenosine triphosphatase [ATPase], Ca2+ -ATPase, Mg2+ -ATPase, and total ATPase). The median lethal concentrations (LC50s) of thiacloprid and trifloxystrobin were determined to be 3.41 and 0.09 mg a.i. L-1 , respectively. Tadpoles were exposed to the LC50, LC50/2, LC50/10, LC50/20, LC50/50, and LC50/100 of these pesticides. Both pesticides significantly affected (inhibited/activated) the biomarkers even at low concentrations. The pesticides showed a synergistic effect when applied as a mixture and altered the biomarkers more than when applied individually. In conclusion, we can assume that tadpoles are threatened by these pesticides even at environmentally relevant concentrations. Our findings provide important data to guide management of the ecotoxicological effects of these pesticides on nontarget amphibians. Environ Toxicol Chem 2021;40:2846-2860. © 2021 SETAC.
Collapse
Affiliation(s)
- Miraç Uçkun
- Department of Food Engineering, Faculty of Engineering, Adiyaman University, Adiyaman, Turkey
| | - Murat Özmen
- Department of Biology, Faculty of Arts and Sciences, Inönü University, Malatya, Turkey
| |
Collapse
|
11
|
Zhou J, Du N, Li D, Qin J, Li H, Chen G. Combined effects of perchlorate and hexavalent chromium on the survival, growth and reproduction of Daphnia carinata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144676. [PMID: 33485194 DOI: 10.1016/j.scitotenv.2020.144676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/19/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Perchlorate and hexavalent chromium (Cr(VI)) are common cocontaminants in aquatic environments due to their high water solubility, stability, mobility, and some coapplications. However, few studies have investigated their combined toxicity to organisms. In this work, we studied the acute and chronic toxicities of perchlorate and Cr(VI), alone and in combination, with survival, growth, and reproduction as endpoints using Daphnia carinata as a model organism. For a single contaminant, Cr(VI) was found to be more toxic than perchlorate to D. carinata not only in terms of survival but also in terms of growth and reproduction. In regard to the combined pattern, the interactive effects on survival, growth, and reproduction were mainly additivity, antagonism, and synergism, respectively, suggesting that the interactive response of perchlorate and Cr(VI) is endpoint-specific. Due to significant synergism, over 21 days of observation, the inhibition of 0.1 mg/L perchlorate and 0.2 mg/L Cr(VI) on cumulative offspring per female in the first seven broods reached 63.9 ± 3.6%, suggesting that long-term exposure to perchlorate and Cr(VI) at environmentally relevant concentrations may affect D. carinata reproduction in the natural environment. Our results will be significant for understanding the complicated combined toxicity of perchlorate and Cr to aquatic organisms.
Collapse
Affiliation(s)
- Juanjuan Zhou
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ningning Du
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Dongqin Li
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Junhao Qin
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Huashou Li
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guikui Chen
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Brzeziński T, Czub M, Nawała J, Gordon D, Dziedzic D, Dawidziuk B, Popiel S, Maszczyk P. The effects of chemical warfare agent Clark I on the life histories and stable isotopes composition of Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115142. [PMID: 32750525 DOI: 10.1016/j.envpol.2020.115142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/07/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Chemical warfare agents (CWA) dumped worldwide in all types of aquatic reservoirs pose a potential environmental hazard. Leakage of CWAs from eroding containers at dumping sites had been observed, and their presence in the tissues of aquatic animals was confirmed. However, the ecological effects of CWA have not yet been studied. In standardized laboratory bioassays, we tested if sublethal concentration of Clark I, an arsenic based CWA, can affect life histories (somatic growth rate, fecundity, size at maturity), population growth rate and stable isotope signatures of a keystone crustacean grazer Daphnia magna. We found that the life histories and fitness of daphnids reared in the presence of Clark I differed from those reared in Clark-free conditions. The effects were observed when Clark I concentrations were no less than 5 μg×L-1. With increasing concentrations of the tested CWA, all of the tested parameters decreased linearly. The finding indicates that even sublethal concentrations of Clark I can affect crustacean populations, which should be taken into account when assessing the environmental risks of this particular CWA. We found intraspecific diversity in susceptibility to Clark I, with some clones being significantly less vulnerable than others. We also found that in the presence of Clark I, the ratio of heavy and light isotopes of nitrogen in the bodies of daphnids was affected - daphnids exhibited δ15N enrichment with increasing concentrations of this CWA. The isotopic composition of carbon was not affected by the presence of Clark I. The nitrogen isotopic signature may be used as an indicator of stress in zooplankton exposed to the presence of toxic xenobiotics.
Collapse
Affiliation(s)
- Tomasz Brzeziński
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Michał Czub
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Jakub Nawała
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. W. Urbanowicza 2, 00-908, Warsaw, Poland
| | - Diana Gordon
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. W. Urbanowicza 2, 00-908, Warsaw, Poland
| | - Daniel Dziedzic
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. W. Urbanowicza 2, 00-908, Warsaw, Poland
| | - Barbara Dawidziuk
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. W. Urbanowicza 2, 00-908, Warsaw, Poland
| | - Stanisław Popiel
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. W. Urbanowicza 2, 00-908, Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| |
Collapse
|
13
|
Kovacevic V, Simpson AJ, Simpson MJ. Metabolic profiling of Daphnia magna exposure to a mixture of hydrophobic organic contaminants in the presence of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1252-1262. [PMID: 31726555 DOI: 10.1016/j.scitotenv.2019.06.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
The hydrophobic organic contaminants triclosan, triphenyl phosphate (TPhP) and diazinon sorb to dissolved organic matter (DOM) and this may alter their bioavailability and toxicity. 1H nuclear magnetic resonance (NMR)-based metabolomics was used to investigate how DOM at 1 and 5 mg organic carbon/L may alter the metabolome of Daphnia magna from exposure to equitoxic mixtures of triclosan, TPhP and diazinon. These contaminants have different modes of action toward D. magna. The contaminant concentrations in each mixture were an equal percentage of their lethal concentration to 50% of the population (LC50) values, which equates to 1250 μg/L TPhP, 330 μg/L triclosan and 0.9 μg/L diazinon. The ternary mixture exposure at 1% LC50 values did not alter the D. magna metabolome. Contaminant mixture exposures at 5%, 10%, and 15% LC50 values decreased glucose, serine and glycine concentrations and increased asparagine and threonine concentrations, suggesting disruptions in energy metabolism. The contaminant mixture had a unique mode of action in D. magna and DOM at 1 and 5 mg organic carbon/L did not change this mode of action. The estimated sorption of triclosan, TPhP or diazinon to DOM at 1 or 5 mg organic carbon/L in this experimental design was calculated to be <50% for each contaminant. This suggests that the mode of action of the contaminant mixture was not altered by DOM because the two environmentally relevant concentrations of DOM may have not substantially altered contaminant bioavailability. Our results indicate that DOM may not inevitably mitigate or alter the sub-lethal toxicity of a mixture of hydrophobic organic contaminants. This indicates the complexity of predicting the molecular-level toxicity of environmental mixtures. For adequate risk assessment of freshwater ecosystems, it is vital to account for the combined sub-lethal toxicity of an environmental mixture of contaminants.
Collapse
Affiliation(s)
- Vera Kovacevic
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
14
|
Osorio-Treviño OC, Arzate-Cárdenas MA, Rico-Martínez R. Energy budget in Alona guttata (Chydoridae: Aloninae) and toxicant-induced alterations. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:398-407. [PMID: 30688169 DOI: 10.1080/10934529.2018.1558901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/23/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Although chydorids are the most diverse cladocerans in the world, there is still little information available related to their biology and even less with respect to their susceptibility to toxicants. Therefore, this work aimed to implement protocols with Alona guttata for acute, chronic, and sublethal toxicity tests, using the environmental concern toxicants deltamethrin (DM) and lead (Pb2+), which are commonly used due to agriculture and vector control or for the automotive industry, respectively. Once the results of LC50 (0.1160 ± 0.0107 μg/L for DM and 1.5797 ± 0.1605 mg/L for Pb2+) were obtained, sublethal concentrations (0.01 to 0.2 LC50) were used for the evaluation of biomarkers and chronic toxicity. Concentrations as low as 0.01 LC50 reduced Alona's survival and fecundity, negatively affecting demographic parameters, and decreased the energy reserves. A significant correlation was found between the natural rate of population increase and the caloric content, which demonstrates the suitability of these biomarkers as endpoints of early warning that allow inferring alterations at higher biological levels. Subsequently, this work could constitute the first report on the evaluation of the energy budget in a non-daphnid species, its alterations due to exposure to toxic substances and the correlation with demographic responses.
Collapse
Affiliation(s)
- Olga C Osorio-Treviño
- a Laboratorio de Toxicología Acuática, Centro de Ciencias Básicas , Universidad Autónoma de Aguascalientes , Aguascalientes , AGS , México
| | - Mario A Arzate-Cárdenas
- a Laboratorio de Toxicología Acuática, Centro de Ciencias Básicas , Universidad Autónoma de Aguascalientes , Aguascalientes , AGS , México
- b Cátedras CONACYT. Consejo Nacional de Ciencia y Tecnología , Benito Juárez , Ciudad de México , México
| | - Roberto Rico-Martínez
- a Laboratorio de Toxicología Acuática, Centro de Ciencias Básicas , Universidad Autónoma de Aguascalientes , Aguascalientes , AGS , México
| |
Collapse
|
15
|
Liu Z, Cai M, Yu P, Chen M, Wu D, Zhang M, Zhao Y. Age-dependent survival, stress defense, and AMPK in Daphnia pulex after short-term exposure to a polystyrene nanoplastic. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:1-8. [PMID: 30153596 DOI: 10.1016/j.aquatox.2018.08.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
The widespread occurrence and accumulation of micro- and nanoplastics in aquatic environments has become a growing global concern. Generally, natural aquatic populations are characterized by a variety of multi-structured age groups, for which physiological and biochemical responses typically differ. The freshwater cladoceran, Daphnia pulex, is a model species used extensively in environmental monitoring studies and ecotoxicology testing. Here, the effects of a polystyrene nanoplastic on the physiological changes (i.e., survival) and expression levels of stress defense genes (i.e., those encoding antioxidant-mediated and heat shock proteins) in this freshwater flea were measured. Results from acute bioassays were used to determine the respective nanoplastic LC50 values for five age groups (1-, 4-, 7-, 14- and 21-day-old individuals): the obtained values for the 1- and 21-day-old D. pulex groups were similar (i.e., not significantly different). The expression levels of genes encoding key stress defense enzymes and proteins-SOD, CAT, GST, GPx, HSP70, and HSP90-were influenced by the nanoplastic in all the age groups, but not in the same way for each. Significant differences were observed among all age groups in their expression of the gene encoding the energy-sensing enzyme AMPK (adenosine monophosphate-activated protein kinase) α, β, and γ following exposure to the nanoplastic. Moreover, the expression of AMPK α was significantly increased in the 1-, 7-, and 21-day-old individuals exposed to nanoplastic relative to the control group. Together, these results indicate that age in D. pulex affects the sensitivity of its individuals to pollution from this nanoplastic, primarily via alterations to vital physiological and biochemical processes, such as cellular energy homeostasis and oxidation, which were demonstrated in vivo. We speculate that such age-related effects may extend to other nanoplastics and forms of pollution in D. pulex and perhaps similar marine organisms.
Collapse
Affiliation(s)
- Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Mingqi Cai
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ping Yu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Minghai Chen
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Donglei Wu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Meng Zhang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
16
|
Velmurugan B, Senthilkumaar P, Karthikeyan S. Toxicity impact of fenvalerate on the gill tissue of Oreochromis mossambicus with respect to biochemical changes utilizing FTIR and principal component analysis. J Biol Phys 2018; 44:301-315. [PMID: 29546649 PMCID: PMC6082805 DOI: 10.1007/s10867-018-9484-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/28/2018] [Indexed: 02/08/2023] Open
Abstract
The use of pesticides in agriculture can make their way into the earth and wash into the amphibian system causing ecological stress. This study aims to understand the changes occurring in gill tissues as a result of fenvalerate exposure using Fourier-transform infrared spectroscopy. The intensity ratio of the selected bands I1545/I1657, I2924/I2853, and I1045/I1545 measures changes in proteins, lipids, and carbohydrates. Curve-fitting analysis was performed in the selected band region to analyze the quantitative changes of proteins, lipids, and carbohydrates. The band area ratio of CH3/asCH2+ sCH2 shows the absence of a long chain of fatty acids due to fenvalerate treatment. The band area ratio of asCH2/sCH2 increases for higher sublethal concentrations, which shows the lower disorder of lipid acyl chain flexibility. A decrease in lipids was found in lower sublethal concentrations. The secondary structure of proteins affirms β sheet development. Carbohydrate metabolism of gill tissues demonstrates a decrease in glycogen contents. A further decrease in glycogen content and an increase in lactic acid were observed when presented to a fenvalerate concentration. PCA plots indicate distinct variations among the biochemical parameters of the gill tissues. This study provides a quantitative examination of assessing pesticide toxicity in aquatic environments.
Collapse
Affiliation(s)
- B Velmurugan
- P.G. & Research Department of Zoology, Sir Theagaraya College, Chennai, 600 021, India
| | - P Senthilkumaar
- P.G. & Research Department of Zoology, Sir Theagaraya College, Chennai, 600 021, India
| | - S Karthikeyan
- Department of Physics, Dr. Ambedkar Government Arts College, Chennai, 600 039, India.
| |
Collapse
|
17
|
Suzuki J, Imamura M, Nakano D, Yamamoto R, Fujita M. Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1078-1085. [PMID: 29554729 DOI: 10.1016/j.scitotenv.2018.02.286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/03/2018] [Accepted: 02/23/2018] [Indexed: 05/12/2023]
Abstract
Anthropogenic water turbidity derived from suspended solids (SS) is caused by reservoir sediment management practices such as drawdown flushing. Turbid water induces stress in many aquatic organisms, but the effects of turbidity on oxidative stress responses in aquatic insects have not yet been demonstrated. Here, we examined antioxidant responses, oxidative damage, and energy reserves in caddisfly (Stenopsyche marmorata) larvae exposed to turbid water (0 mg SS L-1, 500 mg SS L-1, and 2000 mg SS L-1) at different temperatures. We evaluated the combined effects of turbid water and temperature by measuring oxidative stress and using metabolic biomarkers. No turbidity level was significantly lethal to S. marmorata larvae. Moreover, there were no significant differences in antioxidant response or oxidative damage between the control and turbid water treatments at a low temperature (10 °C). However, at a high temperature (25 °C), turbid water modulated the activity of the antioxidant enzymes superoxide dismutase and catalase and the oxygen radical absorbance capacity as an indicator of the redox state of the insect larvae. Antioxidant defenses require energy, and high temperature was associated with low energy reserves, which might limit the capability of organisms to counteract reactive oxygen species. Moreover, co-exposure to turbid water and high temperature caused fluctuation of antioxidant defenses and increased the oxidative damage caused by the production of reactive oxygen species. Furthermore, the combined effect of high temperature and turbid water on antioxidant defenses and oxidative damage was larger than the individual effects. Therefore, our results demonstrate that exposure to both turbid water and high temperature generates additive and synergistic interactions causing oxidative stress in this aquatic insect species.
Collapse
Affiliation(s)
- Jumpei Suzuki
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko1646, Abiko, Chiba 270-1194, Japan; Department of Urban and Civil Engineering, College of Engineering, Ibaraki University, Nakanarusawa4-12-1, Hitachi, Ibaraki 316-8511, Japan.
| | - Masahiro Imamura
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko1646, Abiko, Chiba 270-1194, Japan
| | - Daisuke Nakano
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko1646, Abiko, Chiba 270-1194, Japan
| | - Ryosuke Yamamoto
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko1646, Abiko, Chiba 270-1194, Japan
| | - Masafumi Fujita
- Department of Urban and Civil Engineering, College of Engineering, Ibaraki University, Nakanarusawa4-12-1, Hitachi, Ibaraki 316-8511, Japan
| |
Collapse
|
18
|
Demirci Ö, Güven K, Asma D, Öğüt S, Uğurlu P. Effects of endosulfan, thiamethoxam, and indoxacarb in combination with atrazine on multi-biomarkers in Gammarus kischineffensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:749-758. [PMID: 28942278 DOI: 10.1016/j.ecoenv.2017.09.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Studies addressing the toxicity of pesticides towards non-target organisms focus on the median lethal concentration and biochemical response of individual pesticides. However, when determining environmental risks, it is important to test the combined effects of pesticides, such as insecticides and herbicides, which are frequently used together in agricultural areas. Here we aimed to investigate the toxic effects of the combined use of the herbicide atrazine and the insecticides, endosulfan, indoxacarb, and thiamethoxam on Gammarus kischineffensis. To do this, we tested the activities of oxidative stress, detoxification, and neurotoxicity biomarkers. Compared to atrazine alone, we detected higher glutathione-S-transferase, catalase and superoxide dismutase activities (oxidative stress biomarkers) when atrazine was combined with either endosulfan or indoxacarb. However, higher IBR values were determined in organisms where pesticide mixtures were used according to individual use. Based on these results, mixtures of atrazine and other pesticides may cause synergistic effects and may be evidence of increased toxicity and oxidative stress.
Collapse
Affiliation(s)
- Özlem Demirci
- Science Faculty, Department of Biology, Dicle University, 21280, Turkey.
| | - Kemal Güven
- Science Faculty, Department of Molecular Biology and Genetics, Dicle University, 21280, Turkey.
| | - Dilek Asma
- Science Faculty, Department of Biology, Inonu University, 21280, Turkey.
| | - Serdal Öğüt
- School of Health, Department of Nutrition and Dietetics, Adnan Menderes University, 09100, Turkey.
| | - Pelin Uğurlu
- Science and Technology Application and Research Center, Dicle University, 21280, Turkey.
| |
Collapse
|
19
|
Valerio-García RC, Carbajal-Hernández AL, Martínez-Ruíz EB, Jarquín-Díaz VH, Haro-Pérez C, Martínez-Jerónimo F. Exposure to silver nanoparticles produces oxidative stress and affects macromolecular and metabolic biomarkers in the goodeid fish Chapalichthys pardalis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:308-318. [PMID: 28117161 DOI: 10.1016/j.scitotenv.2017.01.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Silver nanoparticles (AgNPs) are the most commercialized nanomaterial worldwide, mainly due to their microbicidal activity. Although, AgNPs have been shown to be toxic to aquatic species, their effect on endemic fish, like Goodeidae, has not been demonstrated. Endemic species are under strong pressures by anthropogenic contamination and destruction of their habitat; therefore, we studied adult Chapalichthys pardalis, an endemic fish of Mexico. We evaluated the toxic effect of AgNPs through oxidative stress, macromolecular and metabolic biomarkers. We determined the LC50 (96h) and performed subchronic tests (21days) using sublethal AgNPs concentrations (equivalent to CL1 and CL10). At the end of the bioassay, we quantified 10 stress biomarkers in the liver, gills, and muscle, including the antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], and glutathione [GPx]), thiobarbituric acid reactive species (TBARS), protein oxidation (CO), macromolecules (proteins, lipids, and carbohydrates), and metabolites (glucose and lactate). In addition, we determined the integrated biomarkers response (IBR). LC50 was of 10.32mgL-1. Results of subchronic exposure (21days) revealed that AgNPs produce oxidative stress in C. pardalis adults, as evidenced by a diminution in antioxidant enzymes activity and an increase in TBARS and oxidized proteins. AgNPs also diminished levels of macromolecules and generated a high-energy consumption, reflected in the reduction of glucose levels, although lactate levels were not altered. The IBR analysis evidenced that the largest effect was produced in organisms exposed to LC10, being the liver and gills the organs with the greatest damage. Results demonstrated that exposure to AgNPs induces acute and chronic toxic effects on C. pardalis and forewarns about the impact that these nanomaterials can exert on these ecologically relevant aquatic organisms.
Collapse
Affiliation(s)
- Roberto Carlos Valerio-García
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N, Col. Santo Tomas, Mexico City C.P. 11340, Mexico
| | - Ana Laura Carbajal-Hernández
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N, Col. Santo Tomas, Mexico City C.P. 11340, Mexico
| | - Erika Berenice Martínez-Ruíz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N, Col. Santo Tomas, Mexico City C.P. 11340, Mexico
| | - Víctor Hugo Jarquín-Díaz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N, Col. Santo Tomas, Mexico City C.P. 11340, Mexico
| | - Catalina Haro-Pérez
- Universidad Autónoma Metropolitana, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, Azcapotzalco, Mexico City C.P. 02200, Mexico
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N, Col. Santo Tomas, Mexico City C.P. 11340, Mexico.
| |
Collapse
|
20
|
Lyu K, Gu L, Li B, Lu Y, Wu C, Guan H, Yang Z. Stress-responsive expression of a glutathione S-transferase (delta) gene in waterflea Daphnia magna challenged by microcystin-producing and microcystin-free Microcystis aeruginosa. HARMFUL ALGAE 2016; 56:1-8. [PMID: 28073492 DOI: 10.1016/j.hal.2016.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 05/27/2023]
Abstract
Harmful cyanobacterial blooms resulting from eutrophication and global warming have emerged as a worldwide environmental concern. Some zooplankton populations, including Daphnia, have been shown to adapt locally to microcystin-producing Microcystis. Previous in vitro experiments indicate that glutathione-S-transferase (GST) may act as the first step of detoxification in Daphnia by conjugating microcystins (MCs) with glutathione. The GST family is categorized into many classes, and different classes present distinct responses to MC detoxification. To date, however, the molecular mechanism of single class GST participation in buffering the toxic effects of MCs in Daphnia remains poorly known. In this study, a full-length delta-GST cDNA of Daphnia magna (Dm-dGST) was isolated and characterized through bioinformatics. Differential gene expression studies revealed that short-term exposure to microcystin-producing (MP) Microcystis aeruginosa increased Dm-dGST transcript levels. By contrast, long-term exposure to MP or microcystin-free (MF) M. aeruginosa decreased Dm-dGST transcript levels. Together with changes in three other antioxidation biomarkers (catalase, CuZn- and Mn-superoxide dismutase), it is concluded that Dm-dGST can potentially biotransform MCs to reduce their toxicity. The present study highlights the importance of Dm-dGST in response to MC toxicity and may thus facilitate future research on the molecular mechanisms of MC tolerance in zooplankton under an increasing eutrophic world.
Collapse
Affiliation(s)
- Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bangping Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yichun Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Changcan Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Haoyong Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
21
|
Güngördü A, Uçkun M, Yoloğlu E. Integrated assessment of biochemical markers in premetamorphic tadpoles of three amphibian species exposed to glyphosate- and methidathion-based pesticides in single and combination forms. CHEMOSPHERE 2016; 144:2024-35. [PMID: 26595308 DOI: 10.1016/j.chemosphere.2015.10.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
In this study, we evaluated the toxic effects of a glyphosate-based herbicide (GBH) and a methidathion-based insecticide (MBI), individually and in combination, on premetamorphic tadpoles of three anuran species: Pelophylax ridibundus, Xenopus laevis, and Bufotes viridis. Based on the determined 96-h LC50 values of each species, the effects of a series of sublethal concentrations of single pesticides and their mixtures after 96-h exposure and also the time-related effects of a high sublethal concentration of each pesticide were evaluated, with determination of changes in selected biomarkers: glutathione S-transferase (GST), glutathione reductase (GR), acetylcholinesterase (AChE), carboxylesterase (CaE), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH). Also, the integrated biomarker response (IBR) was used to assess biomarker responses and quantitatively evaluate toxicological effects. Isozyme differences in CaE inhibition were assessed using native page electrophoresis; results showed that GBH to cause structural changes in the enzyme but not CaE inhibition in P. ridibundus. In general, single MBI and pesticide mixture exposures increased GST activity, while single GBH exposures decreased GST activity in exposed tadpoles. The AChE and CaE activities were inhibited after exposure to all single MBI and pesticide mixtures. Also, higher IBR values and GST, GR, AST, and LDH activities were determined for pesticide mixtures compared with single-pesticide exposure. This situation may be indicative of a synergistic interaction between pesticides and a sign of a more stressful condition.
Collapse
Affiliation(s)
- Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey.
| | - Miraç Uçkun
- Department of Food Engineering, Faculty of Engineering, Adiyaman University, 02040, Adiyaman, Turkey
| | - Ertan Yoloğlu
- Department of Science Education, Faculty of Education, Adiyaman University, 02040, Adiyaman, Turkey
| |
Collapse
|
22
|
Hudson SL, Doke DA, Gohlke JM. The effect of a low iron diet and early life methylmercury exposure in Daphnia pulex. Food Chem Toxicol 2016; 89:112-9. [PMID: 26806633 DOI: 10.1016/j.fct.2016.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/04/2015] [Accepted: 01/20/2016] [Indexed: 11/30/2022]
Abstract
Iron (Fe) deficiency increases risk for adverse health outcomes in humans; however little is known about the potential interaction with methylmercury (MeHg) exposure. Studies testing multiple stressor hypotheses are expensive and time consuming in mammalian model systems; therefore, determining relevance of alternative models is important. Daphnia pulex were fed standard or low-Fe diets of freshwater algae, Ankistrodesmus falcatus. MeHgCl (1600 ng/L) or vehicle was added to culture media for 24 h during early life, and the combinatorial effects of a low-Fe diet and MeHg exposure on lifespan, maturation time, and reproduction were evaluated. Lipid storage effects were measured using image analysis of Oil Red O staining and triacylglyceride quantification. Our results show a dose-dependent reduction in lifespan in D. pulex fed low Fe diets. Lipid analysis suggests an interactive effect of diet and MeHg exposure, with MeHg exposure increasing lipid storage in D. pulex fed a low-Fe diet. These findings suggest the effects of dietary iron intake and early life MeHg exposure in D. pulex may be mediated by changes in energetics that result in differential lipid storage. Therefore, lipid storage in D. pulex may be a useful screen for detecting long-term effects of multiple stressors early in life.
Collapse
Affiliation(s)
- Sherri L Hudson
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dzigbodi A Doke
- Department of Environment and Resource Studies, University for Development Studies, Wa, Ghana
| | - Julia M Gohlke
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Population Health Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
23
|
Adam N, Vergauwen L, Blust R, Knapen D. Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles. ENVIRONMENTAL RESEARCH 2015; 138:82-92. [PMID: 25704829 DOI: 10.1016/j.envres.2015.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 06/04/2023]
Abstract
There is still a lot of contradiction on whether metal ions are solely responsible for the observed toxicity of ZnO and CuO nanoparticles to aquatic species. While most experiments have studied nanoparticle effects at organismal levels (e.g. mortality, reproduction), effects at lower levels of biological organization may clarify the role of metal ions, nanoparticles and nanoparticle aggregates. In this study, the effect of ZnO and CuO nanoparticles was tested at two lower levels: energy reserves and gene transcription and compared with zinc and copper salts. Daphnia magna was exposed during 96h to 10% immobilization concentrations of all chemicals, after which daphnids were sampled for determination of glycogen, lipid and protein concentration and for a differential gene transcription analysis using microarray. The dissolved, nanoparticle and aggregated fraction in the medium was characterized. The results showed that ZnO nanoparticles had largely dissolved directly after addition to the test medium. The CuO nanoparticles mostly formed aggregates, while only a small fraction dissolved. The exposure to zinc (both nano and metal salt) had no effect on the available energy reserves. However, in the copper exposure, the glycogen, lipid and protein concentration in the exposed daphnids was lower than in the unexposed ones. When comparing the nanoparticle (ZnO or CuO) exposed daphnids to the metal salt (zinc or copper salt) exposed daphnids, the microarray results showed no significantly differentially transcribed gene fragments. The results indicate that under the current exposure conditions the toxicity of ZnO and CuO nanoparticles to D. magna is solely caused by toxic metal ions.
Collapse
Affiliation(s)
- Nathalie Adam
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Lucia Vergauwen
- Zebrafishlab, Physiology and Biochemistry of Domestic Animals, Department of Veterinary Sciences, University of Antwerp. Universiteitslaan 1, 2610 Wilrijk, Belgium.
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Dries Knapen
- Zebrafishlab, Physiology and Biochemistry of Domestic Animals, Department of Veterinary Sciences, University of Antwerp. Universiteitslaan 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
24
|
Bernard F, Brulle F, Dumez S, Lemiere S, Platel A, Nesslany F, Cuny D, Deram A, Vandenbulcke F. Antioxidant responses of Annelids, Brassicaceae and Fabaceae to pollutants: a review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:273-303. [PMID: 24951273 DOI: 10.1016/j.ecoenv.2014.04.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 04/15/2014] [Accepted: 04/20/2014] [Indexed: 06/03/2023]
Abstract
Pollutants, such as Metal Trace Elements (MTEs) and organic compounds (polycyclic aromatic hydrocarbons, pesticides), can impact DNA structure of living organisms and thus generate damage. For instance, cadmium is a well-known genotoxic and mechanisms explaining its clastogenicity are mainly indirect: inhibition of DNA repair mechanisms and/or induction of Reactive Oxygen Species (ROS). Animal or vegetal cells use antioxidant defense systems to protect themselves against ROS produced during oxidative stress. Because tolerance of organisms depends, at least partially, on their ability to cope with ROS, the mechanisms of production and management of ROS were investigated a lot in Ecotoxicology as markers of biotic and abiotic stress. This was mainly done through the measurement of enzyme activities The present Review focuses on 3 test species living in close contact with soil that are often used in soil ecotoxicology: the worm Eisenia fetida, and two plant species, Trifolium repens (white clover) and Brassica oleracea (cabbage). E. fetida is a soil-dwelling organism commonly used for biomonitoring. T. repens is a symbiotic plant species which forms root nodule with soil bacteria, while B. oleracea is a non-symbiotic plant. In literature, some oxidative stress enzyme activities have already been measured in those species but such analyses do not allow distinction between individual enzyme involvements in oxidative stress. Gene expression studies would allow this distinction at the transcriptomic level. A literature review and a data search in molecular database were carried out on the basis of keywords in Scopus, in PubMed and in Genbank™ for each species. Molecular data regarding E. fetida were already available in databases, but a lack of data regarding oxidative stress related genes was observed for T. repens and B. oleracea. By exploiting the conservation observed between species and using molecular biology techniques, we partially cloned missing candidates involved in oxidative stress and in metal detoxification in E. fetida, T. repens and B. oleracea.
Collapse
Affiliation(s)
- F Bernard
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - F Brulle
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - S Dumez
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - S Lemiere
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France
| | - A Platel
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Toxicologie - Institut Pasteur de Lille, EA 4483, F-59800 Lille, France
| | - F Nesslany
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Toxicologie - Institut Pasteur de Lille, EA 4483, F-59800 Lille, France
| | - D Cuny
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - A Deram
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France; Faculté de Management de la Santé (ILIS) - Université de Lille 2, EA4483, F-59120 Loos, France
| | - F Vandenbulcke
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France.
| |
Collapse
|
25
|
Adam N, Leroux F, Knapen D, Bals S, Blust R. The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios. WATER RESEARCH 2015; 68:249-261. [PMID: 25462733 DOI: 10.1016/j.watres.2014.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/11/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
In this study, the uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna was tested. Daphnids were exposed during 10 days to sublethal concentrations of ZnO and CuO nanoparticles and corresponding metal salts (ZnCl₂ and CuCl₂.2H₂O), after which they were transferred to unexposed medium for another 10 days. At different times during the exposure and none-exposure, the total and internal zinc or copper concentration of the daphnids was determined and the nanoparticles were localized in the organism using electron microscopy. The exposure concentrations were characterized by measuring the dissolved, nanoparticle and aggregated fraction in the medium. The results showed that the ZnO nanoparticles quickly dissolved after addition to the medium. Contrarily, only a small fraction (corresponding to the dissolved metal salt) of the CuO nanoparticles dissolved, while most of these nanoparticles formed large aggregates. Despite an initial increase in zinc and copper concentration during the first 48 h to 5 day exposure, the body concentration reached a plateau level that was comparable for the ZnO nanoparticles and ZnCl₂, but much higher for the CuO nanoparticles (with visible aggregates accumulating in the gut) than CuCl₂.2H₂O. During the remaining exposure and subsequent none-exposure phase, the zinc and copper concentration decreased fast to concentrations comparable with the unexposed daphnids. The results indicate that D. magna can regulate its internal zinc and copper concentration after exposure to ZnO and CuO nanoparticles, similar as after exposure to metal salts. The combined dissolution, accumulation and toxicity results confirm that the toxicity of ZnO and CuO nanoparticles is caused by the dissolved fraction.
Collapse
Affiliation(s)
- Nathalie Adam
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | | | | | | | | |
Collapse
|
26
|
Beyer J, Aarab N, Tandberg AH, Ingvarsdottir A, Bamber S, Børseth JF, Camus L, Velvin R. Environmental harm assessment of a wastewater discharge from Hammerfest LNG: a study with biomarkers in mussels (Mytilus sp.) and Atlantic cod (Gadus morhua). MARINE POLLUTION BULLETIN 2013; 69:28-37. [PMID: 23419752 DOI: 10.1016/j.marpolbul.2013.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 12/29/2012] [Accepted: 01/03/2013] [Indexed: 06/01/2023]
Abstract
Biologically treated wastewater (WW) from the Hammerfest LNG (liquefied natural gas) plant is discharged to the sea. A study using biomarkers in mussels and Atlantic cod was performed to examine whether this discharge meets a zero harmful emission requirement. Caging of mussels close to the outfall and exposure of mussels and fish to WW in the laboratory were conducted, and a suite of contaminant responsive markers was assessed in exposed animals. In mussels the markers included chemical contaminant levels, haemocyte lysosomal instability and nucleus integrity, cellular energy allocation, digestive gland and gonad histopathology and shell-opening behaviour. In fish, biliary PAH metabolites and gill histopathology biomarkers were measured. A consistent cause-effect relationship between WW treatments and markers measured in test animals was not found. The results therefore indicate that the WW emission is unlikely to represent a significant stress factor for the local marine environment under the conditions studied.
Collapse
Affiliation(s)
- Jonny Beyer
- IRIS - International Research Institute of Stavanger, N-4068 Stavanger, Norway.
| | | | | | | | | | | | | | | |
Collapse
|