1
|
Zhu S, Tang X, Zhang J, Hu J, Gao X, Li D, Jia W. Urinary extracellular vesicles prevent di-(2-ethylhexyl) phthalate-induced hypospadias by facilitating epithelial-mesenchymal transition via PFN2 delivery. Cell Biol Toxicol 2023; 39:2569-2586. [PMID: 37953354 DOI: 10.1007/s10565-023-09838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Urinary extracellular vesicles (EVs) have gained increasing interest in recent years as a potential source of noninvasive biomarkers of diseases related to urinary organs, but knowledge of the mechanism is still limited. The current study sought to clarify the mechanism of urinary EVs behind di-(2-ethylhexyl) phthalate (DEHP)-induced hypospadias via PFN2 delivery. METHOD PFN2 expression in hypospadias was predicted by bioinformatics analysis. Following the induction of a hypospadias rat model using DEHP, rats were injected with EVs and/or underwent alteration of PFN2 and TGF-β1 to assess their effects in vivo. The extracted rat urothelial cells (UECs) were co-cultured with EVs extracted from urine for in vitro experiments. RESULT Microarray analysis predicted poor PFN2 expression in hypospadias. Upregulated PFN2 was found in urinary EVs, and restrained epithelial-mesenchymal transition (EMT) was observed in DEHP-exposed rats. Urinary EVs or PFN2 overexpression increased SMAD2, SMAD3, and TGF-β1 protein expression and SMAD2 and SMAD3 phosphorylation in UECs and DEHP-exposed rats. UEC migration, invasion, and EMT were augmented by EV co-culture or upregulation of PFN2. Of note, the silencing of TGF-β1 counterweighed the effect of PFN2. Besides, EV co-culture or overexpression of PFN2 or TGF-β1 elevated the body weight, anal-genital distance (AGD), anal-genital index (AGI), and EMT of DEHP-exposed rats. CONCLUSION In summary, urinary EVs activated the SMAD/TGF-β1 pathway to induce EMT via PFN2 delivery, thus protecting against DEHP-induced hypospadias. (1) EMT in epithelial cells inhibits DEHP-induced hypospadias. (2) Urine-derived EVs deliver PFN2 to promote EMT in epithelial cells. (3) PFN2 can activate the SMAD/TGF-β1 signaling axis. (4) Urine-derived EVs can transmit PFN2 to activate the SMAD/TGF-β1 signaling axis, thus promoting EMT and inhibiting the occurrence of hypospadias.
Collapse
Affiliation(s)
- Shibo Zhu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Xiangliang Tang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Jin Zhang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Jinhua Hu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Xiaofeng Gao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Dian Li
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China.
| |
Collapse
|
2
|
Zhang H, Yi X, Hu W, Zhu G, Fu X, Jin W, Qin L, Li M. MEHP activates JNK to inhibit the migration of human foreskin fibroblasts. Syst Biol Reprod Med 2023; 69:423-434. [PMID: 37812750 DOI: 10.1080/19396368.2023.2262082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023]
Abstract
This study aimed to investigate the impact of mono(2-ethylhexyl) phthalate (MEHP) on the proliferation, apoptosis, and migration of human foreskin fibroblast cells (HFF-1) and the role of the JNK signaling pathway in cell migration. HFF-1 cells were randomly assigned to the control group with 0 MEHP exposure (M0) or the experimental groups with 25, 50, 100, 200, and 400 μmol/L MEHP exposure (M25, M50, M100, M200, and M400, respectively). After 24 and 48 h of MEHP exposure, the proliferation of HFF-1 cells in any group had no significant change. However, compared with the M0 group, the M200 and M400 groups presented substantially increased apoptosis of HFF-1 cells. Moreover, cell migration ability significantly decreased in all groups (p < 0.05). Additionally, the transcription and phosphorylated protein activation of JNK kinase in HFF-1 cells were substantially upregulated with the increase in MEHP exposure. Subsequently, HFF-1 cells were randomly divided into three groups: the DMSO blank control group, the 100 μM MEHP experimental group (M100), and the 100 μM MEHP plus 10 μM SP600125 (specific JNK inhibitor) experimental group (S10). The activation of JNK protein in HFF-1 cells was substantially downregulated in the S10 group. HFF-1 cells were also divided into the blank control group (M0). They were treated with 100 μM MEHP and varying concentrations of SP600125 (5, 10, and 15 μM for S5, S10, and S15, respectively). As the concentration of the antagonist increased, the migration ability of HFF-1 cells was returned to normal. Finally, the ROS in HFF-1 cells increased under MEHP exposure. This finding indicates that the regulation of cell migration by the JNK signaling pathway may be important in the occurrence of hypospadias.
Collapse
Affiliation(s)
- Hu Zhang
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Xuan Yi
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Wei Hu
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Guoqiang Zhu
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Xiaowen Fu
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Wei Jin
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Long Qin
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Mingyong Li
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
3
|
Lee SH, Du ZY, Tseng WC, Lin WY, Chen MH, Lin CC, Liang HJ, Wen HJ, Guo YL, Chen PC, Lin CY. Identification of serum metabolic signatures of environmental-leveled phthalate in the Taiwanese child population using NMR-based metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120454. [PMID: 36306885 DOI: 10.1016/j.envpol.2022.120454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Phthalates have become important environmental pollutants due to their high exposure frequency in daily life; thus, phthalates are prevalent in humans. Although several epidemiologic surveys have linked phthalates with several adverse health effects in humans, the molecular events underlying phthalate exposure have not been fully elucidated. The purpose of this study was to reveal associations between phthalate exposure and the serum metabolome in Taiwanese children using a metabolomic approach. A total of 256 Taiwanese children (8-10 years old) from two cohorts were enrolled in this study. Twelve urinary phthalate metabolites were analyzed by high-performance liquid chromatography/tandem mass spectrometry, while a nuclear magnetic resonance-based metabolomic approach was used to record serum metabolic profiles. The associations between metabolic profiles and phthalate levels were assessed by partial least squares analysis coupled with multiple linear regression analysis. Our results revealed that unique phthalate exposures, such as mono-isobutyl phthalate, mono-n-butyl phthalate, and mono (2-ethyl-5-oxohexyl) phthalate, were associated with distinct serum metabolite profiles. These phthalate-mediated metabolite changes may be associated with perturbed energy mechanisms, increased oxidative stress, and lipid metabolism. In conclusion, this study suggests that metabolomics is a valid approach to examine the effects of environmental-level phthalate on the serum metabolome. This study also highlighted potentially important phthalates and their possible effects on children.
Collapse
Affiliation(s)
- Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Zhi-Yi Du
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Tseng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yue-Leon Guo
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Transgenerational Effects of Di(2-Ethylhexyl) Phthalate on Anogenital Distance, Sperm Functions and DNA Methylation in Rat Offspring. Int J Mol Sci 2021; 22:ijms22084131. [PMID: 33923623 PMCID: PMC8073582 DOI: 10.3390/ijms22084131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/03/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in the manufacture of polyvinylchloride plastics and has been associated with concerns regarding male reproductive toxicity. In this study, we hypothesized that maternal exposure to DEHP induces transgenerational inheritance of adult-onset adverse reproductive outcomes through the male germline in the F1, F2, and F3 generations of male offspring. Pregnant rats were treated with 5 or 500 mg of DEHP/kg/day through gavage from gestation day 0 to birth. The offspring body weight, anogenital distance (AGD), anogenital index (AGI), sperm count, motility, and DNA fragmentation index (DFI) were measured for all generations. Methyl-CpG binding domain sequencing was performed to analyze sperm DNA methylation status in the F3. DEHP exposure at 500 mg/kg affected AGD, AGI, sperm count, mean DFI, and %DFI in the F1; AGD, sperm count, and mean DFI in the F2; and AGD, AGI, mean DFI, and %DFI in the F3. DEHP exposure at 5 mg/kg affected AGD, AGI, sperm count, and %DFI in the F1; sperm count in the F2; and AGD and AGI in F3. Compared with the control group, 15 and 45 differentially hypermethylated genes were identified in the groups administered 5 mg/kg and 500 mg/kg DEHP, respectively. Moreover, 130 and 6 differentially hypomethylated genes were observed in the groups administered 5 mg/kg and 500 mg/kg DEHP. Overall, these results demonstrated that prenatal exposure to DEHP caused transgenerational epigenetic effects, which may explain the observed phenotypic changes in the male reproductive system.
Collapse
|
5
|
Solleiro‐Villavicencio H, Gomez‐De León CT, Del Río‐Araiza VH, Morales‐Montor J. The detrimental effect of microplastics on critical periods of development in the neuroendocrine system. Birth Defects Res 2020; 112:1326-1340. [DOI: 10.1002/bdr2.1776] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/10/2020] [Indexed: 01/13/2023]
Affiliation(s)
| | - Carmen T. Gomez‐De León
- Departamento de Inmunologia Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico Ciudad de México Mexico
| | - Víctor H. Del Río‐Araiza
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Jorge Morales‐Montor
- Departamento de Inmunologia Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico Ciudad de México Mexico
| |
Collapse
|
6
|
Balci A, Ozkemahli G, Erkekoglu P, Zeybek ND, Yersal N, Kocer-Gumusel B. Histopathologic, apoptotic and autophagic, effects of prenatal bisphenol A and/or di(2-ethylhexyl) phthalate exposure on prepubertal rat testis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20104-20116. [PMID: 32239407 DOI: 10.1007/s11356-020-08274-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP) are endocrine-disrupting chemicals (EDCs) used in a wide variety of industrial products as plasticizers. Exposure to EDCs, particularly in mixtures, in prenatal and early postnatal periods may lead to unwanted effects and can cause both developmental and reproductive problems. In this study, we aimed to determine the individual and combined effects of prenatal and lactational exposure to BPA and/or DEHP on testicular histology, apoptosis, and autophagic proteins. Pregnant Sprague-Dawley rats (n = 3) were divided into four groups (control, BPA (50 mg/kg/day), DEHP (30 mg/kg/day), and BPA (50 mg/kg/day) + DEHP (30 mg/kg/day)) and dosed by oral gavage during pregnancy and lactation. The male offspring (n = 6) from each group were chosen randomly, and their testicular examinations were performed on the twelfth week. The results showed that fetal and neonatal exposure to BPA and DEHP could lead to significant testicular histopathological alterations and cause increases in apoptosis markers (as evidenced by increases in caspase 3 and caspase 8 levels; increased TUNEL-positive spermatogonia and TUNEL-positive testicular apoptotic cells) and autophagic proteins (as evidenced by increased LC3 and Beclin levels and decreased p62 levels) in testicular tissue. We can suggest that EDCs cause more dramatic changes in both testicular structure and cell death when there is combined exposure.
Collapse
Affiliation(s)
- Aylin Balci
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Gizem Ozkemahli
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Pinar Erkekoglu
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Nilgun Yersal
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
7
|
Tian RH, Guo KM, Han GH, Bai Y. Downregulation of MicroRNA-494 inhibits the TGF-β1/Smads signaling pathway and prevents the development of hypospadias through upregulating Nedd4L. Exp Mol Pathol 2020; 115:104452. [PMID: 32413360 DOI: 10.1016/j.yexmp.2020.104452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/15/2020] [Accepted: 05/10/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypospadias, as a congenital disorder of the urethra, is the second most common birth abnormality of the male reproductive system. This study primarily investigates the effects of microRNA-494 (miR-494) on the transforming growth factor-β1 (TGF-β1)/Smads signaling pathway and on the development of hypospadias by binding to neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4L). METHODS We induced a mouse model of hypospadias through di-(2-ethylhexyl) phthalate treatment. The underlying regulatory mechanisms of miR-494 in this model were analyzed upon treatment of miR-494 mimic, miR-494 inhibitor, or small interfering RNA against Nedd4L in urethral epithelial cells isolated from mice with hypospadias. We then verified the binding site between miR-494 and Nedd4L and applied a gain- and loss-of-function approach to determine the effects of miR-494 on cell proliferation, cycle distribution, and apoptosis. RESULTS Male mice with hypospadias exhibited significantly higher miR-494 expression and lower Nedd4L expression in urethral tissues than normal male mice. Nedd4L was verified as a target gene of miR-494. Treatment with miR-494 inhibitor suppressed the activation of the TGF-β1/Smads signaling pathway, whereas down-regulation of miR-494 exerted protective effects on urethral epithelial cells by impeding cell proliferation and inducing cell apoptosis. CONCLUSIONS The study indicates that downregulation of miR-494 inhibits the TGF-β1/Smads signaling pathway and prevents the development of hypospadias through upregulating Nedd4L.
Collapse
Affiliation(s)
- Run-Hui Tian
- Department of Psychology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Kai-Min Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Guang-Hong Han
- Department of Oral Geriatrics, Stomatology Hospital of Jilin University, Changchun 130021, PR China
| | - Yang Bai
- Department of Ultrasound, The First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
8
|
TGF-β1 relieves epithelial-mesenchymal transition reduction in hypospadias induced by DEHP in rats. Pediatr Res 2020; 87:639-646. [PMID: 31726466 DOI: 10.1038/s41390-019-0622-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 08/19/2019] [Accepted: 09/29/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUNDS To investigate the potential mechanism of hypospadias induced by DEHP in rats to reveal the preventative effect of TGF-β1 in hypospadias induced by DEHP via the reduction of EMT. METHODS Time-mated Sprague-Dawley rats underwent cesarean section, and the penises of male pups were collected after exposure to corn oil or DEHP to establish a rat model of hypospadias and to further study the molecular mechanisms of hypospadias in vivo. In addition, the penises were cultured and treated with MEHP or MEHP+TGF-β1 in vitro. Subsequently, histomorphology and elements in TGF-β/Smad signaling pathway changes were evaluated using scanning electron microscopy, immunofluorescence, polymerase chain reaction, and western blot. RESULTS The development of rat penis and urethral seam fusion were delayed after the treatment with DEHP in vivo or MEHP in vitro compared with the Control group. Moreover, TGF-β1, Smad2/Smad3, and the mesenchymal biomarkers, including α-SMA, N-cadherin, and Vimentin, were decreased. However, the epithelial biomarkers, including E-cadherin, ZO-1, β-catenin, and occludin, were increased. In addition, TGF-β1 could relieve all of the above changes. CONCLUSION Gestational DEHP exposure could lead to hypospadias by reducing urethral EMT. Moreover, TGF-β1 could prevent it by regenerating EMT through activating the TGF-β/Smad signal pathway.
Collapse
|
9
|
Nelson W, Wang YX, Sakwari G, Ding YB. Review of the Effects of Perinatal Exposure to Endocrine-Disrupting Chemicals in Animals and Humans. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 251:131-184. [PMID: 31129734 DOI: 10.1007/398_2019_30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Maternal exposure to endocrine-disrupting chemicals (EDCs) is associated with long-term hormone-dependent effects that are sometimes not revealed until maturity, middle age, or adulthood. The aim of this study was to conduct descriptive reviews on animal experimental and human epidemiological evidence of the adverse health effects of in utero and lactational exposure to selected EDCs on the first generation and subsequent generation of the exposed offspring. PubMed, Web of Science, and Toxline databases were searched for relevant human and experimental animal studies on 29 October 29 2018. Search results were screened for relevance, and studies that met the inclusion criteria were evaluated and qualitative data extracted for analysis. The search yielded 73 relevant human and 113 animal studies. Results from studies show that in utero and lactational exposure to EDCs is associated with impairment of reproductive, immunologic, metabolic, neurobehavioral, and growth physiology of the exposed offspring up to the fourth generation without additional exposure. Little convergence is seen between animal experiments and human studies in terms of the reported adverse health effects which might be associated with methodologic challenges across the studies. Based on the available animal and human evidence, in utero and lactational exposure to EDCs is detrimental to the offspring. However, more human studies are necessary to clarify the toxicological and pathophysiological mechanisms underlying these effects.
Collapse
Affiliation(s)
- William Nelson
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Gloria Sakwari
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
10
|
Han X, Shao W, Yue Z, Xing L, Shen L, Long C, Zhang D, He D, Lin T, Wei G. [Di (2-ethylhexyl) phthalate-induced hypospadias in SD rats is related with Mafb expression: a transcriptome profiling-based study]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:456-463. [PMID: 31068290 DOI: 10.12122/j.issn.1673-4254.2019.04.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the transcriptome profile of genital tubercles (GTs) in male SD rats and explore the mechanism of hypospadias induced by Di (2-ethylhexyl) phthalate (DEHP). METHODS Forty time-pregnant SD rats were randomly divided into 4 equal groups, namely GD16 group and GD19 group (in which the male GTs were collected on gestation day[GD]16 and GD19 for RNA-seq, respectively), control group and DEHP exposure group (with administration of oil and 750 mg/kg DEHP by gavage from GD12 to GD19, respectively).In the control and DEHP exposure groups, the GTs were collected from the male fetuses on GD19.5, and scanning electron microscopy and HE staining were used to observe the morphological changes.The differentially expressed genes (DEGs) in the GTs were screened using lllumina HiSeq 2000 followed by GO and KEGG enrichment analyses to characterize the transcriptome profile.Immunofluorescence assay was performed to verify the DEGs (Mafb) identified by RNA-seq results.Immunofluorescence assay and Western blotting were used to examine the expression levels of Mafb in the penile tissue. RESULTS A total of 1360 DEGs were detected in the GTs between GD16 group and GD19 group by RNA-seq.Among these genes, 797 were up-regulated and 563 were down-regulated.These DEGs were mainly enriched in the cell adhesion plaque signaling pathway, axon guidance signaling pathway, and extracellular matrix receptor signaling pathway.Compared with that in GD16 group, Mafb was significantly up-regulated in GD19 group, which was consistent with the sequencing results.Mafb and β-catenin were significantly down-regulated in DEHP-exposed group compared with the control group (P < 0.01). CONCLUSIONS Mafb expression increases progressively with the development of GTs in male SD rats.DEHP exposure causes significant down-regulation of Mafb and β-catenin, suggesting that β-catenin signaling pathway that affects Mafb is related to DEHP-induced hypospadias in SD rats.
Collapse
Affiliation(s)
- Xiang Han
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Wang Shao
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Zhou Yue
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Liu Xing
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lianju Shen
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Chunlan Long
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Tao Lin
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
11
|
Moody L, Hernández-Saavedra D, Kougias DG, Chen H, Juraska JM, Pan YX. Tissue-specific changes in Srebf1 and Srebf2 expression and DNA methylation with perinatal phthalate exposure. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz009. [PMID: 31240115 PMCID: PMC6586200 DOI: 10.1093/eep/dvz009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 05/30/2023]
Abstract
Perinatal exposure to endocrine disrupting chemicals negatively impacts health, but the mechanism by which such toxicants damage long-term reproductive and metabolic function is unknown. Lipid metabolism plays a pivotal role in steroid hormone synthesis as well as energy utilization and storage; thus, aberrant lipid regulation may contribute to phthalate-driven health impairments. In order to test this hypothesis, we specifically examined epigenetic disruptions in lipid metabolism pathways after perinatal phthalate exposure. During gestation and lactation, pregnant Long-Evans rat dams were fed environmentally relevant doses of phthalate mixture: 0 (CON), 200 (LO), or 1000 (HI) µg/kg body weight/day. On PND90, male offspring in the LO and HI groups had higher body weights than CON rats. Gene expression of lipid metabolism pathways was altered in testis and adipose tissue of males exposed to the HI phthalate dosage. Specifically, Srebf1 was downregulated in testis and Srebf2 was upregulated in adipose tissue. In testis of HI rats, DNA methylation was increased at two loci and reduced at one other site surrounding Srebf1 transcription start site. In adipose tissue of HI rats, we observed increased DNA methylation at one region within the first intron of Srebf2. Computational analysis revealed several potential transcriptional regulator binding sites, suggesting functional relevance of the identified differentially methylated CpGs. Overall, we show that perinatal phthalate exposure affects lipid metabolism gene expression in a tissue-specific manner possibly through altering DNA methylation of Srebf1 and Srebf2.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Daniel G Kougias
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Janice M Juraska
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
12
|
Schwartz CL, Christiansen S, Vinggaard AM, Axelstad M, Hass U, Svingen T. Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch Toxicol 2018; 93:253-272. [PMID: 30430187 DOI: 10.1007/s00204-018-2350-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022]
Abstract
Male reproductive development is intricately dependent on fetal androgen action. Consequently, disrupted androgen action during fetal life can interfere with the development of the reproductive system resulting in adverse effects on reproductive function later in life. One biomarker used to evaluate fetal androgen action is the anogenital distance (AGD), the distance between the anus and the external genitalia. A short male AGD is strongly associated with genital malformations at birth and reproductive disorders in adulthood. AGD is therefore used as an effect readout in rodent toxicity studies aimed at testing compounds for endocrine activity and anti-androgenic properties, and in human epidemiological studies to correlate fetal exposure to endocrine disrupting chemicals to feminization of new-born boys. In this review, we have synthesized current data related to intrauterine exposure to xenobiotics and AGD measurements. We discuss the utility of AGD as a retrospective marker of in utero anti-androgenicity and as a predictive marker for male reproductive disorders, both with respect to human health and rodent toxicity studies. Finally, we highlight four areas that need addressing to fully evaluate AGD as a biomarker in both a regulatory and clinical setting.
Collapse
Affiliation(s)
- Camilla Lindgren Schwartz
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Sofie Christiansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Ulla Hass
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
13
|
Shen L, Tang X, Wei Y, Long C, Tan B, Wu S, Sun M, Zhou Y, Cao X, Wei G. Vitamin E and vitamin C attenuate Di-(2-ethylhexyl) phthalate-induced blood-testis barrier disruption by p38 MAPK in immature SD rats. Reprod Toxicol 2018; 81:17-27. [PMID: 29940330 DOI: 10.1016/j.reprotox.2018.06.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022]
Abstract
As an environmental endocrine disruptor, Di-(2-ethylhexyl) phthalate (DEHP) affects blood-testis barrier (BTB)-associated proteins expression, which compromises BTB integrity and causes infertility. Notably, DEHP-induced testicular toxicity is related to oxidative stress, but the specific mechanism remains unclear. Therefore, we sought to investigate this mechanism and determine whether vitamin C and vitamin E administration would attenuate the BTB impairment induced by DEHP in vivo and by Mono-(2-Ethylhexyl) Phthalate (MEHP) in vitro, respectively. HE staining and EM found that DEHP exposure led to spermatogenesis dysfunction and BTB disruption, respectively. The Western blot and immunofluorescence results showed that DEHP exposure caused BTB impairment through oxidative stress-mediated p38 mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, Vitamin E and vitamin C could alleviate the oxidative stress, block DEHP-induced spermatogenesis dysfunction and BTB disruption by inhibiting p38 MAPK signaling pathway. In summary, vitamin E and vitamin C are good candidates for the treatment of DEHP-induced male infertility.
Collapse
Affiliation(s)
- Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, 400014, China
| | - Xiangliang Tang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, 400014, China
| | - Yi Wei
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, 400014, China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, 400014, China
| | - Bin Tan
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, 400014, China
| | - Shengde Wu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, 400014, China; Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Mang Sun
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, 400014, China
| | - Yue Zhou
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, 400014, China
| | - Xining Cao
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, 400014, China
| | - Guanghui Wei
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, 400014, China; Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
14
|
Tang C, Deng Y, Duan H, Zhang Y, Li Y, Qiu D, Zhou K, Hua Y, Wang C. The effect of maternal exposure to di-(2-ethylhexyl)-phthalate on fetal cardiac development in mice. J Appl Toxicol 2018; 38:834-842. [PMID: 29377175 DOI: 10.1002/jat.3591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Changqing Tang
- Department of Pediatric Cardiology; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- West China Medical School of Sichuan University; Chengdu Sichuan China
| | - Yuxin Deng
- Pidu Campus; Jiaxiang Foreign Languages School Chengdu Sichuan China
| | - Hongyu Duan
- Department of Pediatric Cardiology; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Yi Zhang
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education Chengdu; Sichuan China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province; West China Second University Hospital; Sichuan University Chengdu Sichuan China
| | - Yifei Li
- Department of Pediatric Cardiology; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Dajian Qiu
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Kaiyu Zhou
- Department of Pediatric Cardiology; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education Chengdu; Sichuan China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province; West China Second University Hospital; Sichuan University Chengdu Sichuan China
| | - Yimin Hua
- Department of Pediatric Cardiology; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education Chengdu; Sichuan China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province; West China Second University Hospital; Sichuan University Chengdu Sichuan China
| | - Chuan Wang
- Department of Pediatric Cardiology; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| |
Collapse
|
15
|
Dorman DC, Chiu W, Hales BF, Hauser R, Johnson KJ, Mantus E, Martel S, Robinson KA, Rooney AA, Rudel R, Sathyanarayana S, Schantz SL, Waters KM. Systematic reviews and meta-analyses of human and animal evidence of prenatal diethylhexyl phthalate exposure and changes in male anogenital distance. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:207-226. [PMID: 30199328 DOI: 10.1080/10937404.2018.1505354.systematic] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Male reproductive alterations found in animals and humans following in utero phthalate exposure include decreased anogenital distance (AGD) and other reproductive-tract malformations. The aim of this investigation was to conduct systematic reviews of human and animal evidence of the effect of in utero exposure to diethylhexyl phthalate (DEHP) on anogenital distance (AGD) in males. PubMed, Embase, and Toxline were searched for relevant human and experimental animal studies on August 15, 2016. Search results were screened for relevance, and studies that met the inclusion criteria were evaluated for quality and data extracted for analysis. Confidence in the human and animal bodies of evidence was assessed and hazard conclusions reached by integrating evidence streams. The search yielded 6 relevant human studies and 19 animal studies. Meta-analysis of 5 human observational prospective cohort studies showed that increased maternal urinary concentrations of DEHP metabolites were associated with decreased AGD in boys (-4.07 [CI, -6.49 to -1.66] % decrease per log10 rise in DEHP metabolites). Meta-analysis and meta-regression of the 19 experimental animal studies found reduced AGD with DEHP treatment, with a dose-response gradient, and with heterogeneity explained by species and strain. There is a moderate level of evidence from human investigations and a high level of data from animal studies that in utero exposure to DEHP decreases AGD. Based upon the available human and animal evidence, and consideration of mechanistic data, DEHP is presumed to be a reproductive hazard to humans on the basis of effects on AGD.
Collapse
Affiliation(s)
- David C Dorman
- a Department of Molecular and Biomedical Sciences, College of Veterinary Medicine , North Carolina State University , Raleigh , NC , USA
| | - Weihsueh Chiu
- b Department of Veterinary Integrative Biosciences, College of Veterinary Medicine , Texas A&M University , College Station , TX , USA
| | - Barbara F Hales
- c Department of Pharmacology and Therapeutics , McGill University , Montreal , Quebec , Canada
| | - Russ Hauser
- d Department of Environmental Health and Department of Epidemiology , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Kamin J Johnson
- e Predictive Safety Center , The Dow Chemical Company , Midland , MI , USA
| | - Ellen Mantus
- f Board on Environmental Studies and Toxicology at the National Academies of Sciences , Engineering, and Medicine , Washington , DC , USA
| | - Susan Martel
- f Board on Environmental Studies and Toxicology at the National Academies of Sciences , Engineering, and Medicine , Washington , DC , USA
| | - Karen A Robinson
- g Department of Medicine , Johns Hopkins University , Baltimore , MD , USA
| | - Andrew A Rooney
- h Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services , Research Triangle Park , NC , USA
| | | | - Sheela Sathyanarayana
- j Department of Pediatrics , University of Washington, Seattle Children's Research Institute , Seattle , WA , USA
| | - Susan L Schantz
- k Department of Comparative Biosciences, College of Veterinary Medicine and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Katrina M Waters
- l Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| |
Collapse
|
16
|
Dorman DC, Chiu W, Hales BF, Hauser R, Johnson KJ, Mantus E, Martel S, Robinson KA, Rooney AA, Rudel R, Sathyanarayana S, Schantz SL, Waters KM. Systematic reviews and meta-analyses of human and animal evidence of prenatal diethylhexyl phthalate exposure and changes in male anogenital distance. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:207-226. [PMID: 30199328 PMCID: PMC6786271 DOI: 10.1080/10937404.2018.1505354] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Male reproductive alterations found in animals and humans following in utero phthalate exposure include decreased anogenital distance (AGD) and other reproductive-tract malformations. The aim of this investigation was to conduct systematic reviews of human and animal evidence of the effect of in utero exposure to diethylhexyl phthalate (DEHP) on anogenital distance (AGD) in males. PubMed, Embase, and Toxline were searched for relevant human and experimental animal studies on August 15, 2016. Search results were screened for relevance, and studies that met the inclusion criteria were evaluated for quality and data extracted for analysis. Confidence in the human and animal bodies of evidence was assessed and hazard conclusions reached by integrating evidence streams. The search yielded 6 relevant human studies and 19 animal studies. Meta-analysis of 5 human observational prospective cohort studies showed that increased maternal urinary concentrations of DEHP metabolites were associated with decreased AGD in boys (-4.07 [CI, -6.49 to -1.66] % decrease per log10 rise in DEHP metabolites). Meta-analysis and meta-regression of the 19 experimental animal studies found reduced AGD with DEHP treatment, with a dose-response gradient, and with heterogeneity explained by species and strain. There is a moderate level of evidence from human investigations and a high level of data from animal studies that in utero exposure to DEHP decreases AGD. Based upon the available human and animal evidence, and consideration of mechanistic data, DEHP is presumed to be a reproductive hazard to humans on the basis of effects on AGD.
Collapse
Affiliation(s)
- David C. Dorman
- Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Weihsueh Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Barbara F. Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Russ Hauser
- Department of Environmental Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kamin J. Johnson
- Predictive Safety Center, The Dow Chemical Company, Midland, MI, USA
| | - Ellen Mantus
- Board on Environmental Studies and Toxicology at the National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Susan Martel
- Board on Environmental Studies and Toxicology at the National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Karen A. Robinson
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew A. Rooney
- Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | | | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Susan L. Schantz
- Department of Comparative Biosciences, College of Veterinary Medicine and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
17
|
Flutamide-induced hypospadias in rats: A critical assessment. Differentiation 2017; 94:37-57. [DOI: 10.1016/j.diff.2016.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 01/03/2023]
|
18
|
Zarean M, Keikha M, Poursafa P, Khalighinejad P, Amin M, Kelishadi R. A systematic review on the adverse health effects of di-2-ethylhexyl phthalate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24642-24693. [PMID: 27714658 DOI: 10.1007/s11356-016-7648-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/07/2016] [Indexed: 05/23/2023]
Abstract
Di (ethylhexyl) phthalate (DEHP) is a global environmental pollutant. This study aims to systematically review the literature on health effects of exposure to DEHP including effects on reproductive health, carcinogenesis, pregnancy outcome, and respiratory system. The literature search was done through Scopus, ISI Web of Science, Google Scholar, PubMed, Medline, and the reference lists of previous review articles to identify relevant articles published to June 2016 in each subject area. The inclusion criteria were as follows: original research, cross-sectional studies, case-control studies, cohort studies, interventional studies, and review articles. Both human and animal studies were included. The search was limited to English language papers. Conference papers, editorials, and letters were not included. The systematic review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Overall, 152 of the 407 papers met the inclusion criteria. We provided an up-to-date comprehensive and critical assessment of both human and animal studies undertaken to explore the effects of DEHP. It revealed that in experimental studies, exposure to DEHP mainly targeted the reproductive, neurodevelopment, and respiratory systems. Human studies reported that exposure to this contaminant had carcinogenic effects and influenced neurodevelopment in early life. This systematic review underscored the adverse health effects of DEHP for pregnant women and the pediatric age group. It summarizes different response of humans and experimental animals to DEHP exposure, and some suggested underlying mechanisms.
Collapse
Affiliation(s)
- Maryam Zarean
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Keikha
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Khalighinejad
- Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Kimia Gostar Saba, Isfahan, Iran
| | - Mohammadmehdi Amin
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Kang L, Wang QM, He QS, He W, Liu WX, Kong XZ, Yang B, Yang C, Jiang YJ, Xu FL. Current status and historical variations of phthalate ester (PAE) contamination in the sediments from a large Chinese lake (Lake Chaohu). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10393-10405. [PMID: 26330308 DOI: 10.1007/s11356-015-5173-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
The residual levels of phthalate esters (PAEs) in the surface and two core sediments from Lake Chaohu were measured with a gas chromatograph-mass spectrometer (GC-MS). The temporal-spatial distributions, compositions of PAEs, and their effecting factors were investigated. The results indicated that di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), and di(2-ethylhexyl) phthalate (DEHP) were three dominant PAE components in both the surface and core sediments. The residual level of total detected PAEs (∑PAEs) in the surface sediments (2.146 ± 2.255 μg/g dw) was lower than that in the western core sediments (10.615 ± 9.733 μg/g) and in the eastern core sediments (5.109 ± 4.741 μg/g). The average content of ∑PAEs in the surface sediments from the inflow rivers (4.128 ± 1.738 μg/g dw) was an order of magnitude higher than those from the lake (0.323 ± 0.093 μg/g dw), and there were similar PAE compositions between the lake and inflow rivers. This finding means that there were important effects of PAE input from the inflow rivers on the compositions and distributions of PAEs in the surface sediments. An increasing trend was found for the residual levels of ΣPAEs, DnBP, and DIBP from the bottom to the surface in both the western and eastern core sediments. Increasing PAE usage with the population growth, urbanization, and industrial and agricultural development in Lake Chaohu watershed would result in the increasing production of PAEs and their resulting presence in the sediments. The significant positive relationships were also found between the PAE contents and the percentage of sand particles, as well as TOC contents in the sediment cores.
Collapse
Affiliation(s)
- Lei Kang
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Qing-Mei Wang
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Qi-Shuang He
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Wei He
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Wen-Xiu Liu
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiang-Zhen Kong
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Bin Yang
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chen Yang
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yu-Jiao Jiang
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Fu-Liu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Phthalate metabolites and bisphenol A in urines from German school-aged children: Results of the Duisburg Birth Cohort and Bochum Cohort Studies. Int J Hyg Environ Health 2014; 217:830-8. [DOI: 10.1016/j.ijheh.2014.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 12/26/2022]
|
21
|
Ventrice P, Ventrice D, Russo E, De Sarro G. Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:88-96. [PMID: 23603460 DOI: 10.1016/j.etap.2013.03.014] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/15/2013] [Accepted: 03/21/2013] [Indexed: 05/27/2023]
Abstract
Phthalates are chemicals widely used in industry and the consequences for human health caused by exposure to these agents are of significant current interest. Phthalate toxicity targets the reproductive and respiratory systems primarily, but they also may be involved in the processes of carcinogenesis and even in autism spectrum disorders. This article discusses the molecular and cellular mechanisms involved in organ toxicity of phthalates; furthermore, pharmacokinetic, chemistry and the European regulation are summarized.
Collapse
Affiliation(s)
- Pasquale Ventrice
- Chair of Pharmacology, Science of Health Department, School of Medicine, University of Catanzaro, Italy
| | | | | | | |
Collapse
|