1
|
Cai Y, Hu J, Guo Y, Shen X. Molecular Cloning, Characterization, and Expression of a Receptor for Activated Protein Kinase C1 (RACK1) Gene in Exopalaemon carinicauda Zoea Larvae under Aroclor 1254 Stress. BIOLOGY 2024; 13:174. [PMID: 38534444 DOI: 10.3390/biology13030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
The receptor for activated protein kinase C1 (RACK1) belongs to the typical WD repeat family, which is extremely conservative and important in multiple signal transduction pathways related to growth and development that coordinate the intracellular role of various life activities. As a novel protein with versatile functions, it was found in a variety of organisms. In a previous study, we identified the RACK1 sequence of white shrimp from transcriptome data. In this study, we employed specialized bioinformatics software to conduct an in-depth analysis of EcRACK1 and compare its amino acid sequence homology with other crustaceans. Furthermore, we investigated the expression patterns of RACK1 at different developmental stages and tissues, as well as at various time points after exposure to Aroclor 1245, aiming to elucidate its function and potential response towards Aroclor 1245 exposure. The length of EcRACK1 is 957 nucleotides, which encodes 318 amino acids. Moreover, there were seven typical WD repeats in EcRACK1, which have more than a 96% sequence identity with the RACK1 proteins of Penaeus. The results of tissue expression and spatiotemporal expression showed that it was significantly increased in the II and IV stages, but had a significant tissue specificity in the hepatopancreas, spermary, and muscle tissues of E. carinicauda, adult stage. Compared to the control, EcRACK1 was significantly induced in E. carinicauda zoea larvae exposed to Aroclor 1254 for 6, 10, 20, and 30 d (p < 0.05). These results suggested that EcRACK1 may play an important role in the larval development and environmental defense of E. carinicauda.
Collapse
Affiliation(s)
- Yuefeng Cai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yepeng Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
2
|
Hou T, Yu J, Li C, Wang Z, Liu H. Immunotoxicity of microplastics and polychlorinated biphenyls alone or in combination to Crassostrea gigas. MARINE POLLUTION BULLETIN 2024; 200:116161. [PMID: 38364644 DOI: 10.1016/j.marpolbul.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Microplastics (MPs) and polychlorinated biphenyls (PCBs) are pervasive pollutants in the marine environment, exerting adverse effects on marine organisms. While it is suggested that their exposure may compromise the immune responses of marine organisms, the cumulative immunotoxic effects remain uncertain. Additionally, the intricate mechanisms underlying the immunotoxicity of PCBs and MPs in marine organisms are not yet fully comprehended. To illuminate their combined biological impacts, Crassostrea gigas were exposed to 50 μg/L MPs (30-μm porous) alone, as well as 10 or 100 ng/L PCBs individually or in combination with 50 μg/L of MPs for 28 days. Our data demonstrated that oysters treated with the pollutants examined led to decreased total haemocyte count, inhibited phagocytosis of haemocytes, enhanced the intracellular contents of reactive oxygen species, lipid peroxidation and DNA damage, reduced lysozyme concentration and activity, gave rise to superoxide dismutase. Catalaseand glutathione S-transferaseactivity. The expression of three immune-related genes (NF-κB, TNF-α, TLR-6) was drastically suppressed by the PCBs and MPs treatment, while the apoptosis pathway-related genes (BAX and Caspase-3) showed a significant increase. In addition, compared to oysters treated with a single type of pollutant, coexposure to MPs and PCBs exerted more severe adverse impacts on all the parameters investigated, indicating a significant synergistic effect. Therefore, the risk of MPs and PCBs chemicals on marine organisms should be paid more attention.
Collapse
Affiliation(s)
- Tinglong Hou
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Jinan University, Guangzhou 510632, China; College of Biology and Agriculture, Zunyi Normal College, Guizhou 563002, China
| | - Jinyu Yu
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Department of Fishery Sciences, Tianjin Agricultural University, Tianjin 300384, China
| | - Chuntao Li
- College of Biology and Agriculture, Zunyi Normal College, Guizhou 563002, China
| | - Zibin Wang
- Shenzhen Ocean Center, Ministry of Natural Resources, Shenzhen 518131, China
| | - Huiru Liu
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Department of Fishery Sciences, Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
3
|
Xiong J, Yuan H, Fei S, Yang S, You M, Liu L. The preventive role of the red gingeng ginsenoside Rg3 in the treatment of lung tumorigenesis induced by benzo(a)pyrene. Sci Rep 2023; 13:4528. [PMID: 36941308 PMCID: PMC10027881 DOI: 10.1038/s41598-023-31710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Red ginseng has been used in traditional medicine for centuries in Asia. In this study, we evaluated four types of red ginseng grown in different areas (Chinese red ginseng, Korean red ginseng A, Korean red ginseng B, and Korean red ginseng C) for their ability to inhibit lung tumor formation and growth induced by the carcinogen benzo(a)pyrene (B(a)P) in A/J mice and found that Korean red ginseng B was the most effective at lowering the tumor load among the four red ginseng varieties. Moreover, we analyzed the levels of various ginsenosides (Rg1, Re, Rc, Rb2, Rb3, Rb1, Rh1, Rd, Rg3, Rh2, F1, Rk1, and Rg5) in four kinds of red ginseng extract and found that Korean red ginseng B had the highest level of ginsenoside Rg3 (G-Rg3), which suggested that G-Rg3 may play an important role in its therapeutic efficacy. This work revealed that the bioavailability of G-Rg3 was relatively poor. However, when G-Rg3 was coadministered with verapamil, a P-glycoprotein inhibitor, the G-Rg3 efflux in Caco-2 cells was lowered, the small intestinal absorption rate of G-Rg3 in the rat models was increased, the concentration levels of G-Rg3 were elevated in the intestine and plasma, and its tumor-preventive abilities in the tumorigenesis rat model induced by B(a)P were also augmented. We also found that G-Rg3 reduced B(a)P-induced cytotoxicity and DNA adduct formation in human lung cells and rescued phase II enzyme expression and activity through Nrf2 pathways, which may be the potential mechanisms underlying the inhibitory effects of G-Rg3 on lung tumorigenesis. Our study showed a potentially vital role of G-Rg3 in targeting lung tumors in murine models. The oral bioavailability of this ginsenoside was augmented by targeting P-glycoprotein, which allowed the molecule to exert its anticancer effects.
Collapse
Affiliation(s)
- Jie Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongmei Yuan
- Department of Pathology, Wuhan Jinyintan Hospital, Wuhan, 430023, China
| | - Shihong Fei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Balakrishnan S, Singh ISB, Puthumana J. Status in molluscan cell line development in last one decade (2010–2020): impediments and way forward. Cytotechnology 2022; 74:433-457. [PMID: 36110153 PMCID: PMC9374870 DOI: 10.1007/s10616-022-00539-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the attempts that have started since the 1960s, not even a single cell line of marine molluscs is available. Considering the vast contribution of marine bivalve aquaculture to the world economy, the prevailing viral threats, and the dismaying lack of advancements in molluscan virology, the requirement of a marine molluscan cell line is indispensable. This synthetic review discusses the obstacles in developing a marine molluscan cell line concerning the choice of species, the selection of tissue and decontamination, and cell culture media, with emphasis given on the current decade 2010-2020. Detailed accounts on the experiments on the virus cultivation in vitro and molluscan cell immortalization, with a brief note on the history and applications of the molluscan cell culture, are elucidated to give a holistic picture of the current status and future trends in molluscan cell line development. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00539-x.
Collapse
|
5
|
Acute benzo[a]pyrene exposure induced oxidative stress, neurotoxicity and epigenetic change in blood clam Tegillarca granosa. Sci Rep 2021; 11:18744. [PMID: 34548601 PMCID: PMC8455545 DOI: 10.1038/s41598-021-98354-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
The blood clam (Tegillarca granosa) is being developed into a model bivalve mollusc for assessing and monitoring marine pollution on the offshore seabed. However, the information on the response of blood clam to PAHs, an organic pollutant usually deposited in submarine sediment, remains limited. Herein, we employed multiple biomarkers, including histological changes, oxidative stress, neurotoxicity and global DNA methylation, to investigate the effects of 10 and 100 μg/L Bap exposure on the blood clams under laboratory conditions, as well as the potential mechanisms. Acute Bap exposure can induce significant morphological abnormalities in gills as shown through hematoxylin–eosin (H.E) staining, providing an intuitive understanding on the effects of Bap on the structural organization of the blood clams. Meanwhile, the oxidative stress was significantly elevated as manifested by the increase of antioxidants activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-s-transferase (GST), lipid peroxidation (LPO) level and 8-hydroxy-2′-deoxyguanosine (8-OHdG) content. The neurotoxicity was also strengthened by Bap toxicity manifested as inhibited acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activities. In addition, the global DNA methylation level was investigated, and a significant DNA hypomethylation was observed in Bap exposed the blood clam. The correlation analysis showed that the global DNA methylation was negatively correlated with antioxidants (SOD, CAT and POD) activities, but positively correlated choline enzymes (AChE and ChAT) activities. These results collectively suggested that acute Bap exposure can cause damage in gills structures in the blood clam possibly by generating oxidative stress and neurotoxicity, and the global DNA methylation was inhibited to increase the transcriptional expression level of antioxidants genes and consequently elevate antioxidants activities against Bap toxicity. These results are hoped to shed some new light on the study of ecotoxicology effect of PAHs on marine bivalves.
Collapse
|
6
|
Bernardeschi M, Guidi P, Palumbo M, Genovese M, Alfè M, Gargiulo V, Lucchesi P, Scarcelli V, Falleni A, Bergami E, Freyria FS, Bonelli B, Corsi I, Frenzilli G. Suitability of Nanoparticles to Face Benzo(a)pyrene-Induced Genetic and Chromosomal Damage in M. galloprovincialis. An In Vitro Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1309. [PMID: 34063431 PMCID: PMC8155950 DOI: 10.3390/nano11051309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022]
Abstract
Benzo(a)pyrene (B(a)P) is a well-known genotoxic agent, the removal of which from environmental matrices is mandatory, necessitating the application of cleaning strategies that are harmless to human and environmental health. The potential application of nanoparticles (NPs) in the remediation of polluted environments is of increasing interest. Here, specifically designed NPs were selected as being non-genotoxic and able to interact with B(a)P, in order to address the genetic and chromosomal damage it produces. A newly formulated pure anatase nano-titanium (nano-TiO2), a commercial mixture of rutile and anatase, and carbon black-derived hydrophilic NPs (HNP) were applied. Once it had been ascertained that the NPs selected for the work did not induce genotoxicity, marine mussel gill biopsies were exposed in vitro to B(a)P (2 μg/mL), alone and in combination with the selected NPs (50 µg/mL nano-TiO2, 10 µg/mL HNP). DNA primary reversible damage was evaluated by means of the Comet assay. Chromosomal persistent damage was assessed on the basis of micronuclei frequency and nuclear abnormalities by means of the Micronucleus-Cytome assay. Transmission Electron Microscopy (TEM) was performed to investigate the mechanism of action exerted by NPs. Pure Anatase n-TiO2 was found to be the most suitable for our purpose, as it is cyto- and genotoxicity free and able to reduce the genetic and chromosomal damage associated with exposure to B(a)P.
Collapse
Affiliation(s)
- Margherita Bernardeschi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Patrizia Guidi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Mara Palumbo
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Massimo Genovese
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy;
| | - Michela Alfè
- Institute of Science and Technology for Sustainable Energy and Mobility STEMS-CNR, 80126 Naples, Italy; (M.A.); (V.G.)
| | - Valentina Gargiulo
- Institute of Science and Technology for Sustainable Energy and Mobility STEMS-CNR, 80126 Naples, Italy; (M.A.); (V.G.)
| | - Paolo Lucchesi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Vittoria Scarcelli
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Alessandra Falleni
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Elisa Bergami
- Earth and Environmental Sciences and INSTM Local Unit, Department of Physical, University of Siena, 53100 Siena, Italy; (E.B.); (I.C.)
| | - Francesca S. Freyria
- INSTM Unit of Torino-Politecnico, Department of Applied Science and Technology, 10129 Politecnico di Torino, Italy; (F.S.F.); (B.B.)
| | - Barbara Bonelli
- INSTM Unit of Torino-Politecnico, Department of Applied Science and Technology, 10129 Politecnico di Torino, Italy; (F.S.F.); (B.B.)
| | - Ilaria Corsi
- Earth and Environmental Sciences and INSTM Local Unit, Department of Physical, University of Siena, 53100 Siena, Italy; (E.B.); (I.C.)
| | - Giada Frenzilli
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| |
Collapse
|
7
|
Zhang QL, Jiang YH, Dong ZX, Li HW, Lin LB. Exposure to benzo[a]pyrene triggers distinct patterns of microRNA transcriptional profiles in aquatic firefly Aquatica wuhana (Coleoptera: Lampyridae). JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123409. [PMID: 32763701 DOI: 10.1016/j.jhazmat.2020.123409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Larval aquatic fireflies in fresh water are adversely affected by water pollutants such as benzo(a)pyrene (BaP). However, their response to BaP stress at the microRNA (miRNA)-regulatory level remains unknown. Here, transcriptomes containing 31,872 genes and six miRNA transcriptional profiles were obtained for Aquatica wuhana larvae, and comparative analysis was performed between larvae exposed to BaP (0.01 mg/L) and unexposed controls. Fifteen of 114 miRNAs identified via bioinformatics were detected as differentially expressed (DEMs) upon BaP exposure. Analysis results of predicted target genes of DEM suggests that BaP exposure primarily triggered transcriptional changes of miRNA associated with five major regulatory categories: 1) osmotic balance, 2) energy metabolic efficiency, 3) development, 4) xenobiotic metabolism (oxidative stress), and 5) innate immune response. Based on six innate immune- and xenobiotic metabolism-related pathways enriched by the predicted DEM targets, 11 key BaP-responsive DEMs were further screened to investigate dynamic changes of expression in response to BaP stress at five time points, and also to validate the miRNA sequencing data using quantitative real-time PCR. This study provides valuable information for the protection of firefly resources and supplements the understanding of miRNA regulatory mechanisms in response to water deterioration.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, 650500, China.
| | - Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, 650500, China.
| |
Collapse
|
8
|
Lee YH, Kim MS, Kim DH, Kim IC, Hagiwara A, Lee JS. Genome-wide identification of DNA double-strand break repair genes and transcriptional modulation in response to benzo[α]pyrene in the monogonont rotifer Brachionus spp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105614. [PMID: 32932040 DOI: 10.1016/j.aquatox.2020.105614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The DNA repair system has evolved from the common ancestor of all life forms and its function is highly conserved within eukaryotes. In this study, to reveal the role of DNA double-strand break repair (DSB) genes in response to benzo[α]pyrene (B[α]P), we first identified DSB genes in relation to homologous recombination and non-homologous end joining events in four Brachionus rotifer spp.: B. calyciflorus, B. koreanus, B. plicatilis, and B. rotundiformis. In all the Brachionus spp., 39 orthologous genes to human DSB repair genes were identified. Furthermore, three genes in B. koreanus, two genes in B. plicatilis, and one gene in B. calyciflorus and B. rotundiformis were present as duplicated genes, indicating that these genes were diversified over speciation in the genus Brachionus. Moreover, we compared DSB repair genes on the gene structures in four monogonont Brachionus rotifers and the bdelloid rotifer Adineta vaga, which possesses highly efficient DNA repair ability. The transcriptional responses of four monogonont Brachionus rotifers in response to B[α]P exposure showed how B[α]P exposure led to DSBs and subsequently recruited DNA DSB repair pathways in the rotifer B. koreanus. Taken together, this study provides a better understanding of the potential role of DSB repair genes in the monogonont rotifer Brachionus spp. in response to B[α]P.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
9
|
Sun S, Shi W, Tang Y, Han Y, Du X, Zhou W, Hu Y, Zhou C, Liu G. Immunotoxicity of petroleum hydrocarbons and microplastics alone or in combination to a bivalve species: Synergic impacts and potential toxication mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138852. [PMID: 32570313 DOI: 10.1016/j.scitotenv.2020.138852] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Both the frequent occurrence of accidental petroleum spills and the ubiquitous presence of microplastics (MPs) in the sea may pose severe threats to marine species. However, the immunotoxic impacts of these two types of pollutants and the underlying toxication mechanisms still remain largely unknown in sessile filter-feeding bivalve mollusks. Therefore, the impacts of exposure to petroleum hydrocarbons and MPs alone or in combination on the total count, cell type composition, and phagocytic activity of hemocytes were investigated in the blood clam, Tegillarca granosa. In addition, the intracellular ROS content, cell viability, degree of DNA damage, and expression levels of genes from immune-, apoptosis-, and immunotoxicity-related pathways were analyzed to reveal the potential toxication mechanisms. The results demonstrated that exposure to petroleum hydrocarbons and MPs alone or in combination at environmentally realistic concentrations could exert significant immunotoxic impacts on the blood clam, which may be caused by alterations in a series of physiological and molecular processes. In addition, the immunotoxicity of petroleum hydrocarbons could be significantly aggravated by the copresence of MPs, which suggests that coexposure to these two pollutants deserves closer attention.
Collapse
Affiliation(s)
- Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuan Hu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, PR China
| | - Chaosheng Zhou
- Zhejiang Mariculture Research Institute, Wenzhou 325005, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
10
|
Li Z, Pan L, Guo R, Cao Y, Sun J. A verification of correlation between chemical monitoring and multi-biomarker approach using clam Ruditapes philippinarum and scallop Chlamys farreri to assess the impact of pollution in Shandong coastal area of China. MARINE POLLUTION BULLETIN 2020; 155:111155. [PMID: 32469775 DOI: 10.1016/j.marpolbul.2020.111155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Biogeochemical monitoring coupled with multi-biomarker approach were performed for the assessment of marine environment, using clam Ruditapes philippinarum and scallop Chlamys farreri to indicate contamination status in sediments and seawater respectively. The bivalves were collected from three stations, Jiaozhou Bay, Rushan Bay and Laizhou Bay, of Shandong coastal area. A series of contaminants (PAHs and TBBPA) and biomarkers (AhR, EROD, GST, SOD, GPx, CAT, DNA damage) were measured. Multi-biomarker pollution index (MPI) and integrated biomarker response (IBR) were carried out to evaluate contamination status and both indexes showed that Rushan Bay was most polluted, where the pollution level of sediments reached "highly polluted" in August, followed by Jiaozhou Bay and Rushan Bay which reached "lightly polluted". The correlation of IBR values with contaminants' concentrations was verified through the Pearson correlation coefficient (p < 0.05), consolidating this scientific assessment method for marine environment.
Collapse
Affiliation(s)
- Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China.
| | - Ruiming Guo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Yunhao Cao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Jiawei Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| |
Collapse
|
11
|
Jee SC, Kim M, Kim KS, Kim HS, Sung JS. Protective Effects of Myricetin on Benzo[a]pyrene-Induced 8-Hydroxy-2'-Deoxyguanosine and BPDE-DNA Adduct. Antioxidants (Basel) 2020; 9:antiox9050446. [PMID: 32455619 PMCID: PMC7278665 DOI: 10.3390/antiox9050446] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
Benzo[a]pyrene (B[a]P), a group 1 carcinogen, induces mutagenic DNA adducts. Myricetin is present in many natural foods with diverse biological activities, such as anti-oxidative and anti-cancer activities. The aim of this study was to investigate the protective effects of myricetin against B[a]P-induced toxicity. Treatment of B[a]P induced cytotoxicity on HepG2 cells, whereas co-treatment of myricetin with B[a]P reduced the formation of the B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE)-DNA adduct, which recovered cell viability. Furthermore, we found a protective effect of myricetin against B[a]P-induced genotoxicity in rats, via myricetin-induced inhibition of 8-hydroxy-2′-deoxyguanosine (8-OHdG) and BPDE-DNA adduct formation in the liver, kidney, colon, and stomach tissue. This inhibition was more prominent in the liver than in other tissues. Correspondingly, myricetin regulated the phase I and II enzymes that inhibit B[a]P metabolism and B[a]P metabolites conjugated with DNA by reducing and inducing CYP1A1 and glutathione S-transferase (GST) expression, respectively. Taken together, this showed that myricetin attenuated B[a]P-induced genotoxicity via regulation of phase I and II enzymes. Our results suggest that myricetin is anti-genotoxic, and prevents oxidative DNA damage and BPDE-DNA adduct formation via regulation of phase I and II enzymes.
Collapse
Affiliation(s)
- Seung-Cheol Jee
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea; (S.-C.J.); (M.K.)
| | - Min Kim
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea; (S.-C.J.); (M.K.)
| | - Kyeong Seok Kim
- Department of Division of Toxicology, School of Pharmacy, Sungkyunkwan University-Suwon, Gyeonggi-do 16419, Korea; (K.S.K.); (H.-S.K.)
| | - Hyung-Sik Kim
- Department of Division of Toxicology, School of Pharmacy, Sungkyunkwan University-Suwon, Gyeonggi-do 16419, Korea; (K.S.K.); (H.-S.K.)
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea; (S.-C.J.); (M.K.)
- Correspondence: ; Tel.: +82-31-961-5132; Fax: +82-31-961-5108
| |
Collapse
|
12
|
Jee SC, Kim M, Sung JS. Modulatory Effects of Silymarin on Benzo[a]pyrene-Induced Hepatotoxicity. Int J Mol Sci 2020; 21:ijms21072369. [PMID: 32235460 PMCID: PMC7177818 DOI: 10.3390/ijms21072369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon, is a group 1 carcinogen that introduces mutagenic DNA adducts into the genome. In this study, we investigated the molecular mechanisms underlying the involvement of silymarin in the reduction of DNA adduct formation by B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), induced by B[a]P. B[a]P exhibited toxicity in HepG2 cells, whereas co-treatment of the cells with B[a]P and silymarin reduced the formation of BPDE-DNA adducts, thereby increasing cell viability. Determination of the level of major B[a]P metabolites in the treated cells showed that BPDE levels were reduced by silymarin. Nuclear factor erythroid 2-related factor 2 (Nrf2) and pregnane X receptor (PXR) were found to be involved in the activation of detoxifying genes against B[a]P-mediated toxicity. Silymarin did not increase the expression of these major transcription factors, but greatly facilitated their nuclear translocation. In this manner, treatment of HepG2 cells with silymarin modulated detoxification enzymes through NRF2 and PXR to eliminate B[a]P metabolites. Knockdown of Nrf2 abolished the preventive effect of silymarin on BPDE-DNA adduct formation, indicating that activation of the Nrf2 pathway plays a key role in preventing B[a]P-induced genotoxicity. Our results suggest that silymarin has anti-genotoxic effects, as it prevents BPDE-DNA adduct formation by modulating the Nrf2 and PXR signaling pathways.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Correspondence: ; Tel.: +82-31-961-5132; Fax: +82-31-961-5108
| |
Collapse
|
13
|
Qu C, Liu S, Tang Z, Li J, Liao Z, Qi P. Response of a novel selenium-dependent glutathione peroxidase from thick shell mussel Mytilus coruscus exposed to lipopolysaccharide, copper and benzo[α]pyrene. FISH & SHELLFISH IMMUNOLOGY 2019; 89:595-602. [PMID: 30991153 DOI: 10.1016/j.fsi.2019.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Glutathione peroxidase (GPx) plays an important antioxidant role in cellular defense against environmental stress. In the present study, a novel selenium-dependent glutathione peroxidase termed McSeGPx firstly identified in thick shell mussel Mytilus coruscus. McSeGPx consists of 197 amino acid residues, characterized with one selenocysteine residue encoded by an opal stop codon TGA, one selenocysteine insertion sequence (SECIS) in the 3' untranslated region (UTR), two active site motifs and one signature sequence motif. McSeGPx transcripts were constitutively expressed in all examined tissues, and were significantly induced in gills and digestive glands with the stimulations of lipopolysaccharide (LPS), copper (Cu) and benzo[α]pyrene (B[α]P). Additionally, rough increases in McSeGPx activity were detected in both tissues under the challenge of LPS, Cu and B[α]P. Collectively, these results suggested that McSeGPx affiliate to selenocysteine dependent GPx (SeGPx) family and might play an important role in mediating the environmental stressors and antioxidant response in M. coruscus.
Collapse
Affiliation(s)
- Chengkai Qu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Shuobo Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China
| | - Zurong Tang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China
| | - Jiji Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China.
| |
Collapse
|
14
|
Qu M, Ding J, Wang Y, Chen S, Zhang Y, Di Y. Genetic impacts induced by BaP and Pb in Mytilus coruscus: Can RAPD be a validated tool in genotoxicity evaluation both in vivo and in vitro? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:529-538. [PMID: 30476815 DOI: 10.1016/j.ecoenv.2018.11.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Benzo(α)pyrene (BaP) and lead (Pb) are common pollutants discharged greatly in ocean and causing detrimental impacts on marine organisms. Although mussels are one of the most prominent and frequently studied biological models, the research on their genomic alterations induced by the mixture of two totally different chemicals, is still rare. In present study, local marine mussels Mytilus coruscus were exposed in vivo to BaP (53.74 ± 19.79 μg/L), Pb (2.58 ± 0.11 mg/L) and their mixture for 6 days. The genotoxic damages were assessed by comet assay, micronucleus (MNi) test, and random amplified polymorphic DNA (RAPD) analysis. Significantly increased though transitory genomic damage was investigated after the exposure and showed consistency using various detecting methods. Additive genotoxicity was only found after 3 days combined exposure by means of MNi test, suggesting that BaP and Pb may play with alternative biological targets during metabolism and/or interaction with the genome. The geno-stability and the recovery capability were further detected both in vivo and in vitro after challenged by BaP. RAPD results showed coherence in BaP induced genotoxicity, together with time-specific alterations. The genomic instability was found to recover in both in vivo and in vitro exposure scenarios in present study. To our knowledge, this is the first study to focus on the genotoxicitiy induced by BaP, Pb and their mixture by multiple detecting techniques. The attempt to utilize model pollutants and marine organism to validate the potential value of RAPD analysis highlighted that it might be a useful tool in the research of genotoxicology, especially on the effect-mechanism interplay at genetic level.
Collapse
Affiliation(s)
- Mengjie Qu
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Jiawei Ding
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Yi Wang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Siyu Chen
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Yifei Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Yanan Di
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, PR China.
| |
Collapse
|
15
|
Su W, Shi W, Han Y, Hu Y, Ke A, Wu H, Liu G. The health risk for seafood consumers under future ocean acidification (OA) scenarios: OA alters bioaccumulation of three pollutants in an edible bivalve species through affecting the in vivo metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2987-2995. [PMID: 30373075 DOI: 10.1016/j.scitotenv.2018.10.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/22/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
The current knowledge about the effect of pCO2-driven ocean acidification on the bioaccumulation of pollutants in marine species is still scarce, as only limited types of pollutants have been investigated. Therefore, to obtain a better understanding of the effect of ocean acidification on the process of bioaccumulation and subsequent food safety, the accumulation of benzo[a]pyrene (B[a]P), chloramphenicol (CAP), and nitrofurazone (NFZ) in an edible bivalve species, Tegillarca granosa, under present and near-future ocean acidification scenarios was investigated in the present study. The health risks associated with consuming contaminated blood clams were also assessed using target hazard quotient (THQ), lifetime cancer risk (CR), or margin of exposure (MoE). To explain the alterations in bioaccumulation of these pollutants, the expressions of genes encoding corresponding key metabolic proteins were analyzed as well. The results obtained showed that ocean acidification exerted a significant effect on the accumulation of B[a]P, NFZ, and CAP in the clams. After four-week exposure to B[a]P, NFZ, or CAP contaminated seawater acidified with CO2 at pH 7.8 and 7.4, significantly greater amounts of B[a]P and lower amounts of NFZ and CAP were accumulated in the clams compared to that in the control. Although no non-carcinogenic risk of consuming B[a]P-contaminated blood clams was detected using the THQ values obtained, the CR values obtained indicated a high life-time risk in all groups. In addition, according to the MoE values obtained, the health risks in terms of consuming NFZ- and CAP-contaminated clams were significantly reduced under ocean acidification scenarios but still cannot be ignored, especially for children. The gene expression results showed that the ability of clams to eliminate B[a]P may be significantly constrained, whereas the ability to eliminate NFZ and CAP may be enhanced under ocean acidification scenarios, indicating that the changes in the accumulation of these pollutants may be due to the altered in vivo metabolism.
Collapse
Affiliation(s)
- Wenhao Su
- College of Animal Science, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Science, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Science, Zhejiang University, Hangzhou, PR China
| | - Yuan Hu
- Zhejiang Mariculture Research Institute, Wenzhou, PR China
| | - Aiying Ke
- Zhejiang Mariculture Research Institute, Wenzhou, PR China
| | - Hongxi Wu
- Zhejiang Fisheries Technology Extension Station, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Science, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
16
|
Stefani F, Casatta N, Ferrarin C, Izzotti A, Maicu F, Viganò L. Gene expression and genotoxicity in Manila clam (Ruditapes philippinarum) modulated by sediment contamination and lagoon dynamics in the Po river delta. MARINE ENVIRONMENTAL RESEARCH 2018; 142:257-274. [PMID: 30389237 DOI: 10.1016/j.marenvres.2018.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/18/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
The lagoons of the Po River delta are potentially exposed to complex mixtures of contaminants, nevertheless, there is a substantial lack of information about the biological effects of these contaminants in the Po delta lagoons. These environments are highly dynamic and the interactions between chemical and environmental stressors could prevent the proper identification of biological effects and their causes. In this study, we aimed to disentangle such interactions focusing on Manila clams, previously exposed to six lagoons of the Po delta, adopting three complementary tools: a) the detailed description via modelling techniques of lagoon dynamics for salinity and water temperature; b) the response sensitivity of a number of target genes (ahr, cyp4, ρ-gst, σ-gst, hsp22, hsp70, hsp90, ikb, dbh, ach, cat, Mn-sod, Cu/Zn-sod, cyp-a, flp, grx, TrxP) investigated in clam digestive glands by Real Time PCR; and c) the relevance of DNA adducts determined in clams as markers of exposure to genotoxic chemicals. The lagoons showed specific dynamics, and two of them (Marinetta and Canarin) could induce osmotic stress. A group of genes (ahr, cyp4, Mn-sod, σ-gst, hsp-22, cyp-a, TrxP) seemed to be associated with overall lagoon characteristics as may be described by salinity and its variations. Lagoon modelling and a second group of genes (hsp70, hsp90, cat, ikb, ach, grx, Cu/Zn-sod) also suggested that moderate increases of river discharge may imply worse exposure conditions. Oxidative stress seemed to be associated with such events but it was slightly evident also under normal exposure conditions. DNA adduct formation was mainly associated with overwhelmed antioxidant defences (e.g. low Cu/Zn-sod) or seemingly with their lack of response in due time. In Po delta lagoons, Manila clam can be affected by chemical and environmental factors which can contribute to induce oxidative stress, DNA adduct formation and, ultimately, to affect clam condition and health.
Collapse
Affiliation(s)
- Fabrizio Stefani
- CNR- National Research Council of Italy, IRSA - Water Research Institute, Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Nadia Casatta
- CNR- National Research Council of Italy, IRSA - Water Research Institute, Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Christian Ferrarin
- CNR- National Research Council of Italy, ISMAR - Marine Sciences Institute in Venice, Castello 2737/f, 30122 Venezia, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132, Genoa, Italy; IRCCS Policlinico San Martino, Genoa, Italy
| | - Francesco Maicu
- CNR- National Research Council of Italy, ISMAR - Marine Sciences Institute in Venice, Castello 2737/f, 30122 Venezia, Italy
| | - Luigi Viganò
- CNR- National Research Council of Italy, IRSA - Water Research Institute, Via del Mulino 19, 20861, Brugherio, MB, Italy.
| |
Collapse
|
17
|
Sarker S, Vashistha D, Saha Sarker M, Sarkar A. DNA damage in marine rock oyster (Saccostrea Cucullata) exposed to environmentally available PAHs and heavy metals along the Arabian Sea coast. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:132-143. [PMID: 29331918 DOI: 10.1016/j.ecoenv.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Molecular biomarkers are used world wide for quick assessment of the immediate effect of environmental pollution on marine ecosystems. Recently, we evaluated oxidative stress responses of marine rock oyster, Saccostrea cucullata impacted due to polycyclic aromatic hydrocarbons (PAHs) accumulated in their tissues at a few sampling sites along the coast of Goa around the region of the Arabian sea coast, India (Sarkar et al., 2017). Using a combination of partial alkaline unwinding and comet assays, we now report a comprehensive study on the impairment of DNA integrity (DI) in S. cucullata due to exposure to environmentally available PAHs and also heavy metals (Pb, Cd, Cu, Fe and Mn) along the Arabian Sea coast, Goa, India exclusively around the entire coast of Goa. First, we determined significant correlation between DI in S. cucullata and the extent of exposure to and bioaccumulation of different PAH compounds including 2-3 aromatic ring PAHs (R2, 0.95), 4-6 aromatic ring PAHs (R2, 0.85), oxygenated-PAHs (oxy-PAHs, R2, 0.84) and total PAHs (t-PAHs, R2, 0.98). Second, we observed dose-dependent decrease in DI in S. cucullata with increasing concentrations of different PAH components in oyster tissues. We substantiated our field observations with appropriate laboratory controls using benzo[a]pyrene (BaP). Third, we performed stepwise multiple regression analyses of different water quality parameters including pH, salinity, temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), nitrite (NO2), nitrate (NO3), phosphate (PO4), turbidity and also t-PAH-biota, t-PAH-water with DI as the dependent variable. Among all these parameters, only four parameters such as t-PAH-biota in combination with DO, BOD and NO2 showed significant correlation (R¯2 = 0.95) with loss in DI in S. cucullata. Based on these results, we created a map indicating the percentage of DNA damage in S. cucullata exposed to PAHs and heavy metals at each sampling location along the west coast of India around Goa, India.
Collapse
Affiliation(s)
- Subhodeep Sarker
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia; Global Enviro-Care, Kevnem, Caranzalem, Goa 403002, India.
| | - Deepti Vashistha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Global Enviro-Care, Kevnem, Caranzalem, Goa 403002, India
| | - Munmun Saha Sarker
- Global Enviro-Care, Kevnem, Caranzalem, Goa 403002, India; Rabindra Bharati University, Emerald Bower Campus, Kolkata 700050, India.
| | - A Sarkar
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Global Enviro-Care, Kevnem, Caranzalem, Goa 403002, India.
| |
Collapse
|
18
|
Utilization of isolated marine mussel cells as an in vitro model to assess xenobiotics induced genotoxicity. Toxicol In Vitro 2017; 44:219-229. [DOI: 10.1016/j.tiv.2017.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/21/2017] [Accepted: 05/24/2017] [Indexed: 02/08/2023]
|
19
|
Zhang L, Duan X, He N, Chen X, Shi J, Li W, Xu L, Li H. Exposure to lethal levels of benzo[a]pyrene or cadmium trigger distinct protein expression patterns in earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:733-742. [PMID: 28407590 DOI: 10.1016/j.scitotenv.2017.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Different pollutants induce distinct toxic responses in earthworms (Eisenia fetida). Here, we used proteomics techniques to compare the responses of E. fetida to exposure to the 10% lethal concentration (14d-LC10) of benzo[a]pyrene (BaP) or cadmium (Cd) in natural red soil (China). BaP exposure markedly induced the expression of oxidation-reduction proteins, whereas Cd exposure mainly induced the expression of proteins involved in transcription- and translation-related processes. Furthermore, calmodulin-binding proteins were differentially expressed upon exposure to different pollutants. The calcium (Ca2+)-binding cytoskeletal element myosin was down-regulated upon BaP treatment, whereas the Ca2+-binding cytoskeletal element tropomyosin-1 was up-regulated upon Cd treatment. Some proteins exhibited opposite responses to the two pollutants. For instance, catalase (CAT) and heat shock protein 70 were up-regulated upon BaP treatment and down-regulated upon Cd treatment. A significant (p<0.05, one-way ANOVA with least-significant difference (LSD) test) increase in the level of reactive oxygen species (ROS) and CAT activity further showed that BaP mainly induces oxidative stress. Real-time PCR analysis showed that mRNA expression often did not correlate well with protein expression in earthworms subjected to Cd or BaP treatment. In addition, the expression of the gene encoding the protein metallothionein, which was not detected in the protein analysis, was induced upon Cd treatment, but slightly reduced upon BaP treatment. Therefore, BaP and Cd have distinct effects on the protein profile of E. Fetida with BaP markedly inducing ROS activity, and Cd mainly triggering genotoxicity. CAPSULE SUMMARY Distinct patterns of protein expression are induced in earthworms upon exposure to different pollutants; BaP markedly induces high levels of ROS, while Cd resultes in genotoxicity.
Collapse
Affiliation(s)
- Lihao Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Xiaochen Duan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; College of Resources, Environment, and Planning, Dezhou University, Dezhou 253023, People's Republic of China
| | - Nannan He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xu Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jinli Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Weiming Li
- Nanjing Scientific Institute of Vegetables and Flowers, Nanjing 210095, People's Republic of China
| | - Li Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China.
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
20
|
Su W, Zha S, Wang Y, Shi W, Xiao G, Chai X, Wu H, Liu G. Benzo[a]pyrene exposure under future ocean acidification scenarios weakens the immune responses of blood clam, Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2017; 63:465-470. [PMID: 28254499 DOI: 10.1016/j.fsi.2017.02.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
Persistent organic pollutants (POPs) are known to converge into the ocean and accumulate in the sediment, posing great threats to marine organisms such as the sessile bottom burrowing bivalves. However, the immune toxicity of POPs, such as B[a]P, under future ocean acidification scenarios remains poorly understood to date. Therefore, in the present study, the impacts of B[a]P exposure on the immune responses of a bivalve species, Tegillarca granosa, under present and future ocean acidification scenarios were investigated. Results obtained revealed an increased immune toxicity of B[a]P under future ocean acidification scenarios in terms of reduced THC, altered haemocyte composition, and hampered phagocytosis, which may attribute to the synergetic effects of B[a]P and ocean acidification. In addition, the gene expressions of pathogen pattern recognition receptors (TLR1, TLR2, TLR4, TLR6), pathway mediators (TRAF6, TAK1, TAB2, IKKα and Myd88), and effectors (NF-ĸB) of the important immune related pathways were significantly down-regulated upon exposure to B[a]P under future ocean acidification scenarios. Results of the present study suggested an increased immune toxicity of B[a]P under future ocean acidification scenarios, which will significantly hamper the immune responses of T. granosa and subsequently render individuals more susceptible to pathogens challenges.
Collapse
Affiliation(s)
- Wenhao Su
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shanjie Zha
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yichen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guoqiang Xiao
- Zhejiang Mariculture Research Institute, Wenzhou, PR China
| | - Xueliang Chai
- Zhejiang Mariculture Research Institute, Wenzhou, PR China
| | - Hongxi Wu
- Zhejiang Fisheries Technology Extension Station, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|